
A generalized statistics-based model for predicting
network-induced variability

Sudheer Chunduri, Elise Jennings, Kevin Harms, Christopher Knight, Scott Parker
Argonne National Laboratory

{sudheer, ejennings, kharms, knightc, sparker}@anl.gov

Abstract—Shared network topologies, such as dragonfly, sub-
ject applications to unavoidable inter-job interference arising
from congestion on shared network links. Quantifying the impact
of congestion is essential for effectively assessing and comparing
the application runtimes. We use network performance counter-
based metrics for this quantification. We claim and demonstrate
that by using a local view of congestion captured through the
counters monitored during a given application run, we can
accurately determine the run conditions and thereby estimate
the impact on the application’s performance. We construct a
predictive model that is trained using several applications with
distinctive communication characteristics run under production
system conditions with a 91% accuracy for predicting congestion
effects.

Index Terms—variability, congestion, performance counters,
Aries, tuning

I. INTRODUCTION

Application performance analysis is a critical activity of
high-performance computing (HPC). The presence of variabil-
ity in application runtime [1], [2] causes difficulties with appli-
cation performance optimization, scaling, and benchmarking
analyses. The variability may come from many different
sources, such as dynamic frequency scaling of the CPU, and
from shared resources, such as CPU cache or network links.
These effects have been the subject of many studies [3]–[5].
The effects can be mitigated or reduced [5], [6] but cannot
be completely removed. The variable effects due to network
sharing are also likely to continue or even increase, as exem-
plified by the use of shared network topologies in the current
top systems, Summit and Sierra, and in the proposed future
systems. HPC users will have to adapt to this environment
and find techniques that allow for understanding application
runtime and performance in production environments.

One aspect that can significantly contribute to variability of
large-scale system jobs is the high-speed interconnect network.
An HPC system that allocates distinct compute resources to
jobs can potentially share network links, thus introducing
contention between jobs. The interconnect does not provide
quality of service guarantees to specifically allocate fractions
of the bandwidth to each job. When multiple jobs demand
peak bandwidth rates at the same time, congestion on the
network links exacerbates. The contention which these jobs
experience is a function of the other jobs running on the
system and how the network usage of the jobs interacts. The
contention impacts change over time based on the production
workload that the system is running at any given time. As part

of this study, we specifically examined the Cray XC Aries
interconnect [7] using Dragonfly topology, which is currently
used by many facilities and appears in 22 of the Top 100
systems in the world, based on the June 2019 Top500 list.
The effects of inter-job contention within a Dragonfly network
have been well studied [3], [8]–[10]. These effects can be
completely mitigated only by running the job on an isolated
system with no other jobs running. This method is not practical
for frequent use within production facilities. Therefore, HPC
users must learn to cope with variability introduced by inter-
job contention on the interconnect. Tools which assist users in
interpreting the performance of an execution and in comparing
the performance across different executions of an application
are essential. However, currently, no such tools are available
to help users understand the variability that occurs from run
to run.

Two key tasks involved in understanding the application
performance variability are (i) predicting the congestion that
occurred due to inter-job contention with the potential to
influence the application performance and (ii) assessing the
application sensitivity to that congestion. While the network
performance counters can be used to estimate the congestion,
careful aggregation of the counter data by filtering out unre-
lated data across different nodes allocated to the job is es-
sential. The second task of assessing application sensitivity to
congestion is crucial for accurately estimating the application
performance variability.

We use the network performance counters for accomplishing
both of the key tasks mentioned above. As part of this study,
a set of applications were run periodically under production
conditions, with network counter data collected and analyzed
for each run. A thorough statistical analysis of this counter
data is performed. Predictive machine learning models that can
be used to understand the relative performance of any given
run were built using these statistics. The relative performance
shows if the run had mean performance or was ±n standard
deviations from the mean. We construct a prototype software
package to train a model that can determine the effect of
congestion on the application run and provide an estimate of
the impact based on the deviation from the expected mean
runtime.

The main contributions of this work are: (i) demonstrating
that network performance counter-based metrics can be used
to assess the application sensitivity to congestion in variable
production environments, (ii) an empirically validated machine

159

2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)

978-1-7281-5977-5/19/$31.00 ©2019 IEEE
DOI 10.1109/PMBS49563.2019.00013

learning model for estimating an application’s runtime vari-
ability, (iii) an open source model with summary data, and (iv)
adaptability of the approach to other systems (HPC systems
typically provide an interface for network performance coun-
ters, making the insights and methods detailed in this study
adaptable to other systems as well).

Section II discusses the experimental setup, systems and
applications used, and the measurement methodology. Sec-
tion III presents the analysis of the correlation between the
application runtime variability and the variability in network
counters. Also, validation of the production experiments is
presented using controlled experiments. Sections IV and V
respectively describe the construction and evaluation of a
predictive model. A description of the practical use cases of
the model is provided in Section VI. Section VII presents the
related work, and Section VIII provides an overall summary
and conclusion of this study.

II. EXPERIMENTAL SETUP

A. Machine Details

Experiments were conducted on Theta at the Argonne Lead-
ership Computing Facility (ALCF). Theta is an 11.69-petaflops
Cray XC40 with 4,392 Intel Xeon Phi Knights Landing (KNL)
7230 compute nodes connected with the Cray Aries high-speed
network in the Cray dragonfly topology.

Theta uses the Cray Aries interconnect configured with a
three-level dragonfly topology. The first two levels (rank-1
and rank-2) are copper-based with 10.5 GB/s bidirectional
bandwidth per link, and the rank-3 level is optical with 9.38
GB/s per link. The three rank-2 links are used to connect each
pair of routers in the intragroup columns, and each router
is connected to the 15 other routers in a row with a rank-
1 link (refer figure 8 in [7]). Although the organization of
rank-1 and rank-2 links is consistent across different Cray
XC based installations, the arrangement of the active optical
cables can vary. Theta has 12 groups with 12 active optical
cables (3 lanes each) [7] between each group. The Cray default
routing algorithm was used for all experiments presented.
Theta prefers to allocate nodes to a job that span a large
number of groups for a given job in order to maximize global
bisection bandwidth.

B. Applications

For this study, seven application cases with a wide range of
communication patterns and behaviors were used. Production-
scale applications were used instead of benchmarks for repre-
senting real workload scenarios and production system condi-
tions. Each application was configured and run with a realistic
input case. The run configuration followed the best practices
[5] in order to minimize any variability from other sources,
such as the operating system, CPU, and memory subsystems.
I/O phases were avoided for runtime considerations to reduce
variability effects introduced from the storage system. Table I
provides a brief overview of the communication behaviors of
these applications.

TABLE I. HIGH-LEVEL SUMMARY OF COMMUNICATION PROPERTIES FOR
EACH APPLICATION.

App Point- Collectives Approx.
to-point Comp.-to

-Comm.Ratio

MILC heavy light allreduce 3:2
MILC REORDER medium light allreduce 2:1
Nekbone medium light 8:1
Nek5000 medium light 4:1
Qbox medium medium 1:2
Rayleigh none heavy 2:1
LAMMPS light medium 2:1

MILC [11] is an MIMD lattice computation code for
simulation of high energy and nuclear physics. MILC RE-
ORDER is the same MILC with an optimized rank-to-node
mapping, which reduces off-node communication. This was
done using Cray’s grid order tool with a 4 × 4 × 2 × 2
subgrid. Nek5000 [12] is a computational fluid dynamics
code with a high-order, incompressible Navier-Stokes solver
based on the spectral element method. Nekbone is a miniapp
that exposes the principal computational and communica-
tion kernels of Nek5000. Rayleigh [13] is a 3D convection
code that evolves the incompressible and anelastic magne-
tohydrodynamics equations in spherical geometry by using
a pseudo-spectral approach. Rayleigh is used for the study
of planetary and stellar dynamos, and is a pure-MPI code
that uses large-message-size all-to-alls. Qbox [14], used for
electronic structure calculations, is an ab initio molecular
dynamics code written in C and based on density functional
theory. LAMMPS [15] is an open-source molecular dynamics
code written in C/C++ to simulate systems spanning several
science domains (e.g., liquids, biomolecules, materials, and
mesoscopic systems).

