
On the Universally Composable Security of
OpenStack††

Kyle Hogan∗, Hoda Maleki†, Reza Rahaeimehr‡, Ran Canetti§¶, Marten van Dijk‡,
Jason Hennessey§‖, Mayank Varia§, Haibin Zhang∗∗
∗Massachusetts Institute of Technology. klhogan@mit.edu.

†Augusta University. hmaleki@augusta.edu.
‡University of Connecticut. reza.rahaeimehr, marten.van dijk@uconn.edu.

§Boston University. canetti, henn, varia@bu.edu.
¶Tel Aviv University.

‖NetApp.
∗∗University of Maryland, Baltimore County. hbzhang@umbc.edu.

Abstract—We initiate an effort to provide a rigorous, holistic
and modular security analysis of OpenStack. OpenStack is the
prevalent open-source, non-proprietary package for managing
cloud services and data centers. It is highly complex and consists
of multiple inter-related components which are developed by
separate, loosely coordinated groups. All of these properties make
the security analysis of OpenStack both a worthy mission and a
challenging one. We base our modeling and security analysis in
the universally composable (UC) security framework. This allows
specifying and proving security in a modular way — a crucial
feature when analyzing systems of such magnitude. Our analysis
has the following key features:

1) It is user-centric: It stresses the security guarantees given
to users of the system in terms of privacy, correctness, and
timeliness of the services.

2) It considers the security of OpenStack even when some of
the components are compromised. This departs from the
traditional design approach of OpenStack, which assumes
that all services are fully trusted.

3) It is modular: It formulates security properties for individual
components and uses them to prove security properties of
the overall system.

Specifically, this work concentrates on the high-level struc-
ture of OpenStack, leaving the further formalization and more
detailed analysis of specific OpenStack services to future work.
Specifically, we formulate ideal functionalities that correspond to
some of the core OpenStack modules, and then proves security
of the overall OpenStack protocol given the ideal components.

As demonstrated within, the main challenge in the high-
level design is to provide adequately fine-grained scoping of
permissions to access dynamically changing system resources.
We demonstrate security issues with current mechanisms in case
of failure of some components, propose alternative mechanisms,
and rigorously prove adequacy of then new mechanisms within our
modeling.

Index Terms—Modular Security Analysis, Universal Compos-
ability, Cloud Security, OpenStack

I. INTRODUCTION

OpenStack is a software package for data centers and

virtualization services, including remote computation, storage,

networking, and related services. The OpenStack project began

†† The first three authors contributed equally to this effort.

in 2010 as a collaboration between two groups: Rackspace,

a public IaaS provider selling cloud services, and NASA,

a part of the United States government that wanted to take

advantage of the elasticity and datacenter efficiency benefits

that come from combining different workloads into a single

private cloud [1]. Since then, it has grown to be a large open

source project with over 9 million lines of code, and over

6,000 contributors and hundreds of implementations around

the world [2], [3]. There is a governance body [4] that

actively manages the development and stability of OpenStack.

Analyzing security properties of such a large-scale information

system is a daunting task.

A first challenge is to adequately articulate and rigorously

express the security requirements of the system in the first

place. Indeed, adequately capturing even simple, intuitive con-

cerns is non-trivial. Furthermore, security is often inseparable

from the expected functionality, which is complex in and of

itself. It also invariably has multiple facets and competing

requirements that need to be reconciled.

A second challenge is to rigorously assert the specified

properties. This challenge is even more daunting, especially

when the system consists of multiple components and one

has to take into account inter-component interactions, potential

failure of individual components, and the associated potential

vulnerabilities.

Modular security analysis: The natural way to deal with

such complexities is modularity: formulate and assert the

security properties of individual components, and then deduce

security properties of the overall, composite system from the

security properties of the components, as well as those of the

way in which the components are put together. This breaks

down the overall analysis into multiple steps where each

step deals with a much simpler system. Furthermore, when

successful, the analysis would deduce the overall security of

the system from the security of the components, and the

security of the overall design given the components. Still,

breaking down a system to components in a way that allows

for effective composable security analysis is a non-trivial task

20

2019 IEEE Secure Development (SecDev)

978-1-5386-7289-1/19/$31.00 ©2019 IEEE
DOI 10.1109/SecDev.2019.00015

in and of itself.

A number of frameworks for modular security analysis

for cryptographic protocols have been developed over the

years, e.g. [5]–[12]. Furthermore, a number of works have

used these frameworks to analyze security of security-sensitive

systems that are non-cryptographic in nature, e.g. [13]–[16].

