
Exploiting Hardware-Accelerated Ray Tracing for
Monte Carlo Particle Transport with OpenMC

Justin Lewis Salmon, Simon McIntosh Smith
Department of Computer Science

University of Bristol
Bristol, U.K.

{justin.salmon.2018, S.McIntosh-Smith}@bristol.ac.uk

Abstract—OpenMC is a CPU-based Monte Carlo particle
transport simulation code recently developed in the Computa-
tional Reactor Physics Group at MIT, and which is currently
being evaluated by the UK Atomic Energy Authority for use on
the ITER fusion reactor project. In this paper we present a novel
port of OpenMC to run on the new ray tracing (RT) cores in
NVIDIA’s latest Turing GPUs. We show here that the OpenMC
GPU port yields up to 9.8x speedup on a single node over a
16-core CPU using the native constructive solid geometry, and
up to 13x speedup using approximate triangle mesh geometry.
Furthermore, since the expensive 3D geometric operations re-
quired during particle transport simulation can be formulated
as a ray tracing problem, there is an opportunity to gain even
higher performance on triangle meshes by exploiting the RT
cores in Turing GPUs to enable hardware-accelerated ray tracing.
Extending the GPU port to support RT core acceleration yields
between 2x and 20x additional speedup. We note that geometric
model complexity has a significant impact on performance, with
RT core acceleration yielding comparatively greater speedups
as complexity increases. To the best of our knowledge, this is
the first work showing that exploitation of RT cores for scientific
workloads is possible. We finish by drawing conclusions about RT
cores in terms of wider applicability, limitations and performance
portability.

Index Terms—HPC, Monte Carlo particle transport, ray trac-
ing, GPUs

I. INTRODUCTION

Particle transport algorithms simulate interactions between
particles, such as nuclear fission and electron scattering, as
they travel through some 3D geometric model. The Monte
Carlo method can be applied to particle transport, using
random sampling of particle trajectories and interactions to
calculate the average behaviour of particles, producing highly
accurate simulation results compared to deterministic meth-
ods. Monte Carlo particle transport has found applications in
diverse areas of science such as fission and fusion reactor
design, radiography, and accelerator design [1], [2]. The Monte
Carlo particle transport algorithm is highly computationally
intensive, partly due to the large number of particles which
must be simulated to achieve the required degree of accuracy,
and partly due to certain computational characteristics of the
underlying algorithm that make it challenging to fully utilise
modern computing resources.

Previous studies have successfully proven that Monte Carlo
particle transport is well suited to GPU-based parallelism [3]–
[5]. Targeting GPUs is becoming increasingly important in

HPC due to their proliferation in modern supercomputer
designs such as Summit [6].

A. OpenMC

OpenMC is a Monte Carlo particle transport code focussed
on neutron criticality simulations, recently developed in the
Computational Reactor Physics Group at MIT [7]. OpenMC
is written in modern C++, and has been developed using
high code quality standards to ensure maintainability and
consistency. This is in contrast to many older codes, which
are often written in obsolete versions of Fortran, and have
grown to become highly complex and difficult to maintain. It
is partly for this reason that the UK Atomic Energy Authority
(UKAEA) is currently evaluating OpenMC as a tool for
simulating the ITER nuclear fusion reactor [8].

OpenMC currently runs on CPUs only, using OpenMP for
on-node parallelism and MPI for inter-node parallelism, and
has been well studied from a performance perspective [9].
The first major piece of this work will present a novel port
of OpenMC to NVIDIA GPUs, hypothesising that significant
on-node performance improvements can be obtained over the
CPU. This has potentially immediate real-world benefits for
UKAEA and other institutions seeking improved Monte Carlo
particle transport performance. We then go on to explore
emerging ray-tracing hardware and its applicability to accel-
eration in this application area.

B. Hardware-Accelerated Ray Tracing

As the memory bandwidth and general purpose compute ca-
pability improvements of recent GPUs begin to plateau, GPU
manufacturers are increasingly turning towards specialised
hardware solutions designed to accelerate specific tasks which
commonly occur in certain types of applications. A recent
example of this is the inclusion of Tensor cores in NVIDIA’s
Volta architecture, which are targeted towards accelerating
matrix multiplications primarily for machine learning algo-
rithms [10]. An earlier example is texture memory, designed to
improve efficiency of certain memory access patterns in com-
puter graphics applications [11]. These specialised features
have often been repurposed and exploited by HPC researchers
to accelerate problems beyond their initial design goals.

NVIDIA’s latest architecture, codenamed Turing, includes a
new type of fixed-function hardware unit called Ray Tracing

19

2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)

978-1-7281-5977-5/19/$31.00 ©2019 IEEE
DOI 10.1109/PMBS49563.2019.00008

(RT) cores, which are designed to accelerate the ray tracing
algorithms used in graphical rendering. NVIDIA advertises
potential speedups of up to 10x with RT cores, which will
supposedly allow computer games designers to bring real-
time ray tracing to their games, opening up new levels of
photorealism.

The ray tracing algorithms used in graphical rendering are
similar in nature to Monte Carlo particle transport algorithms,
in the sense that both require large numbers of linear geometric
queries to be executed over complex 3D geometric models.
Based on this parallel, it is entirely conceivable that RT cores
can potentially be utilised for Monte Carlo particle transport.
The second part of this paper investigates this concept, by
attempting to exploit RT cores to accelerate OpenMC, hypoth-
esising that the particle transport workload can achieve some
worthwhile fraction of the 10x speedup obtained by graphical
rendering.

The contributions of this paper include:

• The first known study into the use of RT cores for
scientific applications.

• An optimised port of OpenMC to GPUs, including de-
tailed performance benchmarking.

• An evaluation of RT cores in terms of wider applicabil-
ity, limitations and performance portability, intended to
facilitate future studies.

II. BACKGROUND

A. Monte Carlo Particle Transport Efficiency

There are several factors which affect the efficiency of
the Monte Carlo particle transport method, most of which
relate to utilisation of parallel resources. Load balancing [12],
SIMD utilisation [13], random memory access patterns [14],
[15] and atomic tallying performance [2] are all cited as
general characteristics that affect parallel efficiency, and have
all been extensively studied. However, this paper will not focus
primarily on parallel efficiency, but will instead focus on ge-
ometric efficiency. When tracking particles travelling through
complex geometric models, a large number of queries must
be performed on that model, comprising a major proportion of
overall runtime [4], [16], [17]. Geometric efficiency is a critical
factor in production-grade systems which simulate large scale
models (such as the ITER fusion reactor), and optimising this
aspect of the Monte Carlo particle transport algorithm could
significantly improve overall performance.