C. Experiment Details

The majority of the experiments in this study were run under
typical production environments on Theta. Each application
was run under a range of node sizes (128, 256, and 512) that
are 3 to 11 percent of the system size of Theta. These sizes
were selected based on the likelihood that, because of their
smallness, they would be affected by other applications on
the system. Each application was run on the order of ∼200–
500 times to sample the distribution space accurately and to
ensure that the statistics are robust. Also, the number of runs
allowed us to assess the presence and impact of a spectrum
of congestion scenarios. For each run, the execution time,
network performance counters, and job placement information
were recorded. The node placement information recorded for
an Aries topology is the (group, chassis, blade, and node) for
all nodes allocated to the job.

The remainder of the experiments were performed under
controlled conditions. The controlled experiments are further
described in section III-F.

D. Aries Router Performance Counters

The performance counters [16] used for analysis are custom
counters provided by Cray as part of the Aries high-speed

260

interconnect. A router is composed of 48 “tiles” where each
tile has a set of counters. Aries provides a large number
of possible network counters, some of which are config-
urable, to monitor traffic on the network. These counters
primarily measure FLITs and STALLs across row and column
buffers and virtual channels. The FLIT counters record the
atomic unit of data transfer on the Aries interconnect. A
STALL counter increments each FLIT time that a ready-to-
forward FLIT is unable to forward. This is normally due
to a lack of credits in the router buffers or arbitration poli-
cies. The counters INQ PRF INCOMING FLIT VC{0..7}
capture the flits on the eight virtual channels. The
eight router tiles directly connected to the nodes (also
referred to as processor tiles or proctiles) use only
two virtual channels: INQ PRF INCOMING FLIT VC0
and INQ PRF INCOMING FLIT VC4. The incoming
FLITs are aggregated together for each tile across vir-
tual channels. The stalls are captured by the counter
INQ PRF ROWBUS STALL CNT. Stalls are an indica-
tion of the back pressure limiting the rate at which flits are
able to be forwarded. A high ratio of stalls to flits indicates
possible network congestion. These counters were also used
by [17], [18], and [3].

A job on the system is allocated to a set of nodes that
are distributed across groups, chassis, and blades of the Aries
network. Network counters are only captured from the router
tiles that are connected to the nodes of the job. Depending on
the job size and allocation scheme, either some or all of the
nodes on a blade will be allocated to a job. The counter data
from the network tiles reflect either request or response traffic
from both the application and from other jobs running at the
same time. The nature of the dragonfly routing may also result
in traffic from the job being routed via network tiles that are
not connected to any of the nodes within the job. In this case,
this information is not captured.

The counters are recorded by using the PAPI [19] interface
either at the job startup or before the computational section
begins. The counters are then collected again at the end of
the computational section or end of the job. The collection of
the counters takes less than a second, and writing the log files
takes about one second. The resulting overhead is trivial for
jobs with runtimes on the order of minutes or hours.

III. METHODOLOGY

Before construction of a model based on the data, an initial
analysis is performed on the metrics used to better understand
the data and determine if a generalizable model could be
constructed. The correlation between the variability in runtime
and the metrics collected is examined.

A. Runtime Variability

Figure 1 shows the absolute runtimes of all data collected
for the MILC application on both the normal and the network
optimized (Reorder) configurations. This is representative of
the runtime variability seen by applications on Theta. For
both MILC and Reorder on all node sizes, the distribution

200 400 600 800 1000 1200
MILC Runtime (sec)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

PD
F

Reorder 512 nodes
Reorder 256 nodes
Reorder 128 nodes

MILC 512 nodes
MILC 256 nodes
MILC 128 nodes

Fig. 1. Probability distribution functions (PDF) for MILC and MILC Reorder
runtimes in seconds for 128 nodes, 256 nodes and 512 nodes.

of runtimes with an extended tail can be seen. The extended
tail indicates there are runtimes which are multiple standard
deviations from the mean. This behavior is consistent across
all of the application cases studied. Table II summarizes the
runtime statistics for all the applications running at 256 nodes.
This table shows that the applications were configured for
a variety of different total runtimes and that in all cases
significant variability occurred. The maximum runtime divided
by the minimum runtime shows between 1.18x to 1.74x
difference. The maximum runtimes recorded show that the
MILC, Nekbone, MILC REORDER, and Qbox applications
display significant deviations from their mean in a way that is
not captured by the CV statistic. This result is not surprising
because CV measures the ratio of the standard deviation to
the mean and can be uninformative for skewed or long-tailed
distributions. Hence, statistics that represent the tails must be
used for better characterizing the runtime variability.

TABLE II. MEAN (µ), STANDARD DEVIATION (σ), MAXIMUM, AND
COEFFICIENT OF VARIATION (CV) OF RUNTIME (SECONDS) AND THE

RATIO OF MAXIMUM TO MINIMUM RUNTIME FOR THE APPLICATIONS AT
256 NODES ON THETA.

App µ ± σ Max CV Max/Min

MILC 566.2 ± 61.90 771.8 0.11 1.71
MILC Reorder 528.7 ± 57.03 699.5 0.11 1.74
Nekbone 1585.1 ± 101.8 1960.5 0.06 1.41
Nek5000 429.9 ± 12.16 472.3 0.03 1.13
Qbox 675.8 ± 43.90 824.4 0.07 1.39
Rayleigh 680.9 ± 18.68 763.5 0.03 1.18
LAMMPS 721.6 ±25.50 779.5 0.04 1.12

B. Network Counter Characteristics

As stated in subsection II-D, counter values from an Aries
router tile are either classified as a “network” tile or a “pro-
cessor” tile. Network tiles represent request or response traffic
from both the measured application and other jobs running
at the same time. These counters represent the global traffic
occurring on the system from a local application viewpoint.
The processor tiles counter data are data generated or received
only at the network interface of the compute node. The

361

0.5 1.0 1.5
Proctiles Avg. Flits/sec ×108

0.0

0.5

1.0

1.5

PD
F

×10−7

MILC
NEKBONE

MILC REORDER
NEK5000 engine

LAMMPS
QBOX

RAYLEIGH

0.25 0.50 0.75
Ratio of network and proc tile Flits

0

5

10

0 5 10
Stall-to-Flits ratio (75p)

0

1

2

3

PD
F

0.00 0.25 0.50 0.75
Stalls (95p) ×1012

0.0

0.5

1.0

1.5 ×10−10

Fig. 2. PDFs for four top features for applications using 256 nodes:
MILC (light blue), Nekbone (purple), MILC reorder (green), Nek5000 (blue),
LAMMPS (yellow), Qbox (black), and Rayleigh (gray).

processor tiles represent the application-specific characteristics
that are unique to that application.

