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Abstract—This work examines the performance of leading-
edge systems designed for machine learning computing, includ-
ing the NVIDIA DGX-2, Amazon Web Services (AWS) P3,
IBM Power System Accelerated Compute Server AC922, and
a consumer-grade Exxact TensorEX TS4 GPU server. Repre-
sentative deep learning workloads from the fields of computer
vision and natural language processing are the focus of the
analysis. Performance analysis is performed along with a number
of important dimensions. Performance of the communication in-
terconnects and large and high-throughput deep learning models
are considered. Different potential use models for the systems as
standalone and in the cloud also are examined. The effect of
various optimization of the deep learning models and system
configurations is included in the analysis.

Index Terms—Deep learning, High performance computing,
Benchmark testing, Performance analysis, Computer architec-
ture, Concurrent computing, DGX-2, GPU

I. INTRODUCTION

The growth of machine learning and deep learning (DL)
extends across all data analytical application areas, impacting
many disciplines and markets. Hence, their practical use
potential appears exponential and seemingly unbounded. In
turn, the ever-insatiable need for computing resources for these
workloads has led to the development of computer architec-
tures and systems designed to improve machine learning per-
formance [1]–[8]. As the presently preferred architectures for
machine learning application workloads, GPU-based systems
are an important exemplar in this category.

This work evaluates the performance of two important types
of DL algorithms on four leading-edge GPU-based systems.
Specifically, we consider convolutional neural network (CNN)
algorithms, such as AlexNet and ResNet, mostly used in
computer vision and attention-mechanism-based algorithms
for natural language processing on the NVIDIA DGX-1 and
DGX-2, IBM Power System AC922, and Exxact TensorEX
TS4. Moreover, we analyze a cloud-based Amazon Web
Services (AWS) P3dn use mode for the DGX-1 and compare
DL performance against standalone use for the other systems
considered.

GPU-based systems are especially well suited for DL work-
loads as proven in practice and in scientific publications [3],
[9], [10]. Briefly, this stems from their single-instruction
multiple-data (SIMD) nature and arithmetic intensity of the
algorithms mapping well to available floating point operations

(FLOPS) on GPUs; availability of large amounts of high-
bandwidth memory that allows for data access at fast rates
and low latency; and to high-speed interconnects that afford
communication at high bandwidth with minimal contention.
The first three examples of leading-edge systems considered
herein use the NVIDIA Tesla V100 GPU with different
topologies of the NVLink interconnect. The Exxact TS4 is
configured with the consumer-grade GeForce RTX 2080 Ti
GPU, which is popular among AI researchers, developers, and
hobbyists. Section II-A describes the systems and their key
architectural characteristics in more detail.

Section III details how DL models considered are trained,
the fundamental arithmetic operations involved during train-
ing, and their effects on different hardware systems. Specifi-
cally, Section III-B dissects CNN models for computer vision,
while Section III-C explores the state-of-the-art Bidirectional
Encoder Representations from Transformers (BERT) model
for natural language processing (NLP) [11].

The detailed performance analysis is done along a few
important dimensions. Section IV-A presents the performance
of key global communication kernels used in the benchmarks
considered. Section IV-B discusses performance and scalabil-
ity of large and high-throughput DL models. Section IV-D
compares performance when the benchmarks are expressed
in an easy-to-code multi-GPU architecture enabled by system
software described in Section II-B.

II. ENVIRONMENT

A. Hardware Environment

As part of this work, the following systems were put
to the test: NVIDIA DGX-1V and DGX-2 (DGX-2), IBM
Power System AC922 (IBM-P9), AWS P3dn (AWS P3),
and Exxact TensorEX TS4 (RTX). Henceforth, the systems
will be referenced using their respective abbreviations noted
in parentheses. For added convenience, a consistent color
scheme and geometric shape are maintained for each system
represented in figures throughout this work (green diamond,
DGX-2; blue square, IBM-P9; orange triangle, AWS P3; red
circle, RTX). Of note, the AWS P3 essentially is a DGX-1V
as shown in the communication bandwidth test depicted in
Section IV-A.
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Before delving into the details of each system, we first
introduce the key architectural component: the NVIDIA Tesla
V100 GPU.

Tesla V100: The Tesla V100 GPU [12] is a building block
for three of the four systems under consideration. The V100
GPU has 640 Tensor cores and 5,120 CUDA cores with 32 GB
(or 16 GB) HBM2 GPU memory (900 GB/s bandwidth). It can
achieve 15.7 TFLOPS for single-precision performance. For
direct inter-device (GPU-to-GPU) communication, the V100
has six NVLink-2.0 fabric supporting 25 GB/s per link, per
data direction. Therefore, each V100 has the ability to com-
municate with other GPU devices at 150 GB/s unidirectional
(or 300 GB/s bidirectional) bandwidth. The high bandwidth of
inter-node communication is crucial for training deep neural
network models across multiple devices.