Extending these cryptographic frameworks to handle systems

with complex interfaces and sizeable codebase is a challenging

endeavor — but one that holds great promise. In particular, it

opens the door to a rigorous, yet modular and approachable

security analysis of large-scale software systems. Indeed, such

analysis can be very valuable even in systems that use little

or no cryptography.

Our contributions: In this work, we initiate modular secu-

rity analysis of OpenStack, which is a large-scale distributed

system with complex interfaces whose security is important

to many cloud computing use cases. We perform our analysis

within the Universally Composable (UC) security framework,

which provides a way to articulate security properties rig-

orously and precisely — and supports security-preserving

modularity.

We first formulate specifications (in form of ideal fun-

crionalities within the UC framework) that capture the overall

functionality and security requirements of the openstack suite,

from the point of view of an outside user of the system.

We then formulate specifications (in form of ideal funcrion-

alities within the UC framework) that capture the functionality

and security requirements of a selected set of OpenStack

services, specifically Keystone (key registry), Nova (compute),

Glance (image repository), Cinder (storage), Horizon (user

dashboard).

We then investigate the OpenStack mechanism for realizing

the overall specification (i.e. for realizing the overall ideal

functionality) given ideal realizations of the said services.

Importantly, here we consider the realistic case where

some of the services might be compromised or adversarially

controlled, and the goal is to keep providing security for the

non-compromised mechanisms.

It turns out that the main challenge in this overall protocol

is to provide a sufficiently nimble, fine-grained and flexible

mechanism for controlling access to various services that

change. Indeed, we demonstrate that prevalent protocols (e.g.

the bearer token mechanism) have security flaws.

We then propose a new token mechanism and demonstrate

that, with this mechanism in place, the overall protocol indeed

UC-realizes the overall OpenStack specification, given the

ideal functionalities representing the services.

In summary, this work makes the following contributions.

• Demonstrate the viability of Universally Composable

(UC) security analyses for a system with the complexity

of OpenStack.

• Describe the interaction between the main OpenStack

components, while abstracting the ∼9 million of lines

of code that collectively realize these components.

• Analyze the composite security provided collectively by

these OpenStack components, and how security of the

whole is impacted if some of the parts are corrupted.

• Propose a specification for an improved token mecha-

nism, along with an analysis of the concrete security

improvements it offers to OpenStack.

We emphasize that in this work, we are not doing for-

mal/symbolic/automated analysis. Clearly, it would be great

if we could do the proofs within a pl-style formal framework.

However, the main contribution here should be seen as not

so much the proof, but the dissection of the problem and

determining ‘what’ it is that we want to prove (i.e. the

functionalities). This is a task that cannot be mechanized with

current technology, and this is where our main contribution

lies.

Lessons Learned: The main challenge/goal of the high-level

design is to provide a sufficiently nimble and fine-grained

access control mechanism where users will be able to create

and configure tasks that involve multiple services and at the

same time, keep rogue entities from gaining undesired access.

This is further complicated by the fact that users may not be

aware of all the services they are using and so, the services

themselves should be able to act on behalf of users. We

investigate the current mechanism, which is based on a token

that contains the access control information for the task at

hand and what is being passed in all communications. We

point out how some design flaws are manifested in the current

formalism and then, propose and analyze an alternative token

mechanism. The UC framework is critical in several levels:

(a) it allowed us to identify the above issue (it is hard to lose

sight of it when dealing with all details at once). (b) it allowed

us to define security of the mechanism, and rigorously assert

that the proposed mechanism satisfies the definition.

Security weaknesses formalized and contextualized: As

mentioned above we have learned the main security challenge

in a multi-tenant data center management system like Open-

Stack is to provide an appropriately fine-grained, yet secure

mechanism for controlling the access of users (and agents

of these users within the system) to services. This includes

controlling access to compute, storage, networking, and other

services, as well as preventing users from stepping into each

others data and virtual machines. Indeed, much of our attention

has been focused on analyzing the mechanisms provided by

OpenStack to provide this control.

The design of OpenStack implicitly assumes that all com-

ponents of an OpenStack-based service are trusted. Our work

demonstrates that as long as this assumption holds, the

OpenStack design indeed provides adequate security: namely,

secrecy and correctness of data and computations. Conversely,

our analysis formally shows the extent to which OpenStack is

vulnerable (and also the extent to which it remains safe) when

a subset of components is compromised.

We remark that the case where some components become

compromised is quite realistic. Indeed, one known security

concern within OpenStack is that the VM manager Nova

21

is more susceptible to attack than other services because it

is exposed to a richer attack surface from malicious VMs.