C. Network Counter Collection

Since it is not feasible to distinguish between which network
tiles are used by the measured application, all router tile
counter data from all 40 network tiles and 8 processor tiles
are treated with equivalent weight. The job scheduler will pack
the application allocation onto the same compute blade when
possible, but there are cases when the measured application
occupies a fraction (0.25, 0.5 or 0.75) of the compute blade. In
these cases, we examined scaling the values on these particular
nodes by the fraction of the blade used but did not find this
significantly impacted the results, and hence data from all 8
processor tiles were used.

The network counters are collected by each process running
on every node, and up to four nodes may be connected to
the same router tile. Applications in our test were run with
either 63 or 64 processes per node. As a result, different
processes collect the same counter data in many instances. The
network counters are used from a single node on each uniquely
allocated compute blade. Ideally, each process sharing the
same router tile should have exactly the same counter values,
but skew in the initial and final counter collection time will
result in small variations of the counter values. Therefore,
when reporting counter measurements on a tile, we average
the values over all the processes.

D. Network Counter Metrics

The network counter values were used to construct several
metrics that describe the application and environment the
application was running under. Table III summarizes these
metrics.

For each metric except nodes, the probability distribution
was characterized by a set of summary statistics which are the
mean, variance, 75th, 95th and 99th percentiles of the metric.

TABLE III. METRICS AND DEFINITIONS

Metric Definitions

processor tile flits per
second

application communication intensity

network tile stall-to-flit
ratio

relative congestion on network

network tile to processor
tile flit ratio

relative communication on the global net-
work versus the injection rate of the ap-
plication

network stalls the total stalls, a high absolute value
indicates extreme congestion events

network flits the total traffic, an indication of how busy
the network is

nodes number of nodes used for a run

This results in five metrics multiplied by five summary statis-
tics each for twenty-five total statistics that were analyzed.
Eventually we selected a subset of these statistics to be used
as features in our model. Section IV-A discusses the feature
construction and evaluation. Figure 2 shows the distribution of
four key metrics from the above for each of the applications
studied. The average flits/second from the processor tiles (top-
left) defines the communication rate for the application as
measured from NIC. The flits are averaged over the runtime
of the application. The ratio of network and processor tile
flits (top-right) defines the total flit traffic measured within
the network versus the measured flits from the application at
the NIC. This metric gives insight into the relative network
utilization between the target application and all other appli-
cations running on the system during the same time period.
The seventy-fifth percentile of stall-to-flit ratio (bottom-left)
examines the relative congestion seen on all network tiles in
tail of the distribution. The tail of the distribution emphasizes
the importance of the extreme congestion occurring in the
network which can have a more profound impact on the
application synchronization stages. The ninety-fifth percentile
of stalls (bottom-right) is an absolute measure of conditions
where network data is ready but no network resources are
available to send. Again, this extreme tail indicates cases
where certain network links maybe be impacted that can cause
significant effects on application synchronization stages.

The Pearson correlation coefficient, r, was used as a mea-
sure of the degree of correlation between an application’s
runtime and a network counter metric. Table IV presents the
measured r values of three key metrics for each application.
Table IV shows that for the MILC, Reorder, Nekbone, Qbox
and LAMMPS applications there is at least one metric that has
an r > 0.6. This indicates that the chosen metrics show corre-
lation with runtime and thus can be used as a proxy to estimate
the effects of variability caused by network congestion (details
on the exact feature selection method used are provided in
Section IV-A). The applications Nek5000 and Rayleigh do
not show any significant correlation and we investigate if a
combination of metrics can be used to deduce the effects
of network congestion. To determine the number of samples
needed for this evaluation, we ran an initial set of ∼500
MILC simulations in varying production environments and
node placements on Theta. The runtimes and counter metric

462

Fig. 3. Normalized PDFs for the stall-to-aggregated flit ratio on a network tile for MILC (top row) and Nekbone (lower row). Columns 1, 2, and 3 show
data from runs using 128, 256, and 512, respectively. All production runs are represented by colored dotted lines and are colored according to the number of
groups as shown in the legend. The DAT (Dedicated Access Time) runs are shown as a solid black line in each panel.

values for each run were recorded. The measured correlation
coefficient converged in 250–300 runs, and therefore fewer
than 500 runs were used for other applications.

TABLE IV. PEARSON CORRELATION COEFFICIENT, r, BETWEEN THE
APPLICATION’S RUNTIME AND THE HARDWARE COUNTER STATISTIC

GIVEN IN THE COLUMN HEADER FOR 256 NODE JOBS.

App Ratio of Flits on
networktiles and

proctiles

Ratio of
Stalls and

Flits

Stalls
(95

percentile)

MILC 0.65 0.69 0.79
Reorder 0.69 0.67 0.79
Nekbone 0.53 0.42 0.64
Nek5000 0.10 0.29 0.17
Qbox 0.61 0.17 0.72
Rayleigh 0.19 0.32 0.32
LAMMPS 0.56 0.84 0.76

E. Metric Analysis

Figure 3 shows the distribution of the normalized stall-to-
flit ratio of the network tile for two applications (MILC and
Nekbone) at three different job sizes. The colored lines on
the graph represent data from a run with a particular node
placement known as the dragonfly group size. The larger the
number of dragonfly groups provide more global links for
the application to use which implies greater bisection band-
width. Every graph in the panel has the same scale. The two
applications shown, MILC and Nekbone, have very different
communication characteristics, as seen in figure 2. However,
we can see from the panel of graphs that each case exhibits
a very similar distribution. This critical finding is the key
factor in forming the foundation to construct a generalizable
model for estimating the variability of application runtime in
congested network conditions. The extended tails indicate the
higher congestion conditions that lead to the variability in
runtime. These tails are present at the same scale, regardless of
the application, the number of the nodes, or the job placement
that was used.

F. Metric Evaluation

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Ratio of Stalls and Flits

0.0

0.1

0.2

0.3

0.4
PD

F
MILC
MILC REORDER
Theta prod
DAT

Fig. 4. PDF of the average stall to aggregated flit ratio for the MILC (blue
circles) and MILC REORDER (green diamonds) applications. Production runs
of MILC on Theta are shown as grey lines, and a DAT run of MILC is shown
as a solid black line.

The evaluated network counter data were collected over
the course of six months. The congestion in a production
environment is non-deterministic since it depends on several
factors, such as the other jobs running, the node placement
for all jobs, and the routing schemes used. The collected test
samples cover a wide range of possible network conditions,
but to gain confidence that the metrics are within the possible
extremes, a set of controlled congestion experiments were run.
Two types of controlled experiments were performed in order
to establish a baseline for the study and to determine bounds on
potential congestion. In order to have an idea of the best possi-
ble run environment for an application, individual applications
were run in an isolated condition where no other jobs were
running on the system. These runs are referred as Dedicated
Access Time (DAT) runs. In order to assess the maximal
congestion seen by an application, multiple identical copies
(jobs) of MILC were run on the whole machine, with each run
configured to use a different node size combination. MILC was
used to assess the maximal congestion as it is the application

563

with the highest communication intensity (refer Figure 2). For
each of the individual MILC jobs, the performance counters
were collected and analyzed to find the job with the greatest
congestion. These runs are referred to as controlled congestion
runs. Both sets of controlled environment runs were performed
on Theta under whole-system reservations.