DGX-2: The bulk of the DGX-2’s computation capac-
ity is from 16 V100 (32 GB) GPUs evenly distributed on
two baseboards and connected via 12 on-node switches, or
NVSwitch [13]. Each NVSwitch has 18 NVLink ports (16
in use) and supports 900 GB/s bidirectional peak bandwidth.
Eight NVLink ports are connected to different GPU devices
(one per link) on the same baseboard, whereas the other eight
NVLink ports are connected to the matching NVSwith ports
on the other baseboard (Figure 1a). This network connectivity
affords communications at a bandwidth of up to 150 GB/s per
direction. Any two V100 GPUs can establish full bandwidth
(up to 150 GB/s per direction) communication using all six
NVLink ports. The specific DGX-2 tested in this work has
two hyper-threaded 24-core Intel Xeon 8168 CPUs (96 logic
cores in total) with base frequency of 2.7 GHz, 1.5 TB system
memory, and 30 TB NVMe SSD in eight-way RAID0.

AWS P3: AWS’ P3dn.24xlarge instance is similar to the
NVIDIA DGX-1V system [6] and is equipped with eight
Tesla V100 (32 GB) GPUs connected in a hybrid cube-mesh
topology (Figure 1b). The hybrid cube-mesh topology leads to
each node having four immediate neighbors. This is a legacy
design following the previous DGX-1P system, where the
Tesla P100 GPU featured only four NVLink ports. Two of the
four neighbors are connected to two links each, while the other
two connect to one only. To connect two P3 systems, AWS
provides network connection bandwidth up to 100 Gbits/s. The
caveat is that this limit can be reached only for multi-flow
connections. The single-flow bandwidth is 10 Gbits/s (1.25
GB/s). The specific AWS P3 systems tested in this effort have
two hyper-threaded 24-core Intel Xeon 8175M CPUs (96 logic
cores in total) with base frequency of 2.5 GHz, 768 GB system
memory, and 2 TB ephemeral NVMe SSD. Section IV-A
shows that the NVIDIA DGX-1V system is analogous to the
AWS P3. Thus, we include only the results for the AWS P3.

IBM-P9: The IBM Power System AC922 [14] (Model
8335-GTH) server tested is equipped with four Tesla V100
(32 GB) GPUs (Figure 1c). The tested AC922 server has
two IBM POWER9 hyper-threaded 20-core CPUs (160 logic
cores in total) with base frequency of 2.3 GHz and max
frequency of 3.8 GHz. IBM’s POWER9 CPU is NVLink-
enabled. Each CPU has six direct NVLink connections to
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Figure 1: GPU-to-GPU Communication Topology. Each Tesla
V100 GPU has six NVLink ports with unidirectional commu-
nication bandwidth of 25 GB/s per port. Numerically labeled
boxes represent different GPU devices. The six NVLinks from
device-0 are colored differently.

GPUs (three per GPU), enabling a 75 GB/s unidirectional
communication bandwidth to each GPU. In addition, there are
three NVLink fabrics connecting two GPUs directly. If the
GPUs are not connected to the same CPU, communications
must route through the inter-CPU symmetric multiprocessing
(SMP) cable with unidirectional bandwidth of 32 GB/s. The
POWER9 CPU connects to the system main memory with
accumulated (eight channels) unidirectional bandwidth of 60
GB/s. The tested system has four nodes, connected via high-
bandwidth (24 GB/s unidirectional) InfiniBand. All of the
nodes use IBM General Parallel File System (GPFS) with
block size of 1 MB and bandwidth of approximately 18 GB/s.
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RTX: The Exxact TensorEX 4U server (TS4-1598415-DPN)
is equipped with eight NVIDIA consumer-grade GeForce RTX
2080 Ti GPUs [15]. Each RTX 2080 Ti GPU has 4352 CUDA
cores and 11 GB GDDR6 GPU memory with 616 GB/s
memory bandwidth. It can reach a peak performance of 13.4
TFLOPS for single-precision performance, or about 85.4% of
the V100 GPU’s peak performance. The specific server tested
in this work has two hyper-threaded 12-core Intel Xeon 4116
CPUs (48 logic cores in total) with base frequency of 2.1
GHz. All eight GPUs are connected via a PCIe bus. Compared
to other high-end V100 GPU-based solutions, the RTX GPU
cards are a unique feature for this system. As such, we refer
to this system as RTX.

B. Software Environment

Because of its popularity among AI researchers, its well-
designed user interface, and native support for NVIDIA com-
munication and computation backend kernels and MPI, we
use the PyTorch DL platform. To maintain a consistent and
reproducible software environment, we use docker containers,
which also alleviate the difficulty in migrating the DL mod-
els to other hardware systems and reduce the performance
differences introduced by distinct software environments. For
the x86 architecture (Intel Xeon CPU) systems, including
DGX-1, DGX-2, AWS P3, and RTX, we use the NVIDIA
official PyTorch docker image (NVCR)1 as the base software
environment. For the ppc64le architecture (IBM POWER9
CPU) system, IBM-P9, we use the PowerAI v1.6 [16].

Nevertheless, to ensure our work is reproducible, Table I
lists the exact library versions of the NVIDIA docker and the
PowerAI v1.6. The NVIDIA CUDA library is a programming
interface to NVIDIA GPUs for parallel computing, while
NVIDIA’s cuDNN (deep neural network) library provides
device-level optimized, neural-network-related backend ker-
nels. The NVIDIA NCCL (collective communication) library
provides a multi-GPU communication interface, supporting
several communication means, such as NVLink, PCIe, and
Ethernet.