B. Geometric Algorithms in Particle Transport

All production-grade Monte Carlo particle transport codes
support complex, arbitrary 3D geometric models as the sub-
strate on which to simulate particle interactions. A major part
of the simulation process involves knowing exactly where a
particle is within the model, computing where it will be in the
next timestep given its velocity, and determining which objects
it will intersect with along its trajectory. These computations
depend on how the model is represented in software.

Geometric Representation: Some codes use a method called
constructive solid geometry (CSG) to represent models, which
essentially uses a tree of boolean operators (intersection,
union, etc.) applied to primitive objects such as planes, spheres
and cubes to build precise structures. In this case, intersections
between particles and objects are calculated using basic geo-
metric functions on nodes in the tree, based on the primitive
type of the shape node and its parameters. CSG represen-
tations are relatively lightweight, since only the primitive
shape parameters and operator tree need to be stored. Many
institutions create model geometries using computer-aided
design (CAD) tools, which often use CSG representations
due to their accuracy. However, it is often time consuming
to create complex models using CSG. Furthermore, engineers
are often forced to duplicate the model using the proprietary
input formats of each Monte Carlo particle transport code.

Other codes use meshes of small triangles (represented
as vertices in 3D space) which produce approximations to
objects. Triangle mesh models are generally less accurate than
CSG models, although more highly faceted meshes lead to
more accurate models. This can result in relatively high storage
costs if precise models are required. However, it is often easier
to create complex models using triangle meshes compared to
CSG models. Intersection testing on triangle meshes can be
expensive, requiring potentially many triangles to be tested
before finding the exact intersection point. There are several
industry-standard formats for storing triangle mesh data which
are widely supported.

Ray Tracing: The geometric queries in particle transport
simulation can be formulated using techniques from computer
graphics. Ray tracing can be used to determine which volume
a particle lies within and which surface it will intersect with
given its current direction. Figure 1 shows how a particle (or
“ray”) can be cast along a straight trajectory from a point
in the plane through a two dimensional object to determine
whether the point is inside the object. If the total number of
intersections is odd after the trajectory is extended to infinity,
the particle must lie within the object. If the intersection
count is even, the particle is outside the object. The closest
intersection point then simply becomes the first intersection
along the trajectory. This method is trivially extended to three
dimensions, and can be used with both CSG and triangle mesh
geometries.

Acceleration Structures: For large models, finding the inter-
section points is an expensive process. The graphics industry
has dedicated a significant effort into optimising this kind of
operation through the development of acceleration structures,
which use a hierarchy of progressively smaller bounding boxes
around model sub-regions. It is these boxes which are then
tested for intersection in a binary tree style search, massively
reducing the number of surfaces that need to be tested. The
most prevalent types of acceleration structure are Bounding
Volume Hierarchy (BVH) trees [18], Octrees [19] and Kd-
trees [20], each of which contains tradeoffs between lookup
performance, build time and runtime memory overhead. Fig-
ure 2 shows how a simple BVH tree is constructed.

20

Fig. 1: Using ray tracing to solve the point-in-polygon prob-
lem.

A

B C

A

B
C

Fig. 2: Construction of a BVH tree by recursively organising
bounding boxes of decreasing size.

C. The NVIDIA Turing Architecture

Triangle meshes are the prevalent representation in the
graphics world, and the Turing architecture has been designed
to provide specific support for using them with ray tracing
algorithms. RT cores offload the critical part of a ray tracing
loop; traversal of acceleration structures (specifically BVH
trees) and ray-triangle intersection tests. Each streaming mul-
tiprocessor (SM) on the GPU has access to its own RT core
to which it can issue “ray probe” requests. Each RT core is
made up of a triangle intersection unit and a BVH traversal
unit, and is supposedly able to cache triangle vertex and BVH
tree data, although the exact layout and functionality of the
cores is not publicly known. The two units in the RT core
execute the ray probe asynchronously, writing the result back
to an SM register once complete. Consequently, the SM is
able to perform other work while ray tracing operations are
happening, saving potentially thousands of instruction cycles.
Existing RT core benchmarks claim up to 10x speedup on pure
graphical rendering workloads, given ideal conditions [21]
[22].

The Turing architecture also contains a number of genera-
tional improvements over the Pascal and Volta architectures,
a detailed analysis of which can be found in [23].

D. OptiX

Unlike with Tensor cores, NVIDIA does not provide an API
to allow developers to issue instructions to RT cores directly.

Instead, support for them has been added to three existing
ray tracing libraries: Microsoft’s DXR [24], Khronos Group’s
Vulkan [25] and NVIDIA’s OptiX [26]. Developers wishing
to make use of RT cores must do so through one of these
libraries. This work will focus on the OptiX library, due to its
maturity and alignment with the familiar CUDA ecosystem.

OptiX is highly suited to graphical rendering applications in
terms of API design, although it presents itself as being flexible
enough to handle other types of application. This is true to an
extent, provided the application is willing and able to adhere
to the constraints of the API in terms of architectural design
and flexibility. Those familiar with CUDA programming may
find the OptiX development process somewhat restrictive. The
user provides a set of CUDA-like kernel programs to the
OptiX host API as PTX strings, each of which performs a
specific function in the ray tracing pipeline, such as generating
rays, handling intersections or handling rays which miss the
geometry entirely. These programs are then compiled on-
the-fly by OptiX and weaved into a single “mega kernel”.
OptiX then handles scheduling of kernel launches internally,
automatically balancing load across the GPU.

RTX Mode: RT core acceleration is enabled in OptiX via the
RT GLOBAL ATTRIBUTE ENABLE RTX setting, provided
certain prerequisites are met. Only geometries defined using
the GeometryTriangles API which use the default inter-
section and bounding box programs are eligible to use the RT
core’s triangle intersection unit (CSG models are not eligible).
BVH trees are the only acceleration structure supported by
the traversal unit. RTX mode also enables a new compilation
pipeline introduced in version 6, which is designed to be more
efficient on GPUs without RT cores.

E. Related Work

The promise of up to 10x speedup for ray tracing on RT
cores is enticing, despite the drawbacks of needing to use the
OptiX API to achieve it. To explore the possibilities for Monte
Carlo particle transport, a suitable code was sought which can
be representative in terms of real-world scale and functionality,
in order to obtain realistic comparisons. Several other studies
have attempted to use ray tracing techniques for particle-based
applications, which we briefly review here in order to motivate
the choice of code to study.