Figure 4 shows the controlled congestion normalized PDFs
of the average stall-to-aggregated flit ratio for the MILC (blue
circles) and MILC REORDER (green diamonds) applications
run on 256 nodes. Production runs of MILC on Theta are
shown as grey lines, and a DAT run of MILC is shown as
a solid black line (similar to Fig. 3). The figure shows that
the data from the production runs (grey) lie within the bounds
of the minimal congestion DAT (black) run and the maximal
congestion runs (blue and green). Clearly, the extended tails of
grey distributions for the Theta production runs are less than
maximum network congestion (blue and green distributions),
indicating that the maximum congestion is greater than what is
currently observed on Theta. These results provide confidence
that our data captures the possible congestion conditions on
Theta.

IV. MODEL CONSTRUCTION

A. Feature Engineering and Evaluation

In the previous section, we demonstrated empirically that
the network performance counter-based metrics can be used
as reliable indicators of network congestion. Based on this,
we conjecture that these metrics can be used to estimate an
application’s sensitivity to the congestion. We construct a set
of models that consider the multiplicity of features needed for
accurately estimating the application sensitivity to congestion.

The statistics of our counter-based metrics are used as
the feature set for building regression models that, given the
feature set as input, can estimate the application impact due
to congestion. The feature set is comprised of the statistics
that represent congestion as well as those that represent
the application communication characteristics. The list below
provides all seven features listed in order of importance with
the first being most important. The feature selection used in
this study is based on impurity reduction technique using the
Random Forest variable importance measures. The features
such as “average stalls per networktile”, “ratio of stalls to flits”
and “average flits per networktile” represent the congestion.
The features such as “average proctile flits per second” and
“ratio of flits on network tiles to processor tiles” represent
the application communication characteristics. The number of
nodes used by the application run is also used as one feature,
though it is not found to be dominant compared to other
features.

1) Ratio of Average networktile Flits to Average proctile
Flits

2) Average proctile Flits per second
3) 75th percentile of Ratio of networktile Stalls to Flits
4) 95th percentile of networktile Stalls
5) Average networktile Flits

MILC
Nekbone

MILC_reorder
Nek5000

LAMMPS
Rayleigh

Qbox

Fig. 5. TSNE plot for all applications with 256 nodes.

6) Average networktile Stalls
7) Number of Nodes
Figure 2 shows the distribution by application for each of

the top four features of the model. The features “ratio of
flits on network tiles to processor tiles” and “average proctile
flits per second” are the two most dominant features used
by the model. These features demonstrate that there exists
common overlap between applications, implying that a general
model can be formed but also showing that distinct application
characteristics are captured.

When the different features have a wide range of scales,
Standardization of feature dataset is essential for robust op-
eration of many machine learning estimators. Given the huge
diversity of scale in the features (O(1 − 1011)), the feature
data are scaled by removing the median and scaling the data
according to the 25-75th quantile range. The scaler for each
feature removes the median and scales the corresponding fea-
ture data according to the interquartile range. The target space
is constructed via the application runtimes normalized with
the Z-score normalization. Since different applications have
different runtimes, the runtime is normalized (standardized)
by removing the mean and scaling to unit variance.

B. Comparison of Application Feature Spaces

Given that the feature space is a 7-dimensional datum, we
use the t-Distributed Stochastic Neighbor Embedding (t-SNE)
for visualizing the feature distributions across the seven appli-
cations. The t-SNE is a nonlinear dimensionality reduction
algorithm used for mapping high-dimensional space to 2D
space suitable for human observation.

Figure 5 shows the feature data for the seven applications
used in this study. While the feature spaces for some appli-
cations such as MILC, MILC Reorder, Qbox and Rayleigh
overlap, the feature spaces for Nekbone and Nek5000 are quite
distinct from other applications.

Figure 6 shows the how the four dominant features (the
standardized counter metrics) are related to the normalized
runtime for four applications. Results from the jobs using
128, 256, and 512 nodes are shown as light, medium, and
dark blue circles for MILC; light, medium, and dark red

664

−2.5 0.0 2.5

−2

0

2

Pr
oc

til
e
Av

g.
Fl
its
/s
ec

MILC NEKBONE MILC REORDER NEK5000

−2.5 0.0 2.5

0

2

4

Ra
tio

of
�i
ts

on
ne

tw
or
kt
ile
s
an
d
pr
oc
til
es

−2.5 0.0 2.5
Normalized Runtime (s)

−2

0

2

Ra
tio

of
St
al
ls
an
d
Fl
its

−2.5 0.0 2.5
Normalized Runtime (s)

0

2
St
al
ls
(9
5
pe

rc
en

til
e)

Fig. 6. Normalized runtime for the four dominant features for the applications.

pluses for Nekbone; grey, medium, and dark green ‘x’es for
MILC REORDER; and grey, purple, and black rectangles
for Nek5000, respectively. Clearly, once the data is normal-
ized, the counter metrics display significant overlap across
the applications. Because of this overlap, a model that can
predict the effects of network congestion can be built by only
using these local network counter based metrics. As observed
in Figure 5, Figure 6 also shows the Nek5000 application
demonstrating distinct communication characteristics from the
rest of applications.

C. Regression methods used to build a Model

We have experimented with various regression models
such as RandomForestRegressor, AdaBoostRegressor, Gradi-
entBoostingRegressor, and Support Vector Regression (SVR).
The Python machine learning package SCI-KIT LEARN [20]
was used to train several models. We first present the results
from the SVR model which performed and generalized the
best.

In SVR, the goal is to find a function that has at most
ε deviations from the target objects yi. Here, the target is
standard deviation from the mean runtime for all applications.
The rbf kernel is used with the SVR model including the
hyperparameters, C and γ. The C parameter is a regularization
parameter that controls the trade off between the amount up to
which deviations larger than ε are tolerated and the ability to
generalize the model to unseen data [21]. γ is a parameter of
the rbf kernel and can be thought of as the spread of the kernel
and therefore the decision region. The hyperparameter tuning
is performed using the gridSearchCV method. To measure the
prediction accuracy of the model, we use the R2 coefficient
of determination metric as a scoring function.

Figure 7 shows the performance of the SVR model for
the data set consisting of all the seven applications: MILC,
MILC REORDER, Nekbone, Nek5000, LAMMPS, Qbox, and

Rayleigh. The figure shows the proximity of the predicted
runtime to the actual runtime. The dashed black line in the
figure indicates a perfect prediction of runtime. The left (right)
blue shaded regions represent areas where both the actual
and predicted runtime are less (greater) than the mean, which
would indicate that the application ran in a congestion light
(heavy) environment. The prediction results are from the case
where 75% of the data is used for training and 25% of data
is used as a test set.

−2 −1 0 1 2 3
Predicted Runtime

−2

−1

0

1

2

3

Tr
ue

Ru
nt
im

e Tru
e =

Pre
dic

ted

True & predicted
runtime > mean

True & predicted
runtime < mean

Fig. 7. Predicted versus true (actual) normalized runtimes for the dataset with
the seven applications.

The model is validated using the data from the seven
applications. Initially, the 10-fold cross-validation was used
to determine the hyperparameters of the SVR model. These
hyperparameters were used for all the models used in this
study. The model validation performed using 10-fold cross-
validation shows a score of R2 = 0.91. The training and
the cross-validation scores for the model as a function of the
number of samples is shown in the Figure 8. Given that around
2000 samples are required for improved accuracy, constructing
generic models as performed in this work, as opposed to
building application-specific models, is the feasible approach.

500 1000 1500 2000 2500 3000 3500
Training examples

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or
e

Training score
Cross-validation score

Fig. 8. SVR model training and cross-validation scores with increasing
training samples.