Table I: Software Environment

Library NVIDIA NVCR IBM PowerAI

PyTorch 1.0.0a0 1.1.0
CUDA 10.0.130 10.1.168
cuDNN 7.401 7.501
NCCL 2.307 2.407

III. DEEP LEARNING MODELS

A. Data Movement and Communication Between Devices

Deep learning is a data-driven modeling approach. The
training process, known as stochastic gradient descent, con-
sists of numerous iterations of feeding data to the model
and adjusting the model parameters to reduce the predefined
loss. At each iteration, a batch of data is selected at random

1nvcr.io/nvidia/pytorch:18.11-py3

Table II: Tested Deep Learning Models

Model Name Param. Ops/ins.

AlexNet 61.10 M 0.72 G
ResNet18 11.69 M 1.83 G
ResNet50 25.56 M 4.14 G
ResNet101 44.55 M 7.88 G
ResNet152 60.19 M 11.62 G
BERT-SWAG 109.5 M 0.19 G
BERT-SQuAD 109.5 M 2.87 G

(without replacement). The data are loaded from the hard
drive to the host memory, and, sometimes, preprocessing data-
augmentation procedures are applied using CPU threads, such
as randomly flipping images or adjusting image sizes. Then,
the preprocessed batch is sent to the GPU memory via PCIe
bus.

The bulk of actual computation usually is done on one
or multiple GPUs. In the multiple GPU case, the execution
is done in a SIMD fashion so each GPU has an exact
replica of the neural network model and applies the exact
executions on different sampled data batches. In the ideal
case, the throughput would grow linearly with the number of
GPUs. At the end of every iteration, all of the model replicas
require synchronization. This synchronization is done by a
collective communication using NCCL. Most of the results in
this work use the NCCL all-reduce kernel. Therefore, the two
major factors affecting the time cost of communication are: 1)
the inter-device communication bandwidth and 2) number of
model parameters.

For this work, we have selected several representative DL
models to cover different ranges of parameters, computation-
communication ratios, application domains, and various types
of neural network DL layers. Because of the vast number
of potential DL models, we are unable to test all of them
exhaustively. However, by providing detailed descriptions and
computation characteristics for these select models, readers
should be able to easily estimate the performance (in terms of
computation efficiency not model accuracy) of other models as
the fundamental types of numeric operations are comparable.
As computer vision and NLP are the two most successful
application domains for DL, we choose the AlexNet model and
ResNet model from the computer vision domain and BERT
model from NLP to represent examples of DL methods in
these areas. We analyze the models in terms of their number
of trainable parameters and operations. The former affects the
memory footprint as well as the inter-device communication
costs, while the latter impacts the on-device computation time.
The computation cost per iteration scales linearly with the
number of instances per sampled data batch, known as the
batch size. However, the actual computation cost depends on
many other factors. Table II provides a summary of the number
of parameters and operations per instance for all of the models
presented in this work.
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B. Computer Vision

The goal of computer vision is to make computers gain
high-level “understanding” of images. To evaluate if a program
(AI model) truly “understands” the image, researchers have
developed different evaluation tasks to measure its comprehen-
sion. One type of these tasks, known as image classification,
provides an image to the program and asks about which
predefined class the image belongs to. For example, the
MNIST (handwritten digit database) asks the program to tell it
which digit, from 0 to 9, the grayscale image (28-by-28 pixels)
belongs to. This is considered one of the simplest computer
vision tasks, and traditional machine learning methods, such as
the support vector method, have reached 99.2% accuracy [17].
The ImageNet Large Scale Visual Recognition Challenge, or
ILSVRC [18], a much more challenging image classification
test, was introduced in 2010. It contains 1000 predefined
classes (including 60 different dog breeds) and more than a
million training images. The best-performing model in the first
ILSVRC (2011) achieved only about a 25% top-five error
rate.2 In 2012, AlexNet [19], considered the first modern
CNN-based model, successfully reduced the top-five error rate
to 16.4%. In 2015, ResNet [20] further reduced the error
rate to 3.57%. It also introduced residual blocks to mitigate
the “vanishing gradient problem” when the neural network
becomes too deep.

A deep neural network is a stack of multiple neural network
layers, usually varying kinds. Each layer takes the previous
layer’s output as its input, where both input and output are
tensors. A Linear layer is one of the simplest kind, a matrix
of size ci × co, where ci and co are the number of input
and output channels. Therefore, the number of parameters
of a Linear layer is on the order of O(cico) or co(ci + 1)
to be precise where “1” is the bias term. The operation
performed by a Linear layer essentially is a general matrix-
matrix multiplication (GEMM). In most cases, the multiplier
matrix (input) has a dimension of B×ci, and the multiplicand
matrix (Linear layer weights) has a dimension of ci × co.
As such, the number of operations for a batch size B is
B × (ci + 1) × co. One could deduce that the operation-
to-parameter ratio Γ for a Linear layer is B: ΓLinear = B,
implying that computation cost grows linearly with the number
of parameters in the Linear layer and batch size.