There have been a mixture of approaches focussing on both
CPUs and GPUs, exploring different types of geometric mesh
representations and acceleration structures. In 2017, Bergmann
et. al. presented results for the WARP code, a GPU-based
Monte Carlo neutron transport code which uses OptiX to
define CSG models accelerated with a BVH tree [4], [16] and
to perform intersection tests. Bergmann’s code compared well
with existing non-ray-traced CPU implementations. However,
it does not use triangle mesh models, thus making it unsuitable
for RT core acceleration. We did not choose to study the
WARP code further, since it is not considered production-
grade. Nevertheless, Bergmann’s work sets important prece-
dents for the use of both ray tracing and the OptiX library for
Monte Carlo particle transport.

21

In 2018, Thomson claims to have implemented the first
GPU-based astrophysics simulation code to use a ray-traced
triangle mesh geometry accelerated with a BVH tree as part
of the TARANIS code [27]. Thomson presented excellent
performance results for simple test cases compared to existing
non-ray-traced CPU-based astrophysics codes, although his
implementation did not scale to more realistic test cases.
This appears to be due to complexities with ionised particle
behaviour which can occur with astrophysics simulations,
which fortunately do not appear in most Monte Carlo particle
transport simulation as commonly only neutral particles (such
as neutrons or photons) are simulated. Despite being in quite a
different algorithmic category, much insight can be drawn from
Thomson’s work, namely the further important precedents
which are set for the use of both triangle mesh geometries
and BVH trees for a particle-based code. However, the code
itself is not available for direct study.

In 2010, Wilson et. al. published their work on the
DAGMC toolkit [28], a generic CPU-based triangle mesh
geometry traversal code that can be plugged in to a number
of production-grade Monte Carlo particle transport codes
such as MCNP [29], OpenMC [30] and SERPENT [31].
DAGMC replaces the native geometry representation with
its own ray-traced triangle mesh geometry based on the
MOAB library [32] accelerated with a BVH tree. Wilson’s
work was primarily focussed on conversion of CAD models
to implementation-agnostic triangle meshes in an attempt to
reduce the amount of effort required to port models between
different codes. Initial performance results on complex models
were adequate, although subsequent work by Shriwise in
2018 significantly improved performance on the MCNP code
through the use of a more efficient BVH implementation [33].
It is important to note that although DAGMC runs only on
CPUs, it proves the feasibility of using ray tracing over triangle
mesh geometries with production-grade Monte Carlo particle
transport codes.

Institutions which make use of Monte Carlo particle trans-
port are increasingly becoming interested in triangle mesh
geometries, and the DAGMC toolkit is a promising route to
enable simulations to be performed on existing CAD models,
potentially reducing the engineering burden of defining models
multiple times in the specific input format of each code [28],
[34].

F. OpenMC

OpenMC natively uses CSG representations, and does not
use ray tracing for geometry traversal (although the DAGMC
plugin for OpenMC allows ray tracing over triangle meshes).
OpenMC has been well studied from a performance per-
spective [9] and uses OpenMP and MPI for parallelism.
However it has not been ported to make use of GPU par-
allelism. Several other Monte Carlo particle transport codes
have gained significant performance improvements from GPUs
recently [3], [4], [5] therefore it is reasonable to assume that
OpenMC may also benefit in similar ways.

OpenMC has been selected as the candidate for this study,
as it is a freely available open-source implementation, unlike
many other codes such as MCNP and SERPENT which are
export restricted due to their sensitive links to nuclear research.
OpenMC will be ported to the GPU, with support added for ray
tracing over triangle meshes using the OptiX library (as well as
the native CSG geometry). Following that, the implementation
will be further extended to support RT core acceleration.

G. Summary

Existing work has proven that ray tracing techniques can
improve the performance of particle-based scientific codes,
particularly on GPUs, and that triangle mesh geometries and
BVH trees are both feasible approaches. However, there is a
clear opportunity to extend this work to utilise the hardware-
accelerated ray tracing capabilities of the Turing GPU archi-
tecture. There are currently no published studies investigating
this opportunity. This work seeks to address that gap by porting
OpenMC to the GPU, using the OptiX library to replace the
native geometry representation with a ray-traced triangle mesh
backed by a BVH tree, enabling the exploitation of RT cores
on a Turing-class GPU for the first time.

III. RT CORE BENCHMARKING

Before attempting to directly exploit RT cores for Monte
Carlo particle transport, we first measure their performance on
the type of graphics workload for which they were designed.
This helps to gain an understanding of their characteristics,
and to form a baseline performance profile to work towards.

A simple benchmarking tool was developed to evaluate
the raw ray tracing performance of RT cores, based on a
sample from the OptiX library. The benchmark renders a
fixed number of frames of a 3D triangle mesh scene as fast
as possible. Each frame is rendered by launching a fixed
number of primary rays in a 2D pixel grid orientation, using
a very simple shading routine to maximise the ratio of ray
tracing work to other compute work. Each thread handles a
single ray and writes the computed pixel colour to an output
buffer, which is then interpreted as an image. The benchmark
supports both the standard OptiX geometry API, as well as
the GeometryTriangles API which offloads intersection
testing to RT cores when RTX mode is enabled.

A. Method

A number of standard 3D graphics models were selected to
use as rendering targets, spanning a wide range in terms of
triangle count and topological complexity, with the intention of
identifying different performance characteristics. The simplest
model contains a trivial 12 triangles, while the largest con-
tains over 7 million triangles. Most are single-cell watertight
models, with the exception of the Hairball model which is
a tightly packed weave of thin cells. Figure 3 shows 2D
renderings of each of the five chosen models, as rendered by
the RT core benchmark tool. The scene viewpoint location
(i.e. the origin from which rays are cast) is maintained, and
the number of rendering iterations is maintained at 104. The

22

(a) Cube, 12 (b) Sphere, 89k (c) Happy Buddha, 1.1m (d) Hairball, 2.9m (e) Asian Dragon, 7.2m

Fig. 3: Renderings of the five 3D models produced by the RTX benchmark tool, with approximate triangle counts.

launch dimensions (which directly correspond to output image
resolution) are varied from 960x540 doubling each time up to
15360x8640, roughly corresponding to the range of a 540p
SD image up to a 16k Ultra HD image. This is repeated
for each model, thus allowing us to investigate the effects
of varying both model complexity and launch dimensionality
independently.

The main metric used to measure performance is rays cast
per second, calculated as the total number of rays cast divided
by the total runtime duration, measured in GigaRays per
second. Software versions are OptiX version 6.0, CUDA 10.1,
driver 418.39.