The Jupyter notebooks and summary statistics input files

765

are open sourced and available online. This material provides
a detailed information about the features, exact model, and
training method used to reproduce all of the model and feature
data presented. The next section provides more details on
generalization of the model.

V. GENERALIZATION OF THE MODEL

A. Accuracy versus Training Size

Using the hyperparameters determined building the regres-
sion model, we examine accuracy using different ratios of
the data used for training and testing. When the data is split
into 75% training and 25% testing, the model performs well,
predicting normalized application runtimes with an R2 = 0.91.
When using the train-test split as 50% each, the model’s
accuracy is reduced to R2 = 0.83. When using the train-test
split as 25%-75%, the accuracy is again reduced to R2 = 0.79.
Using only 10% of the data to train, an accuracy of R2 = 0.62
is achieved. A model trained with only 25% of the data still
achieves a reasonable accuracy of R2 = 0.79.

B. Accuracy on an Unseen Application

The generalization of the model can be evaluated by testing
the performance of the model on data from an application
(unseen) that is not present in training set. We consider the
case where the unseen application is similar to an existing
application in the training set. MILC REORDER was used
as the unseen application, with the model trained on the
remaining six applications. When using the 512 node runs
of MILC REORDER as the test set, the model shows an
accuracy of R2 = 0.82. Figure 9 shows the prediction
quality of the model with using MILC REORDER jobs (three
different node sizes) as the unseen data. As expected the model
performance is reasonable because the model was trained on
MILC which shows similar communication characteristics as
MILC REORDER.

−2 −1 0 1 2 3
Predicted Runtime

−2

−1

0

1

2

3

Tr
ue

Ru
nt
im

e Tru
e =

Pre
dic
ted

True & predicted
runtime > mean

True & predicted
runtime < mean

512 nodes
256 nodes
128 nodes

Fig. 9. Predicted versus true runtimes for target application - MILC reorder.

C. Accuracy with Sparse Samples

In the second test, the Nekbone application is used as an
application with a limited set of samples used for retraining
the model. The model was trained on the other six applications

and also includes only 40 random samples of Nekbone. The
model shows an accuracy of R2 = 0.52. Figure 10 shows the
prediction quality of model using Nekbone jobs with three
different node sizes as the unseen data. The poor performance
of the model is explained by noting the unique characteristics
of Nekbone compared to rest of the applications as shown in
Figure 5. This demonstrates that the core training set with a
limited number of samples can being to provide reasonable
results even for applications not initially represented in the
training set.

−2 −1 0 1 2 3
Predicted Runtime

−2

−1

0

1

2

3

Tr
ue

Ru
nt
im

e Tru
e =

Pre
dic
ted

True & predicted
runtime > mean

True & predicted
runtime < mean

512 nodes
256 nodes
128 nodes

Fig. 10. Predicted versus true runtimes for target application - Nekbone.

As shown in Table V, the prediction accuracies are low for
models constructed with Nekbone, Nek5000, and LAMMPS as
unseen applications. These applications, especially the specific
input problem cases used here, exhibit distinct communica-
tion characteristics that were not covered by the rest of the
applications. The accuracies for the models that use any of
the applications MILC, MILC reorder, Qbox, and Rayleigh as
unseen application are good. These four applications exhibit
overlapping feature space, as shown in Figure 5, poten-
tially possessing some common communication characteris-
tics. These results indicate that the model is able to accurately
estimate the normalized runtimes of applications with these
characteristics. We see that with small numbers of samples,
the model rapidly improves in accuracy. By including 20
samples of MILC REORDER into the training set, the model’s
accuracy is increased to R2 = 0.92.

D. Robustness Improvements

In order to identify conditions where the model does not
have sufficient training data and to avoid reporting mispredic-
tions, the model would report the predictions only when there
is sufficient confidence. The SVR model can only provide the
prediction as a single point estimate and does not provide
any estimate of the error bounds. However, a model based on
Random Forest can provide both the point estimate and the
error bounds of the prediction.

Thus, we also train a Random Forest (RF) regression model
that can report the estimations as well as the corresponding
estimation intervals. Figure 11 shows the predicted standard
deviation including all the estimators using the Random Forest

866

TABLE V. ACCURACIES FOR SVR MODEL TESTED ON DIFFERENT TARGET APPLICATIONS.

Target App Training Accuracy with 20 runs of Target App Accuracy with 40 runs of Target App

MILC (All w/o MILC) 0.94 0.97
Reorder (All w/o Reorder) 0.92 0.96
Nekbone (All w/o Nekbone) 0.21 0.52
Nek5000 (All w/o Nek5000) -0.09 0.19
LAMMPS (All w/o LAMMPS) 0.12 0.44
Rayleigh (All w/o Rayleigh) 0.34 0.63
Qbox (All w/o Qbox) 0.63 0.87

−2 −1 0 1 2 3
True Runtime

−2

0

2

Pr
ed

ic
te
d
Ru

nt
im

e

MILC
Nekbone
MILC reorder

Nek5000
LAMMPS

Rayleigh
Qbox

Fig. 11. Random Forest Model estimation and estimation intervals.

model. The combined model compares the two models using
a heuristic to determine if the prediction produced is of
high quality. If we compare the SVR prediction with the
RF estimation intervals, 90% of the predicted SVR values
fall within the RF estimation intervals. If the SVR prediction
value is within the range (RF prediction +/- error bounds),
meaning the absolute difference between the predicted values
of SVR and RF is less than RF error range, then we use the
(SVR prediction +/- the error bounds of RF) for reporting
the Variability Estimate. Otherwise, the combined model will
report that no prediction can be provided. We evaluate this
heuristic on the models trained from the data of all seven
applications. When the value predicted by SVR is within RF
error bounds, the measured value (True) is within the error
bounds for 96.1% of the data points. However, the values
predicted by SVR not within the RF error bounds are only
9.8% of the data points, and the combined model will not
report the predictions for these cases.

VI. MODEL USE CASES

We now describe how the model (described in the previous
section) could be used in practice with a few concrete exam-
ples. To illustrate the use of model, we use the samples from
applications, MILC and MILC Reorder, running on 256 nodes.
The PDFs for MILC and Reorder are shown in the Figure 12.
We choose three runs from MILC and MILC Reorder for
the use cases. Table VI lists the Variability Estimate that
is generated by the model for each for these runs. The
corresponding actual runtimes are marked in Figure 12.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

400 500 600 700 800

PD
F

Runtime(sec)

Reorder
MILCA A

B

B

C

C

Fig. 12. MILC and MILC Reorder runtimes in seconds for 256 node runs.

TABLE VI. PREDICTIVE MODEL USE CASE: MILC PERFORMANCE
TUNING.

RUN MILC REORDER

Runtime Variability
Estimate

Runtime Variability
Estimate

A 569.05 -0.05 (+/- 0.58) 529.73 -0.07 (+/- 0.42)
B 458.13 -1.56 (+/- 0.76) 626.86 1.26 (+/- 0.65)
C 703.09 2.54 (+/- 0.90) 449.33 -1.50 (+/- 0.49)

A. Performance Benchmarking

A user is interested in benchmarking the performance of
the MILC application to establish a baseline for comparison
to other machines, for setting the walltime or for use in
scaling studies. Let us assume the users’s first benchmark
run is Run C at 703.09 seconds. The Variability Estimate for
this run is 2.54 ± 0.90 which indicates the run experienced
high congestion and is not characteristic of an average run
on the system. Run C should not be used as a benchmark
time. The user runs again and the time for Run A, 569.05
seconds, is obtained. Examining the Variability Estimate for
Run A, −0.05 ± 0.58, shows that the estimate is near zero
and represents average network conditions. Run A is suitable
as a benchmark and is representative of the expected average
runtime for MILC.