A two-dimensional convolutional (Conv2D) layer consists
of co kernels of size ci × k × k. Therefore, the exact number
of parameters of a Conv2D layer is co(k2ci + 1). A kernel is
simply a small tensor applied to the input tensor in a sliding-
window fashion, where the step size is called the stride. When
the stride is greater than one, the input tensor is downsampled
in the spatial dimension. The number of operations for a
Conv2D layer can be calculated by considering the number
of times the kernel has been applied and the cost of applying
each kernel. Applying a Conv2D kernel on the input tensor of

2Top-five error rate. For each test image, the algorithm is allowed to give
five predictions. If any of the five predictions match to the ground truth, it is
considered a hit.

size B×ci×Hi×Wi is meant to perform a tensor dot product
of ci × k2 on every pixel of the spatial dimension H ×W .

For simplicity, assume the striding step is 1, and padding is
bk/2c such that the spatial dimension is unchanged Ho = Hi

and Wo = Wi. Thus, each kernel has been applied Ho ×
Wo times.3 For each kernel application at every pixel level, a
GEMM operation is performed, which costs C ≡ co(cik

2+1).
Therefore, in total, the number of operations of the Conv2D
layer is Ho ×Wo ×C. Because the number of parameters of
a Conv2D layer is also C, the operation-to-parameter ratio Γ
for Conv2D layer is ΓConv2D = BHoWo. As in the case of
the Linear layer, the total number of operations scales with
the batch size. Yet, in contrast to the Linear layer, the total
number of operations also depends on the spatial dimension
of the output tensor. Each parameter of a Conv2D layer has
been operated HoWo more times than a parameter in a Linear
layer.

AlexNet consists of five Conv2D layers of ∼ 221 parameters
in total, two hidden Linear layers (∼ 225), and one output
Linear layer (∼ 222). The Linear layer also uses an order of
magnitude more parameters. Compared to AlexNet, ResNet
consists almost entirely of Conv2D layers, except the final
Linear layer for classification output. The sub-types of ResNet
models are labeled as ResNetX, where X represents the total
number of parameterized layers (Conv2D and Linear). The
choices of X in the original paper [20] are 18, 34, 50, 101, and
152. ResNet18 serves as a high-throughput (small number of
operations), low-accuracy model because of the small amount
of parameters, while ResNet152 has the highest accuracy but
slowest training throughput. Using ResNet50 for ImageNet
data (1000-way classification) as a concrete example, the
model contains about 224.6 parameters, where only 221 are
from the Linear layer. As discussed, each parameter of a
Conv2D layer contributes a factor of Ho×Wo more operations
than one in a Linear layer. As such, ResNet has a much higher
operation-to-parameter ratio than AlexNet.

C. Natural Language Processing

NLP is another successful application of DL techniques.
Some NLP tasks include speech recognition, translation,
speech-to-text (and vice versa), and question-and-answer sys-
tems. In the pre-DL era, NLP was dominated by hidden
Markov models [21]. Mikolov et al. [22] introduced a DNN-
based word embedding model to represent words as vectors
based on their context. Namely, similar words would have
comparable context around them and end up closer in the
vector space. This approach provides a meaningful way to
represent non-numeric entities, i.e., words, as numeric vectors
and provides a foundation for solving a diverse range of
NLP tasks. Graves et al. [4] developed a deep recurrent-
neural-network-based approach to perform automatic speech

3Note that by setting striding greater than one, fewer kernel operations will
be applied, which can reduce the spatial dimension (downsampling). Whereas,
by setting the space between kernel points (dilation), the spatial dimension
(upsampling) can increase. The computation cost analysis is similar.
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recognition and broke the TIMIT phoneme recognition bench-
mark record [23]. By the end of 2016, all major technology
companies had adopted the DNN-based approach for their
speech recognition systems. Vaswani et al. [24] introduced
the attention mechanism into NLP tasks and demonstrates its
superior performance in natural language translation tasks.

The particular NLP model in this work, BERT, uses bidi-
rectional transformers [11] and exceeded 11 NLP benchmark
records in November 2018.4

The BERT model has two training phases: 1) pre-training
and 2) fine-tuning. In the pre-training phase, BERT uses the
semi-supervised sequence learning approach [25] by masking
out a random word in a sentence. Unlike other previous
unidirectional approaches, BERT tries to predict the masked
word from both directions. Training is done on large unlabeled
corpora, such as the English Wikipedia (2,500 million words).
Herein, this pre-trained model is known as the base-model. In
the task-specific fine-tuning phase, the base-model connects
with a classification Linear layer designed for the specific task.
The data used for fine-tuning are labeled and much smaller
compared to the large corpora [26]. The majority of attention
mechanism operations are matrix multiplication and layer-wise
normalization. For details regarding how the attention mech-
anism works, readers can refer to several available guides.5,6

We use the pre-trained BERT base-model and fine-tune it
for two specific NLP tasks: SWAG and Stanford Question
Answering Dataset (SQuAD). The SWAG [27] is a multi-
choice task. Given a situation described by a sentence as
input, the model is asked to select the most plausible scenario
that happens next among multiple choices. The SQuAD [28]
is a Question Answering task, where a pair that includes a
question and a relevant paragraph (containing the answer) is
provided and the model is tasked to find the answer in the
given paragraph.