B. Results: Model Complexity

Figure 4 shows how each model behaves at a launch
resolution of 15360x8640 on a Turing-class RTX 2080 Ti GPU
and a Pascal-class GTX 1080 Ti. These devices were chosen as
they are equivalent in terms of their position in the consumer-
grade product tier, and there is no HPC-class Turing GPU to
compare to the P100 or V100. Note that enabling RTX mode
on the Pascal GPU is a valid configuration despite the lack
of RT cores, as it will still use the improved OptiX execution
pipeline.

0 2 4 6 8 10 12
GigaRays/sec

Cube
12 triangles

Sphere
82k triangles

HappyBuddha
1.1m triangles

Hairball
2.9m triangles

AsianDragon
7.2m triangles

RTX Benchmark: Resolution=15360x8640

RTX 2080 Ti (Turing) RTX = ON
RTX 2080 Ti (Turing) RTX = OFF
GTX 1080 Ti (Pascal) RTX = ON

GTX 1080 Ti (Pascal) RTX = OFF

Fig. 4: Results of the RTX-enabled graphics benchmark on
each of the tested models and GPUs for a fixed launch
resolution of 15360x8640. Figures in GigaRays/s, higher is
better.

Using RTX mode on the Turing GPU yields a 4.6x speedup
on average at this resolution. A fraction of this is attributable
to the optimised execution pipeline in OptiX 6, which can be
seen when comparing the two results on the Pascal GPU. Most
of the speedup however is due to the RT cores themselves. The
benchmark is able to produce over 12 GigaRays/sec for the
Happy Buddha and Asian Dragon models, which corroborates
NVIDIA’s own benchmarks for these two models [35]. The
result profiles for these models appears quite similar, despite
being almost an order of magnitude apart in terms of triangle
count. This suggests that both are ideal workloads, and are
probably reaching the optimal throughput of the RT cores.1

It is clear to see that the number of triangles alone does
not dictate performance. The Hairball model is clearly the
heaviest workload, despite not being the largest model in
terms of triangle count. It is 11.8x faster with RTX mode
on the Turing GPU. This suggests that the higher topological
complexity of the model is having a significant impact, most
likely because its multi-volume topography results in a higher
number of potential intersections along a single ray path,
thereby requiring a greater number of triangle vertex buffer
lookups to complete the full traversal. This then becomes the
dominant performance factor. Additionally, the generated BVH
tree is likely to be deeper and therefore slower to search.

The reason why the Cube and Sphere models are slower
than the larger Asian Dragon and Happy Buddha models under
RT core acceleration is simply because ray-triangle intersec-
tion testing and BVH traversal operations comprise less of the
overall runtime due to the simplicity of the models. As the
models get larger, the overall runtime increases proportionally
and the ray tracing operations become the dominant factor.
The Hairball model shows the extreme case of this, where
ray tracing takes such a large amount of effort that runtime
increases to the detriment of ray casting throughput.

The Turing GPU also outperforms the Pascal GPU with
RTX mode disabled. This simply suggests that the generational
improvements of the Turing architecture are providing some
benefit for this particular type of workload, such as the larger
L1 and L2 caches permitting better locality for triangle vertex
data.

C. Results: Launch Dimensions

Figure 5 shows how the ray tracing throughput changes
as the launch dimensions are varied for the Happy Buddha

1It is perhaps not surprising that these models were used to produce the
advertised performance numbers.

23

model. For this model, the peak speedup is 6.4x, which
occurs at the 1920x1080 resolution. The other four models
exhibit essentially the same behaviour, so are omitted here for
brevity. There is clearly a sublinear scaling profile as launch

960x540 1920x1080 3840x2160 7698x4320 15360x8640
Resolution

0

2

4

6

8

10

12

Gi
ga

Ra
ys

/s
ec

RTX Benchmark: Model=HappyBuddha

RTX 2080 Ti (Turing) RTX = ON
RTX 2080 Ti (Turing) RTX = OFF
GTX 1080 Ti (Pascal) RTX = ON

GTX 1080 Ti (Pascal) RTX = OFF

Fig. 5: Results of the RTX-enabled graphics benchmark for the
Happy Buddha model as the launch dimensions are increased.

dimensions are increased, regardless of GPU architecture.
This is most likely a result of the way that OptiX schedules
kernel launches and automatically balances load over the GPU,
with larger launch sizes leading to more effective balancing
and higher occupancy. The peak speedup obtained overall is
15.6x for the Hairball model, which occurs at the 960x540
resolution.

D. Profiling

In order to gain a deeper understanding of how the GPU is
being utilised, the NVIDIA Visual Profiler was used to profile
the running benchmark. Unfortunately, at the time of writing,
it is not possible to profile kernels running on Turing-class
GPUs, due to support not yet having been added for Compute
Capability 7.5. It is also not possible to profile with RTX
mode enabled on any GPU, due to the new kernel mangling
performed by OptiX leading to nvprof being unable to
instrument the main kernel. Furthermore, OptiX makes things
even more challenging to profile, since it combines all user
kernels into one “mega kernel”, resulting in line information
being unavailable. Nevertheless, some insight can still be
gleaned by profiling on the Pascal GPU with RTX mode
disabled, combined with a certain amount of speculation about
what might be occurring on the RT cores.

Performance is limited by memory bandwidth in all cases. It
might be reasonable to initially guess that the smaller Cube and
Sphere models would not be affected by memory bandwidth
issues, since the models are easily small enough to fit entirely
in L1/L2 cache. However, this is not the case when taking
into account other factors such as output buffer writes, BVH
traversal and internal bookkeeping done by OptiX.

E. Summary

We have managed to reproduce the performance numbers
advertised by NVIDIA, and have found that there is a perfor-
mance sweet spot in terms of model complexity and launch
dimensionality. RT cores are indeed a powerful addition to
the Turing architecture, and the results presented here serve
as solid motivation for further investigating their potential use
for Monte Carlo particle transport.

IV. OPENMC GPU PORT

We now begin our efforts to exploit RT core acceleration for
Monte Carlo particle transport. To the best of our knowledge,
this is the first time that anyone has ported this class of
application to ray tracing hardware. The first stage is to
port OpenMC to the GPU and examine it from a traditional
HPC perspective, initially ignoring RT cores, enabling an
understanding of its overall performance characteristics to be
formed and for comparisons to be drawn against existing CPU-
based versions using both CSG and triangle mesh geometries.
The second stage is to extend the GPU port to support RT
core acceleration, to understand how well the particle transport
workload maps onto the paradigm.