B. Performance Tuning

A common use case users might want to perform is code
optimization. In order to understand if the modified code
is performing better, it is necessary to understand both the
average runtime of the original code and the average runtime

967

of the modified code. This can require a large number of runs
if the user has no additional information about each run. As an
example, the MILC Reorder application is identical to MILC
but has an optimized MPI rank placement which reduces off-
node communication. From II, we see that MILC Reorder
has improved performance with an average runtime of 93%,
528.7/566.2 = 0.93, of MILC.

Let us assume the user were to run MILC and obtain the
runtime of Run B, 458.13 seconds, and run MILC Reorder and
obtain the runtime of Run B, 626.86 seconds. The user may
erroneously believe that MILC is faster than MILC Reorder.
However, with using the model, the user will have the Vari-
ability Estimate for each of these runs and will see that MILC
ran in very favorable network conditions, −1.56± 0.76 while
MILC Reorder ran in very unfavorable network conditions,
1.26 ± 0.65. These two runs should not be compared. If the
runtimes for Run A are obtained for both MILC and MILC
Reorder, both of these have a Variability Estimate which is
near zero indicating average network conditions. Comparing
the runtimes, we see MILC Reorder is 93% of the runtime of
MILC, 529.73/569.05 = 0.93.

In essence, in production environments that experience
potential network congestion effects, mere comparison of the
runtimes does not provide an accurate attribution of perfor-
mance tuning benefits. The Variability Estimates reported by
model augmented with the runtimes can be used to differenti-
ate between the tuning benefits and the congestion effects on
an application performance.

VII. RELATED WORK

Application performance can be significantly impacted
by node-level performance variability due to OS noise ef-
fects [22], dynamic frequency scaling effects [23], shared
cache contention [24], and power consumption variability [25].
Effective mitigation strategies such as core specialization [26],
power capping and frequency selection [27] are some ap-
proaches to address variability at this level. Many researchers
have studied application runtime variability effects due to
various system-scale factors such as shared network and I/O
in production HPC systems [5], [28] and commercial data
centers [29]. Network resource contention has been identified
as the prime contributor for run-to-run variability at system
scale. Several studies [4], [5], [10] have observed that shared
network resource contention is the major contributing factor
for variability on dragonfly networks. They have also high-
lighted that the effects of node placement on the variability
were not dominant compared with network congestion effects.

Jain et al. [6] proposed fabric isolation schemes to address
the inter-job effects in dragonfly networks, and they quantified
the benefits through simulation. While simulator-based studies
[9], [30] can provide valuable insights for exploring the design
decisions in future system architectures, simulators are most
often built on top of general-purpose models (such as LogP)
and thus often cannot represent all possible scenarios in a
production system. For example, the adaptive routing schemes
implemented on Cray XC [7] systems are not public and

hence are not represented in any existing simulator. The vary-
ing sitewide scheduling policies, which could influence node
placement and thus performance, are also not straightforward
to represent within a generic simulator.

Tools have been developed to quantify the extent of inter-job
effects in HPC systems. For instance, the tool mentioned in
[31] measures the effects of inter-job contention by continually
running the benchmarks and provides insights into using
network performance counter data. Benchmarks on produc-
tion systems are used to measure and understand variability
[3], [32]; however, benchmarks often do not represent the
characteristics of the production applications. Monitoring tools
such as LDMS (Lightweight Distributed Metric Service) [33]
were developed to obtain system-wide resource utilization
information on production HPC systems. While such tools
help monitor global events such as network congestion [18],
they do not have access to the application context and thus
cannot correlate application effects with network effects [34].
This is in contrast to our work where variability is estimated
by using a local view of congestion captured through network
performance counters.

VIII. CONCLUSIONS

Network resources shared across multiple competing jobs
can potentially lead to unfair resource provisioning to some
applications, thus impacting their performance. Given this
lack of an assured provisioning of resources, the runtimes
of an application can vary from run to run. The application
runtime by itself is insufficient to conjecture anything of
a specific execution, such as its performance drop due to
network congestion. The effects of network congestion can be
lead to variability between runs up to 74% depending on the
application and environment. With this level of effect, users
require an approach to understand the effects of variability in
order to evaluate application performance and scaling.

A prototype software package was developed to provide
potential users with an estimate including error bounds of the
impact of network congestion on their application run. A set
of metrics was developed and analyzed which demonstrate
the ability to measure network congestion as set of probability
distributions. We validated that these distributions are effective
in measuring the specific network congestion that affected an
application. Using these metrics, a set of seven features were
constructed and a combined SVM and RF model was trained
using well-known HPC applications that are commonly run at
many HPC facilities. The resulting models show a prediction
quality of 91% based on the 10-fold cross-validation score.
We propose this model trained with a diverse set of application
communication patterns as a basis for building a general model
for use in production systems. Any HPC interconnect that
provides similar network counters that measure traffic and
congestion will be able to adapt our work to their systems. This
enables the entire HPC community to benefit from the metrics,
training techniques and data collected considering that network
congestion impacts on application performance is prevalent in
all the current-generation networks.

1068

ACKNOWLEDGEMENT

This research used resources of the Argonne Leadership
Computing Facility, which is a U.S. Department of Energy
Office of Science User Facility operated under contract DE-
AC02-06CH11357. Argonne National Laboratory’s work was
supported by the U.S. Department of Energy, Office of Sci-
ence, under contract DE-AC02-06CH11357.

REFERENCES

[1] A. Porterfield, S. Bhalachandra, W. Wang, and R. Fowler, “Variability: A
tuning headache,” in 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), May 2016, pp. 1069–
1072.

[2] J. Chen and J. Revels, “Robust benchmarking in noisy environments,” in
20th Annual IEEE High Performance Extreme Computing Conference,
Aug 2016.

[3] T. Groves, Y. Gu, and N. J. Wright, “Understanding performance
variability on the Aries dragonfly network,” in 2017 IEEE International
Conference on Cluster Computing (CLUSTER), Sept 2017, pp. 809–813.

[4] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There Goes the
Neighborhood: Performance Degradation Due to Nearby Jobs,” Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, pp. 41:1–41:12, 2013. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2503210.2503247

[5] S. Chunduri, K. Harms, S. Parker, V. Morozov, S. Oshin,
N. Cherukuri, and K. Kumaran, “Run-to-run variability on Xeon
Phi based Cray XC systems,” Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis - SC ’17, pp. 1–13, 2017. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3126908.3126926

[6] N. Jain, A. Bhatele, X. Ni, T. Gamblin, and L. V. Kale, “Partitioning low-
diameter networks to eliminate inter-job interference,” in Proceedings
- 2017 IEEE 31st International Parallel and Distributed Processing
Symposium, IPDPS 2017. IEEE, 5 2017, pp. 439–448.

[7] B. Alverson, E. Froese, and D. Roweth, “Cray XC Series network,”
Cray, pp. 1–28, 2012. [Online]. Available: www.cray.com

[8] A. Bhatele, N. Jain, W. D. Gropp, and L. V. Kale, “Avoiding hot-
spots on two-level direct networks,” in High Performance Computing,
Networking, Storage and Analysis (SC), 2011 International Conference
for, 2011, pp. 1–11.

[9] A. Bhatele, N. Jain, Y. Livnat, V. Pascucci, and P. T. Bremer, “Analyzing
network health and congestion in dragonfly-based supercomputers,” in
2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), May 2016, pp. 93–102.