Specifically, if an attacker is able to compromise only one VM

by exploiting any vulnerability, then in fact he can compromise

the compute node hosting the VM and get the credential of

the compute-node. By having the credential of one compute-

node, the attacker can observe or even modify all the messages

in Nova message queue, including all tokens passed to Nova.

This realistic example shows that it is prudent to design the

system so as to minimize the damage from the compromise of

individual components, and to perform analysis that provides

some security guarantees even in case that some components

are adversarially controlled.

We turn to describing the flaw in bearer token mechanism

to authenticate users and verify their authorization to access

resources. Bearer tokens given by OpenStack’s credentialing

service Keystone effectively permit a user to pass her cre-

dentials to services that can then make actions on her behalf.

As long as the communication between services is secured

via point-to-point secure session protocols (say, via TLS), this

mechanism provides security against external attackers that

only control the network. However, this mechanism allows a

corrupted component (say, Nova) to impersonate tokens on

behalf of any user. When the inter-process communication

is not secured in a point-to-point way, any rogue OpenStack

entity that can eavesdrop to the inter-service communication

(say, a hypervisor that was compromised by its tenant VM)

can potentially have access to all current bearer tokens in

the system. Indeed, previous works (e.g. [17]) have already

pointed out this weakness and proposed limiting the scope

of these bearer tokens by setting expiration times and other

scoping mechanisms.1 It should be stressed that, upon each

new use of the token, each new service verifies the token

again with Keystone. Ergo, tokens that are invalid will not

cause damage. However, when the tokens are broadly scoped,

nothing prevents a rogue component from using legitimate

tokens of existing unsuspecting users to compromise both the

integrity and the secrecy of their data.

This work analyses OpenStack with two token mechanisms.

First, we analyze OpenStack’s existing bearer tokens. Our

analysis formulates that the current OpenStack realizes an

“ideal cloud” specification that provides little security as soon

as any component is corrupted. We then specify the attributes

of a stronger one-time token mechanism; we show that the

additional security provided by the limitation to one-time use,

together with the ability to identify the entity that provides the

token, suffices for realizing a significantly stronger variant of

the ideal cloud specification that limits the damage caused by

corrupted services.

1For simplicity of exposition we leave the timeout mechanism (as well as
measurement of real time) outside the model. We note that timing mechanisms
can be added in a relatively straightforward way, using the UC-style modeling
of network time of Canetti et al. [18]. Indeed, the ability to modularly add the
consideration of time is another demonstration of the power of composable
security analysis.

Towards modular and mechanized analysis: One of the

most important aspects of this work, that sets it apart from

many previous works in the UC framework, is that we provide

in full detail the specifications of the ideal cloud and the in-

dividual services, as well as the descriptions of the simulators

and the proofs of security, without glossing over steps. As a

consequence, our proofs and specifications are decently long

and tedious. Indeed, while for this paper we stick to pen-and-

paper proofs, we believe that our modeling and analysis are

readily amenable to mechanization, and also to some level

of automation. Natural candidates for tools that would enable

such mechanized analysis include the EasyCrypt tool [19], the

FCF tool [20], or the CryptHOL tool [21].

Organization: We begin in Section II by providing some

background for OpenStack. Section III points to some related

works and Section IV describes our approach toward the

security analysis of OpenStack. Section V provides an infor-

mal account of our modeling of OpenStack services and the

security properties we chose to model. We also motivate our

design decisions. We then proceed to introduce the modeling in

more detail. Specifically, Section VI presents the ideal cloud,

namely our security specification. Section VII presents our

modeling of selected OpenStack services. In Section VIII we

explain the properties needed for stronger tokens (i.e., more

secure) variant of the ideal cloud. We conclude by discussing

future work in IX.

II. BACKGROUND

Due to space constraints, we relegate an overview of uni-

versally composable (UC) security to the full version of this

paper [22], and also refer interested readers to [7] and [23]

for more details.

In this section, we focus on surveying OpenStack. As out-

lined in the Introduction, OpenStack is a modular, distributed,

open-source cloud computing software stack for providing

Infrastructure as a Service (IaaS) to multiple (potentially

untrusting) users. In this section, we describe OpenStacks

operation with a focus on some of the security concerns of

its authorization system.

1) Modular services: The design of OpenStack is inher-

ently modular, with 23 modules where each module has some

pre-specified functionality, as well as interfaces with the other

modules it interacts with. It should be noted though that

the functionality of the interfaces is not completely pinned

down; indeed some modules have multiple implementations

that provide slightly different functionality. Also many of the

modules allow for a variety of underlying software packages

as plug-ins. Some of the main modules of OpenStack include:

Nova (compute): Manages the creation, maintenance and re-

moval of virtual machines (VMs).