Although the base model is the same, to fully cover the
training data, different max-seq-length is used. We use max-
seq-length of 80 for SWAG and 384 for SQuAD. As the
max-seq-length determines the attention span, it takes more
operations to perform the SQuAD task. Table II features
the number of model parameters and estimated operations of
BERT-SWAG and BERT-SQuAD, respectively. Of note, our
benchmark code is modified from the source code.7

IV. PERFORMANCE ANALYSIS

This section details the performance analysis of DL work-
loads using the four systems (already described) under consid-
eration. The all-important communication performance is first
presented. Given the different workload characteristics, the
analysis is done separately for large-scale and high-throughput
models. Performance details for an increasingly popular code

4As of March 2019, OpenAI and Microsoft have released their model
challengers to BERT.

5http://nlp.seas.harvard.edu/2018/04/03/attention.html.
6https://jalammar.github.io/illustrated-transformer/.
7https://github.com/huggingface/pytorch-pretrained-BERT

expression (due to ease of coding)—PyTorch’s On-node Data
Parallel [29]—also is included.

A. Communication Performance

As shown in Section II-A, leading-edge systems implement
various direct high-bandwidth inter-device communication
topologies based on NVLink. The NCCL8 provides MPI-like
primitives for multi-GPU and multi-node collective commu-
nications. The library is optimized for NVIDIA GPU devices
to achieve high communication bandwidth over NVLink and
PCIe (when necessary). NCCL supports collective communi-
cation primitives, such as all-reduce, all-gather, reduce-scatter,
reduce, and broadcast.

As the most relevant communication kernels occurring
in the benchmarks considered, all-reduce and broadcast are
examined for performance using NVIDIA’s NCCL-tests code.9

Results are presented normalized to the ”bus bandwidth,”
a concept described by NVIDIA in the NCCL-tests.10 Bus
bandwidth is obtained by applying a normalization divider of
the measured bandwidth
(“message size”/time) different for each communication ker-
nel to reflect its communication complexity and topological
mapping to the network. Because the bus bandwidth reflects
how optimally the hardware is used, it provides a consistent
and normalized way to compare the results with the theoretical
peak bandwidth, including across different communication
primitives.

In this work, data size varies from 1 MB to 1 GB, which
covers the communication needs for synchronizing model
parameters. Each data point is averaged over 500 iterations,
except for the case of 16 GPUs using two AWS P3s, which is
averaged over 50 iterations due to the slow inter-node Ethernet
connection. Figure 2 illustrates the results.

The DGX-2 consistently achieves 120 GB/s for large mes-
sage sizes, regardless of the number of GPUs involved in the
communications. This can be attributed to the NVSwitch’s
link bandwidth and contention properties (described in Sec-
tion II-A).

The AWS P3 and DGX-1V yield analogous, if not exactly
the duplicate, results because they share the same hybrid
cube-mesh topology (refer to Figure 1b). Because of the
heterogeneity of this topology, the measured peak bandwidth
depends on the devices involved in the communication. In the
case of two GPUs, the test employs device-0 and device-1,
which are connected via a single NVLink that offers 25 GB/s
theoretical unidirectional bandwidth. For four GPUs, device-0
to -3 are used, and the NVLinks connecting to device-4 to -7
are not. The observed bandwidth is about 80 GB/s. For eight
GPUs, the DGX-1 surpasses the DGX-2 in the all-reduce tests
(Figure 2a). In the broadcast test (Figure 2b), the crossover
occurs when the message size exceeds 256 MB. While these
results may seem unexpected due to the higher bandwidth

8https://developer.nvidia.com/nccl
9https://github.com/NVIDIA/nccl-tests/release/tag/v1.0.0
10Described in detail here:

https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md.
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(a) All-reduce

(b) Broadcast

Figure 2: Communication Bus Bandwidth.

and topological richness of the NVSwitch compared to the
NVLink, the actual explanation stems from the communication
protocol changes introduced on the NVSwitch [30]. Here,
posted requests are converted to non-posted, which, in turn,
requires acks at the expense of bandwidth in the reverse direc-
tion. This is not the case on the DGX-1V without NVSwitch.
With access to only one DGX-1, the 16 GPU case was done
on AWS P3. The two AWS-P3dn nodes are connected via a
100 Gbits/s multi-flow Ethernet connection. The experimental
setup in the AWS cloud allowed for only a single flow (review
Section II-A) with a peak bandwidth of 1.25 GB/s. In this case,
the communication bandwidth clearly is bottlenecked by the
slow Ethernet connection.

IBM-P9 uses half of the NVLinks for CPU-GPU commu-
nication (Figure 1c). This leaves three NVLinks to connect
device-0 and device-1. In the case of two GPUs, the measured
bus bandwidth of 70 GB/s is quite close to the theoretical peak

of 75 GB/s. However, with four GPUs, the bus bandwidth
reduces to about 30 GB/s, matching the theoretical SMP bus
bandwidth of 32 GB/s when connecting two POWER9 CPUs.
Higher count GPU configurations on the IBM P9 (eight-
and 16-GPU) exhibit lower bus bandwidth (Figure 2). This
achieved performance is due to NCCL not being optimized
for the InfiniBand interconnect.

The RTX system does not use NVLink technology, and
all eight RTX 2080Ti GPUs connect through a PCIe bus.
Therefore, the communication bandwidth is throttled down by
the PCIe bus. Despite its inferior communication performance,
the RTX system serves as the baseline for other systems.