[10] X. Yang, J. Jenkins, M. Mubarak, R. B. Ross, and Z. Lan, “Watch
out for the bully!: Job interference study on dragonfly network,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’16. Piscataway,
NJ, USA: IEEE Press, 2016, pp. 64:1–64:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3014904.3014990

[11] (2016) MILC collaboration. [Online]. Available:
http://www.physics.utah.edu/ detar/milc/

[12] P. F. Fischer, J. W. Lottes, and S. G. Kerkemeier, “Nek5000 web page,”
Web page: http://nek5000.mcs.anl.gov, 2008.

[13] N. A. Featherstone and B. W. Hindman, “The spectral amplitude of
stellar convection and its scaling in the high-Rayleigh-number regime,”
The Astrophysical Journal, vol. 818, no. 1, p. 32, 2016. [Online].
Available: http://stacks.iop.org/0004-637X/818/i=1/a=32

[14] F. Gygi, “Architecture of Qbox: A scalable first-principles molecular
dynamics code,” IBM Journal of Research and Development, vol. 52,
no. 1.2, pp. 137–144, Jan 2008.

[15] S. Plimpton, “Fast parallel algorithms for short-range molecular
dynamics,” J. Comput. Phys., vol. 117, no. 1, pp. 1–19, Mar. 1995.
[Online]. Available: http://dx.doi.org/10.1006/jcph.1995.1039

[16] C. Inc, “Aries hardware counters,” Cray Doc S-0045-20, 2017. [Online].
Available: http://docs.cray.com/books/S-0045-20/S-0045-20.pdf

[17] A. Deconinck, A. Bonnie, K. Kelly, S. Sanchez, C. Martin, M. Mason,
J. Brandt, A. Gentile, B. Allan, A. Agelastos, M. Davis, and M. Berry,
“Design and implementation of a scalable network monitoring system
for Trinity,” Cray User’s Group, 2016.

[18] A. Deconinck, H. Nam, D. Morton, A. Bonnie, C. Lueninghoener,
J. Brandt, A. Gentile, K. Pedretti, A. Agelastos, C. Vaughan, S. Ham-
mond, B. Allan, M. Davis, and J. Repik, “Runtime collection and
analysis of system metrics for production monitoring of Trinity Phase
II,” Cray User’s Group, 2017.

[19] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting perfor-
mance data with PAPI-C,” in Tools for High Performance Computing
2009, M. S. Müller, M. M. Resch, A. Schulz, and W. E. Nagel, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 157–173.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1953048.2078195

[21] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and Computing, vol. 14, no. 3, pp. 199–222, Aug 2004.

[22] P. Beckman, K. Iskra, K. Yoshii, S. Coghlan, and A. Nataraj, “Bench-
marking the effects of operating system interference on extreme-scale
parallel machines,” Cluster Computing, vol. 11, no. 1, pp. 3–16, Mar.
2008.

[23] B. Acun, P. Miller, and L. V. Kale, “Variation among processors under
turbo boost in hpc systems,” in Proceedings of the 2016 International
Conference on Supercomputing, ser. ICS ’16. New York, NY, USA:
ACM, 2016, pp. 6:1–6:12.

[24] A. Sandberg, A. Sembrant, E. Hagersten, and D. Black-Schaffer, “Mod-
eling performance variation due to cache sharing,” in 2013 IEEE 19th
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2013, pp. 155–166.

[25] B. Balaji, J. McCullough, R. K. Gupta, and Y. Agarwal, “Accurate
characterization of the variability in power consumption in modern
mobile processors,” in Proceedings of the 2012 USENIX Conference
on Power-Aware Computing and Systems, ser. HotPower’12. Berkeley,
CA, USA: USENIX Association, 2012, pp. 8–8.

[26] H. Pritchard, D. Roweth, D. Henseler, and P. Cassella, “Leveraging
the Cray Linux environment core specialization feature to realize MPI
asynchronous progress on Cray XE systems,” in Proceedings of the Cray
User Group Conference, 2012.

[27] Y. Inadomi, T. Patki, K. Inoue, M. Aoyagi, B. Rountree,
M. Schulz, D. Lowenthal, Y. Wada, K. Fukazawa, M. Ueda,
M. Kondo, and I. Miyoshi, “Analyzing and mitigating the impact
of manufacturing variability in power-constrained supercomputing,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’15. New
York, NY, USA: ACM, 2015, pp. 78:1–78:12. [Online]. Available:
http://doi.acm.org/10.1145/2807591.2807638

[28] E. C. Inacio, P. A. Barbetta, and M. A. R. Dantas, “A statistical analysis
of the performance variability of read/write operations on parallel file
systems,” Procedia Computer Science - Special Issue: International
Conference on Computational Science, ICCS 2017, vol. 108, pp. 2393–
2397, 2017.

[29] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Improving resource efficiency at scale with Heracles,” ACM Transac-
tions on Computer Systems, vol. 34, no. 2, pp. 1–33, 5 2016. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2912575.2882783

[30] T. Hoefler, T. Schneider, and A. Lumsdaine, “LogGOPSim: Simulating
large-scale applications in the LogGOPS model,” in Proceedings of the
19th ACM International Symposium on High Performance Distributed
Computing, ser. HPDC ’10. New York, NY, USA: ACM, 2010, pp. 597–
604. [Online]. Available: http://doi.acm.org/10.1145/1851476.1851564

[31] R. E. Grant, K. T. Pedretti, and A. Gentile, “Overtime,” in Proceedings
of the 3rd Workshop on Exascale MPI - ExaMPI ’15, 2015, pp. 1–10.

[32] N. J. Wright, S. Smallen, C. M. Olschanowsky, J. Hayes, and A. Snavely,
“Measuring and understanding variation in benchmark performance,”
in Proceedings of the 2009 DoD High Performance Computing Mod-
ernization Program Users Group Conference, ser. HPCMP-UGC ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 438–443.

[33] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gen-
tile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan, M. Showerman,
J. Stevenson, N. Taerat, and T. Tucker, “The Lightweight Distributed
Metric Service: a scalable infrastructure for continuous monitoring
of large scale computing systems and applications,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC, vol. 2015-Janua, no. January, 2014, pp. 154–165.

1169

[34] A. Bonnie, M. Mason, and D. Illescas, “Monitoring infrastructure: the
challenges of moving beyond petascale,” in 2017 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 9 2017, pp. 785–
788. [Online]. Available: http://ieeexplore.ieee.org/document/8049017/

1270

APPENDIX

A. Abstract

This artifact contains links to the source code for the
scientific applications used in this study along with the cor-
responding input datasets and the build instructions. It also
describes the specific experimental setup for the controlled
environment runs. Moreover, we provide scripts and Jupyter
notebooks for processing the data, generating the summary
statistics, and running the predictive model. The instructions
and the code should help in replicating the results we have
presented in this study. Although the range of variability is not
exactly reproducible on a system different from Theta, since
it depends on several factors such as workload characteristics,
node placement, and interconnect used, the basic approach
should still be relevant and applicable to different systems.

B. Description

1) Checklist (artifact metainformation):
• Applications: The application codes are open source and

thus can be accessible publicly.
• Scripts: The PAPI-based code for counter measurement;

scripts for gathering node placement information; and a
set of Jupyter notebooks for statistical analysis that are
used to build the model.