A. Implementation

The main particle transport kernel of OpenMC was ported
to CUDA, using the OptiX API on the device to trace rays
and store quantities in output buffers. The bulk of the kernel
comprises around 50,000 lines of code, which required signif-
icant rework due to its extensive use of C++ STL, inheritance
and other features unsupported by CUDA C. On the host
side, OptiX is used to create a triangle mesh geometry loaded
from an external model file in OBJ format, and to handle
device buffer movement. OptiX does not allow specifying
kernel block and grid sizes directly, but instead takes a one,
two or three dimensional launch parameter and manages
kernel launches internally. We use the number of simulated
particles as a one-dimensional launch parameter, and execute
one OptiX context launch per generation/batch. A number of
simple optimisations were made to the GPU port, such as
aligning structure members and switching to single-precision
arithmetic.

B. Method

While it would be desirable to test the code on a model more
related to Monte Carlo particle transport (such as a fission
reactor), we do not currently have access to such models,
so we use the same five models from the RTX benchmark.
The model is filled with a fissionable material (235U) and is
surrounded by a bounding cube of 53 filled with a vacuum.
Boundary conditions were set on the bounding cube so that
particles are terminated if they hit the edge of the bounding
cube. The particle source is set inside the model, using the
default strength parameters. Each model was simulated for 2
generations using 2 batches of N particles, where N ranges
in powers of 10 from 103 up to 107.

24

The GPU port was tested on each of the models, using
the same two GPUs as before. For comparison, OpenMC was
tested natively on a single node containing a 16-core AMD
Ryzen 7 2700 CPU (using GCC 7.4). Since OpenMC natively
uses CSG representation, only the Cube and Sphere models
can be compared, as it is not feasible to define the other
geometries using CSG due to their complexity. For further
comparison, the DAGMC plugin was also tested, which uses
CPU-based ray tracing over triangle meshes.

We collect the particle calculation rate (measured in par-
ticles/sec) and wallclock time spent in particle transport (ig-
noring initialisation and finalisation) as the main metrics for
evaluation.

V. RESULTS: GPU VS CPU

A. Model Complexity

Figure 6 shows the range in calculation rate performance on
the Sphere and Cube models between GPU and CPU versions,
for a launch size of 106 particles.

The GPU versions are significantly faster on average than
the CPU on both models. In this case, the fastest GPU version
is 13x faster than the native CPU version, and 47.5x faster than
the DAGMC CPU version. It is not necessarily fair to compare
CPU performance on a single node, since OpenMC is capable
of scaling to thousands of processors, but it is nevertheless
useful to get a sense of on-node scale.

0 400,000 800,000 1,200,000 1,600,000
Calculation Rate (particles/sec)

Cube
12 triangles

Sphere
82k triangles

OpenMC: Number of Particles=1000000

Triangle Mesh (OptiX, Turing GPU)
Triangle Mesh (OptiX, Pascal GPU)

CSG (OptiX, Turing GPU)
CSG (OptiX, Pascal GPU)

CSG (OpenMC Native, AMD CPU)
Triangle Mesh (DAGMC, AMD CPU)

Fig. 6: Range in particle calculation rate between CPU and
GPU versions for the Sphere and Cube models with a particle
count of 106. Higher is better.

The increased triangle count of the Sphere model slows
down the native and DAGMC versions quite significantly
compared to the Cube model, whereas the GPU versions show
much less of a dependency on triangle count. Note that the
native CPU version is slower on the Sphere model simply be-
cause the CSG sphere intersection calculation is more complex
than the CSG cube intersection. The DAGMC version is the

least performant, suggesting the efficiency of its ray tracing
implementation over triangle meshes is comparatively poor.

A secondary observation from Figure 6 is the difference
in performance between Turing and Pascal GPUs, with the
former being 1.4x faster than the latter. This is most likely to
be evidence of the memory subsystem improvements in the
Turing architecture.

B. Launch Dimensions

Figure 7 shows how the calculation rate varies as the number
of simulated particles is scaled up on the Sphere model. The
triangle mesh geometry on the GPU is the fastest in all cases,
being 1.4x faster than the GPU CSG geometry.

103 104 105 106 107

Number of Particles

0

300,000

600,000

900,000

1,200,000

1,500,000

1,800,000

Ca
lcu

la
tio

n
Ra

te
 (p

ar
tic

le
s/

se
c)

OpenMC: Model=Sphere

Triangle Mesh (OptiX, Turing GPU)
Triangle Mesh (OptiX, Pascal GPU)

CSG (OptiX, Turing GPU)
CSG (OptiX, Pascal GPU)

CSG (OpenMC Native, AMD CPU)
Triangle Mesh (DAGMC, AMD CPU)

Fig. 7: Comparison between CPU and GPU versions when
scaling up the particle count for the Sphere model.

The difference in performance becomes more pronounced
as the number of particles is increased, with the GPU versions
appearing to peak in performance at 106 particles. Peak
speedup is 16.4x over native CPU. This peak suggests that
one or more resources on the GPU are being most efficiently
used at that scale, and begin to deteriorate at larger scales.
As discussed previously in Section III-C, this is most likely a
result of OptiX managing kernel grid and block sizes.

The CPU versions appear to have reasonably consistent
calculation rates, regardless of number of particles, suggesting
that the CPU throughput is simply saturated and cannot
process any faster without added parallelism, but does not
deteriorate in performance.

VI. RESULTS: RT CORE ACCELERATION

Having seen the performance improvements brought by
porting OpenMC to the GPU, we can now move on to
the task of exploiting RT core acceleration. As described
in Section II-D, the RTX mode available with the OptiX
6 API enables RT core accelerated ray tracing on Turing
GPUs, as well as a more efficient execution pipeline that

25

simulates RT cores in software on older GPU architectures.
The following sections present and discuss the results of
the model complexity and particle count experiments for the
extended OpenMC GPU version which supports RTX mode,
as well as the original GPU versions.

At this point we will depart from the native CPU version
and the CSG GPU version, since we will be benchmarking
against triangle meshes that are not possible to define using the
constructive solid geometry format provided by OpenMC. We
will also depart from the DAGMC version, since it is in a much
lower performance category and therefore not significantly
valuable to consider any further.

A. Model Complexity

Figure 8 shows the calculation rates for each of the five
models for a single launch of 106 particles. RTX mode on
the Turing GPU is the fastest in all cases, being 6.0x faster
on average than without. On the Pascal GPU, RTX mode is
1.6x faster on average. The Hairball model shows the biggest
difference, being 20.1x faster with RTX mode on Turing.