B. Performance of Deep Learning Workloads

Computation performance is measured in terms of the model
training throughput: the average number of training samples,
or instances, the system can process per second. For each
different combination of models, batch sizes, and number
of GPUs, time intervals are measured between consecutive
iterations during training. For computer vision DL models,
each model runs for 200 iterations. For the BERT models,
the reported throughput is averaged over one training epoch.11

The initial iterations are excluded from the statistics due to
memory allocation overhead. All of the models in this secion
are represented in single precision (FP32).

Distributed data-parallel training with asynchronous data
prefetching is used. Each GPU is associated with j data-
fetching CPU processes using CUDA streams. In these tests
j = 4. This allows data to be loaded and preprocessed
asynchronously and concurrently on the CPUs while the GPUs
are in use. Every GPU device holds a replica of the model and
applies the model on different data batches. At each iteration’s
conclusion, all GPUs synchronize their parameter gradients
via an all-reduce NCCL operation. Then, all model replicas
individually update their parameters using the gradients. The
computer vision models are trained on the ILSVRC ImageNet
data set, while BERT models are fine-tuned on task-specific
data sets, SWAG and SQuAD (introduced in Section III-C).

As the system performance characteristics vary for differ-
ent models, we group models such as ResNet101(152) and
BERT as large DL models and those with high through-
put, e.g., ResNet18(50) and AlexNet, as high-throughput DL
models. The large DL model results are discussed in this
sub-section, while high-throughput DL models are addressed
in Section IV-B2. For added clarity, the bar plots featured
in this section depict systems ordered from left to right,
corresponding to the system order posed in legends (inset from
top to bottom).

1) Performance Analysis of Large Deep Learning Models:
Initially, the absolute throughput values of large DL mod-
els, e.g., ResNet101, ResNet152, BERT-SWAG, and BERT-
SQuAD, are examined (Figure 3). As the amount of com-
munication for synchronization depends on the number of
model parameters and not on the batch size, we choose the

11One epoch is defined as going through the entire data set once.
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(a) ResNet101 (b) ResNet152

(c) BERT-SWAG (d) BERT-SQuAD

Figure 3: Training Throughput of Large DL Models on RTX,
IBM-P9, AWS P3, and DGX-2.

largest batch size that can fit into the 32 GB of memory
of a single V100 GPU to achieve the best possible scaling
results. Specifically, the batch sizes used are: 128 per GPU
for ResNet101 and ResNet152, 64 for BERT-SWAG, and 32
for BERT-SQuAD.

Across all four systems, the DGX-2 and AWS P3 have
similar performance up to eight GPUs. This is expected as
both systems have the same V100 GPUs and are connected
via high-bandwidth (over 120 GB/s) NVLinks. However, when
16 GPUs are in use, two AWS P3s communicate through a
relatively slow Ethernet connection (about 1 GB/s measured).
Figures 3c and 3d reveal the differences in performance,
especially in BERT models where the number of parameters
is large. Given its high-bandwidth inter-node communication
network, the IBM P9 exhibits similar performance to DGX-2
all the way to up to a 16 GPU configuration.

The RTX server has 11 GB of DDR6 GPU memory. Hence,
the batch sizes are even smaller: one-quarter of the size
when using 32 GBs on the V100 GPU on all other systems.
Specifically, the batch size for ResNet101 and ResNet152 is
64, BERT-SQuAD is 8, and BERT-SWAG is 16. This leads to
a quadrupling of the amount of communication for the same
total of computed instances. RTX’s slow inter-device commu-
nication via a PCIe bus further exacerbates its performance
degradation. For example, in the case of 1 GPU, RTX can
reach about 65.82% throughput of the DGX-2 averaged over
four DL models, yet merely 57.27% in the case of eight GPUs
(see Table III). Hence, the RTX server is the least efficient
system for large model distributed training.

To examine the scaling more closely throughout the full
span of GPU configurations, we plot the throughput for all DL
models in a log-log scale (Figure 4), where the dashed refer-

(a) ResNet101 (b) ResNet152

(c) BERT-SWAG (d) BERT-SQuAD

Figure 4: Linear Scaling in Log-Log Scale. Gray dashed lines
are linear scaling reference lines.

ence line depicts linear scalability. If the measured throughput
follows the reference line, or maintains a constant gap, it has
good parallel scalability. The DGX-2 exhibits good scalability
on all four models, whereas AWS P3 shows linear scalability
up to eight GPUs. For the RTX, there is a significant drop
from one GPU to two GPUs in terms of scalability because
one GPU computation does not require model synchronization,
while that cost does apply for multiple GPU configurations.

Table III: Instances per second for RTX relative to DGX-2

Model Name 1 GPU 2 GPUs 4 GPUs 8 GPUs

AlexNet 78.19% 63.01% 53.41% 47.95%
ResNet18 73.50% 69.13% 64.39% 54.80%
ResNet50 67.97% 62.67% 62.97% 61.75%
Average 73.22% 64.94% 60.26% 54.83%

ResNet101 69.70% 63.72% 64.15% 62.69%
ResNet152 69.73% 62.45% 62.96% 61.90%
BERT-SWAG 64.04% 57.52% 57.20% 56.25%
BERT-SQuAD 59.81% 49.79% 49.74% 48.22%
Average 65.82% 58.37% 58.51% 57.27%

Overall avg. 68.99% 61.19% 59.26% 56.22%

2) Performance Analysis of High-Throughput Learning
Models: Here, AlexNet, ResNet18, and ResNet50 are charac-
terized as high-throughput models. All systems except RTX
use a 256 batch size per GPU to fully utilize their 32 GB of
memory for all models. RTX uses a batch size of 64. Figure 5
illustrates the results.