• Compilation: CC (Cray wrapper around Intel compiler
[intel 17.0.4.196])

• Runtime environment: Cray MPI (cray-mpich:7.6.0),
Cray OS (SLES 12)

• Hardware: Argonne Theta (Intel Xeon Phi 7230) and
NERSC Cori (Intel Xeon Phi 7250) systems.

• Execution: Details in the run scripts
• Output: Run time and a output of the from the model
• Experiment workflow: Download source code, build the

tools, run the applications, collect performance counters,
parse the output files, and analyze the summary. See
below for more detailed information.

• Publicly available?: Yes
2) How delivered: The artifact content (source code, pre-

dictive mode [a set of Jupyter notebooks], and various other
processing and plotting scripts used in this study) will be
hosted on a publicly accessible github web site.

3) Hardware dependencies: The experiments shown were
performed on Argonne’s Theta and NERSC’s Cori supercom-
puters, both are based on Cray XC systems. Theta consists of
Intel Xeon Phi 7230 nodes interconnected with a Cray Aries
in a Cray Cascade dragonfly topology. Cori consists of two
partitions, one with Intel Xeon Haswell processors and another
with Intel Xeon Phi 7250 processors, all on the same Cray
Aries network in a Cray Cascade dragonfly topology.

Cray XC systems are constructed from four node blades
with each blade having a single Aries network router. Aries
NIC is connected to a node over a 16X PCI-e Gen3 interface.
Each chassis has 16 such 4-node blades and each cabinet
has three chassis (192 nodes). The dragonfly network is
constructed from two-cabinet electrical groups with 384 nodes

per group. So, essentially, 1 blade - 4 nodes; 1 chassis - 16
blades; 1 group - 6 chassis.

The topology used is a three-level dragonfly topology.
The first two levels (rank-1 and rank-2) are copper based
with 10.5 GB/s peak bi-directional bandwidth per link. The
chassis backplane provides connectivity in the rank-1 (green)
dimension; each Aries is connected to each of the other 15
Aries in the chassis. The rank-2 (black) dimension is formed
by connecting three links from each Aries to its peer. The rank-
3 level, connectivity between the groups, is optical with 9.38
GB/s per link. The node placement for a job on Dragonfly is
arbitrary, and perfect isolation of traffic is not possible. Hence,
while a 256 node job could in principle be placed within a
single group, there is no guarantee that it would not be spread
across multiple groups.

Only flat-quad memory mode of KNLs was used in all
the experiments to avoid the variability effects due to the
MCDRAM cache-mode effects possible with the cache-quad
mode.

Although PAPI has limitations on the number of counters
that can be read in compute processors such as Intel’s Skylake,
there are no such limitations with reading the large selection
of Aries router counters. Two basic categories of hardware
performance counters are available to the user: NIC counters
and router tile counters. Each Aries router has more than
1,000 counters; many of these differ only in the router tile
and virtual channel. We used around 384 counters per process
in our study. In addition, some counters are configurable,
meaning not only can they be read but also written to, in
order to configure and control data collection. Essentially,
all the network counters can be collected in each run. The
reading and configuring can be accomplished by using PAPI.
For a complete list of the available Aries counters, use the
papi native avail command.

4) Software dependencies: All benchmarks were built by
using Cray’s compiler wrappers with Intel compiler and other
default parameters. Theta uses the Cobalt job scheduler, and
Cori uses Slurm. All software dependencies specific to each
benchmark will be noted in a README file within each
subdirectory.

5) Datasets: A brief description of the applications used in
this study is provided here. MILC is a MIMD lattice compu-
tation code for simulation of high energy and nuclear physics,
such as the study of the mass spectrum of strongly interacting
particles and the weak interactions of these particles.

MILC REORDER is MILC with a simple optimization
applied to optimize the rank-to-node mapping. This was done
using Cray’s grid order tool with a 4× 4× 2× 2 subgrid.

Nek5000 is a computational fluid dynamics code with a
high-order, incompressible Navier-Stokes solver based on the
spectral element method designed for large eddy simulation
and direct numerical simulation of turbulence in complex
domains.

Nekbone is a miniapp that exposes the principal computa-
tional and communication kernels of Nek5000, which solves

1371

a standard Poisson equation in a 3D box domain with a block
spatial domain decomposition.

LAMMPS is an open-source molecular dynamics code
written in C/C++ to simulate systems spanning several science
domains (e.g., liquids, biomolecules, materials, and meso-
scopic systems). The benchmark examined was a water droplet
containing 87 million particles modeled by using a short-range
forcefield with in situ analyses included.

Rayleigh is a 3D convection code that evolves the incom-
pressible and anelastic magnetohydrodynamics equations in
spherical geometry by using a pseudo-spectral approach.

Qbox is an ab initio molecular dynamics code written
in C based on density functional theory using the plane
waves and pseudopotentials formalism for electronic structure
calculations.

A brief descriptions of the input decks used, and processes
per node used are provided in the table below:

Application Description of Input Processes per Node

MILC su rmd 16,384 grid points 64 MPI
per process

Nekbone 511 spectral elements 63 MPI
per process; 8th poly order

HACC 32003 grid 64 MPI
NEK5000 Engine Case 64 MPI
LAMMPS Water Droplet 64 MPI x 2 OpenMP
Rayleigh Christensen et al. 2001 64 MPI

(MHD, Case 1)
Qbox SiC512 64 MPI

The specific input data files and the run scripts used are
provided in the Github site.

C. Installation

Each application used in the paper has a separate directory
that will contain source code, build scripts, run scripts, and
output parsing scripts (if required). Since these experiments
are designed primarily for Theta, the build commands provided
give examples that should be adapted if they were to be used
on other systems.

D. Experiment Workflow

Each benchmark will have a “./run.sh“ script that details
how to run the application on Argonne’s Theta system. Ad-
ditionally, a README file will explain the various options
of the run script and output. A prototype implementation of
the performance counter (Aries counters used in this study
and the memory-related counters) monitoring tool exists and
is integrated as a submodule of the Darshan package.

A few short-hour system reservations are used for conduct-
ing the controlled experiments. For establishing the lower-
bound on the potential congestion, one application instance
was run in a contiguous partition on the system; This lower
bound helps establish the intra-application contention because
no other interference is possible on the system. For estab-
lishing an upper bound on the potential congestion, multiple
instances of the same application are run on the system
with each instance capturing respective performance counters.

In this run, all the application instances start execution at
the same time by having appropriate idle times before the
application executions.

The scripts and software can be used directly on a Cray
XC system. The data capturing tools could be substituted for
similar tools by Mellanox to capture PortXmitWait, PortXmit-
Packets, etc. on Infiniband networks and then processed into
the same statistical format for processing and training.

E. Evaluation and Expected Results

The key takeaway in this paper is an approach to establish
the correlation between the application runtime and job-
specific network performance counters, and use that insight
to assess application sensitivity to predicted congestion. This
idea should hold true for any production network, although
the exact procedure to measure the counters varies and may
be non-portable for a non-Cray system. However, any system
that has similar counters to Stalls and Flits should be able
to adapt the techniques mentioned in this study. Once the
correlation of counters and runtime is established on a new
machine, the derived statistics developed in this study can be
used to develop predictive models to assess the variability. The
predictive model is an invaluable for application developers
to optimize codes in these variable run environments. On a
similar Cray system with a different application workload set,
the model accuracy depends on the diversity of the application
set used in the training.

There is no specific requirement for using a specific number
of applications, we have used six applications only to demon-
strate the entire approach of model building and prediction as
a proof-of-concept.

1472