0 500,000 1,000,000 1,500,000 2,000,000
Calculation Rate (particles/sec)

Cube
12 triangles

Sphere
82k triangles

HappyBuddha
1.1m triangles

Hairball
2.9m triangles

AsianDragon
7.2m triangles

OpenMC: Number of Particles=1000000

Triangle Mesh (Turing GPU) RTX = ON
Triangle Mesh (Turing GPU) RTX = OFF
Triangle Mesh (Pascal GPU) RTX = ON

Triangle Mesh (Pascal GPU) RTX = OFF

Fig. 8: Effects of RTX mode (which uses RT cores on the
Turing GPU) on all models for a particle count of 106.

The number of triangles has a clear and simple effect on the
calculation rate for the single solid volume models, which is
all except the Hairball model. The Hairball model exhibits
the most dramatic behaviour due to its high topological
complexity, which has an even greater effect than on the
graphics benchmark. This is because of the way the point-
in-volume and boundary distance algorithm works; it traces
a ray iteratively over all intersections at each layer of the
model until it misses. For the single cell models, most of
the time there are only two hits to escape the model (one
to escape the cell, then one to escape the bounding cube).
This means that the ray tracer does not have to work very
hard. For the Hairball model, there are potentially many more
surface hits before the bounding cube is reached, meaning the
ray tracer has to work harder to calculate the full path. This

is in contrast to the graphics benchmark, which stops once
the first surface intersection occurs. RT core acceleration is
actually 20.1x faster in this case, allowing its superior ray
tracing speed to show over the software implementation as
ray tracing completely dominates the workload.

103 104 105 106 107

Number of Particles

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

Ca
lcu

la
tio

n
Ra

te
 (p

ar
tic

le
s/

se
c)

OpenMC: Model=AsianDragon

Triangle Mesh (Turing GPU) RTX = ON
Triangle Mesh (Turing GPU) RTX = OFF
Triangle Mesh (Pascal GPU) RTX = ON

Triangle Mesh (Pascal GPU) RTX = OFF

103 104 105 106 107

Number of Particles

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

Ca
lcu

la
tio

n
Ra

te
 (p

ar
tic

le
s/

se
c)

OpenMC: Model=Hairball

Triangle Mesh (Turing GPU) RTX = ON
Triangle Mesh (Turing GPU) RTX = OFF
Triangle Mesh (Pascal GPU) RTX = ON

Triangle Mesh (Pascal GPU) RTX = OFF

Fig. 9: Effects of RTX mode when the particle count is scaled
up for the Asian Dragon and Hairball models.

B. Launch Dimensions

Figure 9 shows how the calculation rate varies as the number
of simulated particles is scaled up for the Asian Dragon
and Hairball models respectively. These two models represent
the most realistic examples in terms of scale. The same
performance peak at 106 particles (as seen in Section V-B)
is visible with RT core acceleration enabled. This again is
likely to be an artifact of the way OptiX internally manages
kernel launch dimensions to balance load, and that there is an
optimal input problem size past which performance begins to
deteriorate.

26

VII. PROFILING

As mentioned in Section III-D, the available profiling tools
do not yet support the Turing architecture, nor do they support
profiling of RTX mode kernels with OptiX 6. We attempt here
to use the available profiling data to speculate on how the main
transport kernel might be behaving on the Turing GPU.

A. Occupancy

The kernel uses 80 registers per thread by default, which
leads to an acceptable (albeit not spectacular) occupancy of
37.2% regardless of model. This is expectedly lower than the
RT core benchmark, due to the greatly increased compute
workload. An attempt was made to reduce the number of reg-
isters at compile time in order to improve occupancy, however
this did not result in any significant performance improvement,
suggesting that the OptiX scheduling mechanism is performing
well in this scenario.

B. Memory Bandwidth

This code is memory bandwidth/memory latency bound
in general, which is expected for this type of code. There
is a noticeable drop in memory bandwidth throughput and
utilisation as the models get larger, as shown in Figure 10.
This is likely due to a number of possible reasons:

Cube Sphere Happy Buddha Asian Dragon
0

50

100

150

200

M
em

or
y

ba
nd

wi
dt

h
(G

B/
s) Triangle Mesh (Pascal GPU)

CSG (Pascal GPU)

Fig. 10: Variation in memory bandwidth throughput for differ-
ent models. Note that bandwidth for the Hairball model could
not be obtained, as it caused the profiler to crash due to its
complexity.

1) Vertex/normal buffer lookup: As the memory footprint
of the kernel increases with model size, cache efficiency is
reduced for the triangle mesh models as more vertex and
normal data must be fetched from main memory during ray
traversal. The Cube and Sphere models require 144 Bytes and
984 KBytes respectively, so can easily fit in L1/L2 cache,
while the Buddha and Dragon models must undergo some
amount of cache rotation at 13.2 MBytes and 82.4 MBytes
respectively. This extra data movement puts further pressure
on the memory subsystem. For CSG models, there is no vertex
buffer lookup, as geometry traversal is done purely based on
the boolean operator tree and primitive shape parameters.

2) BVH tree traversal: As the model size increases, the
ray tracing algorithm has more intricate BVH hierarchies to
build and traverse. This results in further memory lookups and
pressure on the memory subsystem.

C. Additional Factors

1) Tally writes: Each simulated particle maintains its own
set of tallies, which are written into global tally buffers
indexed by particle number. While this approach means that
atomic writes are not necessary, the incoherent and stochastic
movement of particles leads to a random write pattern on those
buffers. This effect becomes more detrimental to performance
as the launch dimensions are increased.

2) Particle banks: Particles are initialised on the host and
loaded onto the device at the beginning of the simulation. Each
thread reads a particle to simulate based on its launch index.
Subsequently, as particles collide with other particles in the
material, new particles are created and stored in the fission and
secondary particle banks. Reads introduce an additional source
of memory pressure which scales with launch dimensionality.

3) Workload imbalance and thread divergence: Due to
the random nature of particle histories, some particles may
survive longer than others, introducing thread imbalance. This
has been observed in other codes, such as [36] and [37].
Fortunately for this implementation, the OptiX scheduling
mechanism does a reasonably good job of minimising the
impact of the imbalance, being able to ensure that short-lived
threads are efficiently replaced, thereby maintaining a good
percentage of theoretical occupancy.

VIII. CONCLUSIONS AND FUTURE WORK

In terms of on-node performance, the speedups of between
~10x on CSG models and ~33x on RT core accelerated triangle
meshes presented here show that the Turing architecture is a
formidable platform for Monte Carlo particle transport. Our
results compare competitively with other GPU-based ports of
Monte Carlo particle transport codes such as [36] and [37]
which observed ~3x and ~2.7x speedups respectively using
similar methods on older GPU architectures.