Training high-throughput models implies frequent data
movement through the file system. For configurations up to
8 GPUs, the performance is lower on IBM-P9. The reason for
that is related to the use of GPFS external filesystem on the
IBM machine, whereas the other system under consideration
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(a) AlexNet (b) ResNet18 (c) ResNet50

Figure 5: Training Throughput of High-throughput DL Models on RTX, IBM-P9, AWS P3, and DGX-2.

(a) AlexNet (b) ResNet18 (c) ResNet50

Figure 6: Examining Scaling in Log-Log Scale. Gray dashed lines are linear scaling reference lines.

utilize local storage for the executation of these small models.
For ResNet50 (Figure 5c), all the systems exhibit linear

scaling. Because of the ResNet50 model’s small size, the
slow inter-node Ethernet bandwidth of the AWS P3 does not
bottleneck the distributed training throughput performance.

Because AlexNet uses more than twice the number of
parameters of ResNet50, throughput performance is throttled
down by the slow Ethernet connection on AWS P3 when
two nodes (with a total of 16 GPUs) are in use (Figure 5a).
Even on the DGX-2, AlexNet does not scale linearly to 16
GPUs (shown in Figure 6a). When 16 GPUs are in use on the
DGX-2, AlexNet spends about 80% of the active GPU time
in communication, whereas ResNet50 spends only about 4%.

Given its smallest amount of parameters, ResNet18’s need
for inter-device communication is modest. Even so, as shown
in Figure 6b, the scaling is not ideal. An interesting observa-
tion is that when using 16 GPUs, the AWS P3 performs better
than the DGX-2 (Figure 5b).

(a) CPU Core Speed (b) Instructions per Cycle

Figure 7: CPU Performance Bottleneck of ResNet18.

Recall from Section IV-B that in all experiments, each GPU
is associated with (j =) 4 CPU processes for prefetching data.

On the AWS P3, the two CPUs on each node will handle
32 processes for the eight GPUs. On the DGX-2, the 16
GPUs require 64 CPU data-fetching processes from the two
associated CPUs. To explain why the AWS P3 outperforms
the DGX-2 in Figure 5b requires determining if the scaling
inconsistency stems from a lower core frequency speed and/or
cache capacity effects. Figure 7a shows CPU core speed
measurements (enabled given Turbo Boost technology) for
both systems while varying j from 1 to 16 on the DGX-2 and
AWS P3. For example, if j = 16 and DGX-2 uses all 16 GPUs,
there are 256 CPU processes in total. The light green curve
(Figure 7a) depicts the case when only eight GPUs on the
DGX-2 are in use, in which case the DGX-2 has slightly better
performance than AWS P3 5b. When using j = 1 CPU process
per GPU, the DGX-2’s CPU core speed is much higher than
that of the AWS P3 because of its superior CPU performance
characteristics (see Section II-A). However, as j increases,
the DGX-2’s CPU core speed decreases, which is typical for
Intel Turbo Boost technology. For j = 4, the specific case
present in the benchmark runs (also shown by the vertical
dotted line in Figure 7a), the DGX-2 maintains a higher CPU
core speed than that for the AWS P3. Hence, clock frequency
is not the sole explanation for the performance inconsistency.
To understand the exact amount of work the CPU does per
unit time, Figure 7b shows the metric of instructions per cycle
(IPC). The IPC of the DGX-2 using 16 GPUs at j = 4 is
much lower than that of AWS P3: 1.35 versus 1.90, pointing
to cache utilization inefficiencies.12 Additional measurements
of L1-cache data loading speed and data-translation lookaside
buffer (TLB) load misses confirm this hypothesis.The data also

12Note: The tested Intel Xeon CPU can reach theoretical maximum of four
IPC when instructions are perfectly aligned by manual loop unrolling.
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reveal that j = 4 usually is a good choice. Of note, because we
use the pinned memory13 to improve host-device data transfer,
using large j will cause high memory usage on the host.

For RTX versus DGX-2 performance, when one or two
GPUs are in use, RTX performance is close to that of the
DGX-2 (refer to Table III). Because of their smaller GPU
memory footprints, high-throughput workloads look more suit-
able on RTX than large models. Just as with the case of
performance on large models, RTX’s scalability is less than
for the DGX-2 (see Table III and Figure 6) due to its slower
communication performance. This makes the RTX system
most suited for small-scale model development rather than
full-scale training workloads.

C. Performance of Mixed-Precision Training

Mixed-precision training [31] retains most if not all neural
network predictive performance, yet offers significant com-
putational speedup and reduces the memory footprint. The
NVIDIA Turing GPU architecture, such as V100 and RTX
2080 Ti, provides dedicated hardware acceleration called “ten-
sor cores” [32] for this purpose. The tensor core provides
high-throughput fused multiply-add (FMA) operations for
mixed-precision matrices (inputs in half precision, outputs in
either half or single precision). The other advantage of using
mixed-precision is the smaller memory footprint, therefore less
communication overhead for synchronizing the model replicas.
Figure 8a shows the performance of ResNet50 on DGX-2
when using mixed-precision (FP16) for batch size (bsz) 128
and 256, comparing it to the performance when using single-
precision (FP32) for the same model in Figure 8b. Except for
the 16-GPU configuration, we achieve more than a factor of 2
performance boost. Moreover, since the memory footprint is
smaller for FP16, we can accommodate a larger batch size of
256. Doubling the batch size halves the synchronization and
parameter update time for training the same overall amount
of data. For the 16-GPU configuration, the speedup is only
×1.7. This is likely due to the cache effect described in in
Section IV-B2. Note that this performance is very similar to
the one reported by NVIDIA 14.

D. Comparing the PyTorch On-node Data Parallel with Dis-
tributed Data Parallel

Until now, all of the results herein use the highly optimized
distributed data parallel code to achieve the highest system
performance possible. By contrast, PyTorch on-node data
parallel is an easy-to-use method for enabling computations
on multiple GPUs. Code modifications basically are confined
to introduction of a directive-like instruction that wraps a non-
parallel PyTorch Module with a DataParallel syntax,
such as
model = torch.nn.DataParallel(model).15 The

13Employing pinned memory will prevent the host memory from being
swapped out and enable GPU drivers direct access to the host memory.

14https://developer.nvidia.com/deep-learning-performance-training-
inference

15https://pytorch.org/docs/stable/ modules/torch/nn/parallel/data parallel.html.

(a) ResNet50 on DGX-2 (b) Speedup using FP16 relative
to FP32

Figure 8: Performance ofResNet50 on DGX-2 for single
precision (FP32) and mixed-precision (FP16)

communication pattern of on-node data parallel differs from
the distributed data parallel. In it, one GPU maintains a
master copy of the model parameters. At every iteration, it
broadcasts the parameters to the other GPUs in the config-
uration. At the end of every iteration, the parameters are
“all-reduced” back to the master GPU, which updates the
model parameters. Therefore, for each iteration, two global
communications (broadcast and reduce) are issued. To emu-
late the common practice of most PyTorch models, we use
the default PyTorch data loader for on-node data parallel
experiments (torch.utils.data.DataLoader), which
supports multi-worker and pinned memory but not asyn-
chronous data loading. PyTorch’s on-node data parallel design
maximizes its usefulness but targets small parallel GPU con-
figurations, such as those common in workstations.

Figure 9: Relative Throughput Performance of ResNet50
between PyTorch On-node Data Parallel and Distributed Data
Parallel.

Figure 9 presents the relative performance of models ex-
pressed as on-node data parallel compared to the distributed
data parallel algorithms for all systems considered. For one
GPU, the two data parallel schemes produce similar results.
The experiments are done using ResNet50. As more GPUs
are utilized, performance decreases when using on-node data
parallelism. When two GPUs are in use, DGX-2 and AWS P3
achieve about 90% of the distributed data parallel performance.
Then, it drops rapidly for larger numbers of GPUs. The IBM-
P9 can maintain above 90% upto 4 GPUs.
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V. CONCLUSION

In this work we analyzed the performance of several
leading-edge systems architected for DL workload perfor-
mance: DGX-2, AWS P3, and IBM-P9. We also considered
a consumer-grade, budget-efficient system: a RTX-2080 Ti
server. The inclusion of AWS P3, which essentially is a
DGX-1 system, was done to explore performance along the
ever-increasing use of cloud computing scenarios for DL
workloads. The tested DL models spanned the computer vision
and NLP domains, are realistic, and actually are used in real-
life DL applications. By varying the types of neural network
models and batch sizes per GPU, the systems were probed
using different realistic computation and communication sce-
narios. Some of the specific performance aspects revealed in
this work include:

• The DGX-2 offered the best 16 GPU collective commu-
nication, making it most suited for training large models
on 16 GPUs.

• When training on eight GPUs, the DGX-1, AWS P3, and
DGX-2 afforded similar performance.

• Because of the limited GPU memory and PCIe band-
width, when eight GPUs are in use, the RTX-2080 Ti
server can reach about 61.46% of the throughput perfor-
mance offered by the leading-edge systems considered in
this evaluation.

• The cloud-use scenario is not leading to very large
performance degradation when the communication-to-
computation ratio of the DL models is low. However,
achieving that level of performance requires extensive
understanding about the cloud environment to maximize
performance by minimizing system contention, ensure ge-
ographical closeness of systems, and other idiosyncratic
tasks.

• Scalability of the DL models was investigated up to the
sizes of the DGX-2 machine available as a standalone
system. Future work will need to consider scaling up to
production-size DL models.

Practical considerations can be readily extracted from the
work documented in this paper, including regarding guidance
for procuring systems that maximize performance for a given
workload of interest, as well as for considering choice of
machines, DL models, and use modes. While as part of
this work we implicitly considered cost impacts in system
selection, readers are left to weigh such an analysis (and
aspects related to it) on their own.
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