A. Wider Applicability of RT Cores

A secondary goal in this paper was to gain an understanding,
through implementation, of the kinds of scientific workloads
which might be suitable candidates for RT core acceleration.
It is clear from the OpenMC results that Monte Carlo particle
transport is indeed a natural candidate to benefit from the
accelerated BVH traversal and triangle intersection testing
brought by RT cores, as hypothesised.

Any algorithm which spends a significant amount of its
runtime tracing large numbers of straight lines through large
3D triangle mesh geometries should be able to exploit RT
cores. If that is not the case, or the code cannot be reformulated
to do so, then RT cores are not going to be useful. Despite this
restriction, several potential candidates have been identified. In
cancer radiotherapy for example, patient dose simulations are
required before treatment, which use 3D biological models.
Improving performance in that sector could potentially mean
radiologists could provide diagnosis and treatment to patients
on a much shorter timescale [38]. Another example can be
found in the geoscience field, where seismic ray tracing is
used to simulate the movement of seismic waves through the

27

earth in order to gain a representation of the Earth’s interior.
This technique is useful for analysing earthquakes, and also
for oil and gas exploration.

B. Performance Portability

It may be non-trivial for other codes to reap the benefits
described above, due to the restrictions placed on how RT
cores can be accessed. There are no PTX instructions available
for the developer to issue instructions to RT cores (that have
been made publicly known), necessitating the use of the OptiX
library and all of its ramifications in terms of architectural
design. As a result, existing codes would likely have to
undergo significant development rework, which may or may
not be feasible depending on the amount of investment in the
original code and the hardware it has been designed to run
on. The upcoming OptiX 7 release is much less opinionated
than previous versions and is much closer in terms of API
design to vanilla CUDA, which could potentially ease the
performance portability burden. Ideally, performance portable
enabling languages such as OpenCL would support RT core
acceleration, but that is currently not the case.

Furthermore, OpenMC is written in modern C++, and makes
extensive use of the C++ STL, polymorphism, and other C++
features. Since many of these language features are not fully
supported by CUDA code, a large amount of code duplication
and reworking was required to allow OpenMC to run on the
GPU. This results in two distinct codebases, which is a major
drawback in terms of maintainability. Performance portability
is becoming increasingly important in HPC as the range of
available compute platforms continues to grow [39], which
means that these drawbacks are likely to heavily influence
any decisions to port large-scale existing codebases.

There is a definite trend in HPC towards many-GPU de-
signs, such as in the latest Summit [6] supercomputer which
contains tens of thousands of Volta-class NVIDIA GPUs. It
is conceivable that future supercomputer designs may feature
GPUs containing RT cores, thus providing additional moti-
vation to exploit them. It is also conceivable that RT cores
may be opened up by NVIDIA in future iterations, and may
eventually find support in more performance portable libraries.

C. Future Work

A number of potentially valuable extensions to this work
have been identified. Firstly, it would be useful from an
experimental perspective to compare the OptiX-based ports
of OpenMC with a vanilla CUDA port. This would provide
an additional point of comparison, and would allow us to
understand to what extent the OptiX library is contributing to
the achieved performance results. Secondly, the excellent work
surrounding the DAGMC toolkit could be incorporated into the
OpenMC GPU port. If models could be loaded from DAGMC
files rather than OBJ files, the existing CAD workflows could
be reused, removing the need for difficult model conversion
stages. Thirdly, the built-in support for multi-GPU execution
in the OptiX API could be utilised to further increase on-node
performance.

It is useful to note that NVIDIA is not alone in putting
dedicated ray tracing hardware in its GPUs - in fact, both
Intel and AMD are planning similar fixed-function hardware
units in their upcoming GPU architectures. This provides
further suggestion that there may be increased motivation to
implement support for RT core acceleration in the near future.

D. Summary

A viable, novel and highly performant GPU port of
OpenMC has been presented using the OptiX library, which
supports both native CSG models and triangle mesh models.
Triangle meshes provide the most significant performance
improvements compared to CPU-based versions, and the pres-
ence of RT cores in the Turing architecture provides impressive
additional speedup. We believe ours is the first work to use ray
tracing hardware to accelerate Monte Carlo particle transport.

A major factor contributing to performance is the geometric
complexity of the model. Specifically, highly topologically
complex models with many layers are the most computa-
tionally demanding. The speedup from RT core acceleration
becomes even more significant at this scale, due to its ability
to relieve the SM of large numbers of computation and its
internal caching of triangle vertex and BVH tree data.

While further work is required to support the entire
OpenMC feature set, the developed code is already being
evaluated by the UKAEA for ITER neutronics analysis, and
is being considered for inclusion into the official OpenMC
repository.

REFERENCES

[1] E. D. Cashwell and C. J. Everett, “A Practical Manual on the Monte
Carlo Method for Random Walk Problems,” Mathematics of Computa-
tion, 2006.

[2] N. A. Gentile, R. J. Procassini, and H. A. Scott, “Monte Carlo Particle
Transport: Algorithm and Performance Overview,” 2005.

[3] X. Jia, P. Ziegenhein, and S. B. Jiang, “GPU-based high-performance
computing for radiation therapy,” 2014.

[4] R. M. Bergmann and J. L. Vujić, “Monte Carlo Neutron Transport on
GPUs,” 2014, p. V004T11A002.

[5] A. Heimlich, A. C. Mol, and C. M. Pereira, “GPU-
based Monte Carlo simulation in neutron transport and finite
differences heat equation evaluation,” Progress in Nuclear Energy,
vol. 53, no. 2, pp. 229–239, 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.pnucene.2010.09.011

[6] J. Hines, “Stepping up to summit,” Computing in Science and Engineer-
ing, 2018.

[7] P. K. Romano and B. Forget, “The OpenMC Monte Carlo particle
transport code,” Annals of Nuclear Energy, vol. 51, pp. 274–281, 2013.

[8] A. Turner, “Investigations into alternative radiation transport codes for
ITER neutronics analysis,” in Transactions of the American Nuclear
Society, 2017.

[9] A. R. Siegel, K. Smith, P. K. Romano, B. Forget, and K. G. Felker,
“Multi-core performance studies of a Monte Carlo neutron transport
code,” International Journal of High Performance Computing Applica-
tions, 2014.

[10] M. Martineau, P. Atkinson, and S. McIntosh-Smith, “Benchmarking the
NVIDIA V100 GPU and tensor cores,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 11339 LNCS. Springer Verlag,
2019, pp. 444–455.

[11] N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, “GPU-based
Monte Carlo simulation for light propagation in complex heterogeneous
tissues,” Optics Express, 2010.

28

[12] R. Procassini, M. O’Brien, and J. Taylor, “Load balancing of parallel
Monte Carlo transport calculations,” International topical meeting
on mathematics and computation, supercomputing, reactor physics
and nuclear and biological applications, 2005. [Online]. Available:
https://inis.iaea.org/search/search.aspx?orig q=RN:40054813

[13] S. P. Hamilton, S. R. Slattery, and T. M. Evans, “Multigroup Monte
Carlo on GPUs: Comparison of history- and event-based algorithms,”
Annals of Nuclear Energy, vol. 113, pp. 506–518, 2018. [Online].
Available: https://doi.org/10.1016/j.anucene.2017.11.032

[14] K. Xiao, D. Z. Chen, X. S. Hu, and B. Zhou, “Monte Carlo Based
Ray Tracing in CPU-GPU Heterogeneous Systems and Applications in
Radiation Therapy,” no. June 2015, pp. 247–258, 2015.

[15] M. Martineau and S. McIntosh-Smith, “Exploring On-Node Parallelism
with Neutral, a Monte Carlo Neutral Particle Transport Mini-App,”
Proceedings - IEEE International Conference on Cluster Computing,
ICCC, vol. 2017-Septe, pp. 498–508, 2017.

[16] R. M. Bergmann, K. L. Rowland, N. Radnović, R. N. Slaybaugh,
and J. L. Vujić, “Performance and accuracy of criticality calculations
performed using WARP – A framework for continuous energy Monte
Carlo neutron transport in general 3D geometries on GPUs,” Annals of
Nuclear Energy, vol. 103, pp. 334–349, 2017.

[17] P. C. Shriwise, A. Davis, L. J. Jacobson, and P. P. Wilson,
“Particle tracking acceleration via signed distance fields in direct-
accelerated geometry Monte Carlo,” Nuclear Engineering and
Technology, vol. 49, no. 6, pp. 1189–1198, 2017. [Online]. Available:
https://doi.org/10.1016/j.net.2017.08.008

[18] T. Karras and T. Aila, “Fast parallel construction of high-quality bound-
ing volume hierarchies,” p. 89, 2013.

[19] T. Karras and Tero, “Maximizing Parallelism in the Construction
of BVHs, Octrees, and k-d Trees,” Proceedings of the
Fourth ACM SIGGRAPH / Eurographics conference on High-
Performance Graphics, pp. 33–37, 2012. [Online]. Available:
https://dl.acm.org/citation.cfm?id=2383801

[20] M. Hapala and V. Havran, “Review: Kd-tree traversal algorithms for ray
tracing,” Computer Graphics Forum, vol. 30, no. 1, pp. 199–213, 2011.

[21] M. Nyers, “GPU rendering RTX ray tracing benchmarks - RTX 2080
Ti,” 2019. [Online]. Available: http://boostclock.com/show/000250/gpu-
rendering-nv-rtxon-gtx1080ti-rtx2080ti-titanv.html

[22] NVIDIA, “NVIDIA Turing GPU,” White Paper, 2018.
[23] Z. Jia, M. Maggioni, J. Smith, and D. P. Scarpazza, “Dissecting

the NVidia Turing T4 GPU via Microbenchmarking,” 2019. [Online].
Available: http://arxiv.org/abs/1903.07486

[24] Microsoft Inc, “Announcing Microsoft DirectX Raytracing,” 2019.
[Online]. Available: https://devblogs.microsoft.com/directx/announcing-
microsoft-directx-raytracing/

[25] K. Group, “The Vulkan API Specification and related tools,” 2019.
[Online]. Available: https://github.com/KhronosGroup/Vulkan-Docs

[26] S. G. Parker, A. Robison, M. Stich, J. Bigler, A. Dietrich, H. Friedrich,
J. Hoberock, D. Luebke, D. McAllister, M. McGuire, and K. Morley,
“OptiX: A General Purpose Ray Tracing Engine,” ACM Transactions
on Graphics, vol. 29, no. 4, p. 1, 2010.

[27] S. Thomson, “Ray-traced Radiative Transfer on Massively
Threaded Architectures,” 2018. [Online]. Available:
https://www.era.lib.ed.ac.uk/bitstream/handle/1842/31277/Thomson2018.pdf

[28] P. P. Wilson, T. J. Tautges, J. A. Kraftcheck, B. M. Smith, and
D. L. Henderson, “Acceleration techniques for the direct use of CAD-
based geometry in fusion neutronics analysis,” Fusion Engineering and
Design, 2010.

[29] Monte Carlo Team, “MCNP - A General Monte Carlo N-Particle
Transport Code, Version 5,” Los Alamos Nuclear Laboratory, 2005.

[30] P. K. Romano, “Parallel Algorithms for Monte Carlo Particle Transport
Simulation on Exascale Computing Architectures,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2013.

[31] A. Turner, A. Burns, B. Colling, and J. Leppänen, “Applications of
Serpent 2 Monte Carlo Code to ITER Neutronics Analysis,” Fusion
Science and Technology, vol. 74, no. 4, pp. 315–320, 2018.

[32] T. J. Tautges, “MOAB-SD: Integrated structured and unstructured mesh
representation,” Engineering with Computers, 2004.

[33] P. C. Shriwise, “Geometry Query Optimizations in CAD-based Tes-
sellations for Monte Carlo Radiation Transport,” Ph.D. dissertation,
University of Wisconsin - Madison, 2018.

[34] A. Badal, I. Kyprianou, D. P. Banh, A. Badano, and J. Sempau,
“PenMesh-Monte Carlo radiation transport simulation in a triangle Mesh
Geometry,” IEEE Transactions on Medical Imaging, 2009.

[35] NVIDIA, “NVIDIA OptiX 6.0 Programming
Guide,” 2019. [Online]. Available: https://raytracing-
docs.nvidia.com/optix 6 0/guide 6 0/index.html

[36] D. Karlsson and Z. Yuer, “Monte-Carlo neutron transport simulations
on the GPU,” 2018.

[37] S. P. Hamilton and T. M. Evans, “Continuous-energy Monte
Carlo neutron transport on GPUs in the Shift code,” Annals of
Nuclear Energy, vol. 128, pp. 236–247, 2019. [Online]. Available:
https://doi.org/10.1016/j.anucene.2019.01.012

[38] X. Jia, X. Gu, Y. J. Graves, M. Folkerts, and S. B. Jiang, “GPU-based
fast Monte Carlo simulation for radiotherapy dose calculation,” p. 18,
2011. [Online]. Available: http://arxiv.org/abs/1107.3355

[39] S. J. Pennycook, J. D. Sewall, and V. W. Lee, “A Metric
for Performance Portability,” pp. 1–7, 2016. [Online]. Available:
http://arxiv.org/abs/1611.07409

29