Glance (image repository): Stores and manages the images

loaded to VMs.

Cinder & Swift (block & object storage): Manage the

storage of data (in blocks, volumes, and more general

objects) for VMs.

22

Neutron (networking): Provides internal and external virtual

networks for VMs.

Keystone (access control and key management): Holds

the permission information controlling the access of

users to the services and data. Interacts with users and

all other modules to enforce the permission policies.

Horizon (user-side dashboard): Provides an interface be-

tween users of the system and its service modules.

Each one of these modules is a complex, distributed system

in and of itself, sometimes with multiple subdivisions, plug-

ins, and alternative implementations.

2) Trust model: Many of OpenStack’s design choices and

security issues stem from its broad trust model, which assumes

that all services act as faithful user agents. Providing security

even in the case where some services are comporomized does

not appear to be a design goal. Furthermore, interactions

between services in OpenStack are optimized in light of this

trust. However, OpenStack’s unprotected interior means that

a (partially) compromised service can do a great deal of

harm: acquiring a single bearer token allows the compromised

service to impersonate the user for any subsequent action.

3) Tokens: To determine a user’s project and role, Keystone

gives the user a bearer token after authenticating with their

credentials (e.g., username and password); users include this

token in API requests (e.g., to create a new VM) to other

services for authentication and authorization. Services pass this

token to Keystone, which returns back a (project,role) tuple

if the token was valid. Services then make all authorization

decisions based on that tuple.

Importantly, services can continue to use the bearer token to

make additional API requests of other services as necessary.

For instance, the compute service is able to send a user’s

token to the storage service which can in turn verify with

the identity service that this token has access to the requested

volume and attach it to a node without needing to check

with the end user itself. (A natural alternative to the token

mechanism is a digital signature by Keystone regarding the

user’s capabilities. However, this solution has been rejected

by the OpenStack community due to its computational and

bandwidth overhead.) Bearer tokens are used similarly in other

popular protocols, like OAuth [24]. Because possession of

a bearer tokens grants access to resources, data in transit

protection via TLS [25] is essential to protect the tokens from

being viewed by unauthorized parties.

OpenStack uses plugins to Keystone to implement tokens,

the most popular being UUID and Fernet [26]. UUID tokens

issue random, universally unique identifiers [27] to users after

a successful first authentication with Keystone, and stores

them in a database with other required information such as

expiration time, the project and role associated with it.

The Fernet token is a recent innovation that uses cryp-

tography to provide authenticity without accessing a central

DB. It is a mechanism by which keystone creates a private,

authenticated channel to itself. It has quickly become the

preferred token format for OpenStack as they do not require

maintaining a central database of valid tokens, which adds

network load and latency.

III. RELATED WORK

A. Security Analysis of Clouds

The OpenStack Security Guide [25] goes into depth about

the security of different aspects of configuring the many

different pieces of OpenStack. However, it does not provide

any security analysis, formal or otherwise, nor does it consider

situations where a cloud service is compromised.

Other works have focused on the compromise of compute

nodes [28] or parts of the management infrastructure [29], and

Sun et al. [30]–[32] specifically discuss limiting the scope

of compromised OpenStack services. These works conclude

that corrupted cloud components have far-reaching security

impact and can in many cases compromise the privacy and

integrity of all cloud operations. Their conclusions highlight

the need for a formal security analysis of service corruptions

in OpenStack, which we provide with our construction. Sze

et al. [28] additionally propose an alternative authorization

tokening mechanism to reduce the effect of corrupted compute

nodes, but their construction neither protects against compro-

mise of other services nor provides token authentication and

replay prevention. We have focused on addressing these re-

quirements as well as shifting control of token generation and

scope to the user responsible for the request. Also, crucially,

we provide a security analysis that concretely specifies the

security gain.

B. Using UC

Canetti et al. [33] show how the UC framework can be

used to analyze the simple components of a file system in

isolation and to guarantee that these components maintain

their behavior in the larger system even under adversarial

conditions. This demonstrates basic integrity properties of the

file system, i.e., the binding of files to filenames and writing

capabilities. Gajek et al. [34] evaluate in the UC framework

the emulation of secure communication sessions by the com-

position of key exchange functionalities that are realized by

the TLS handshake and record layer protocols. Canetti et

al. [35] give a modular and global universally composable

analytical framework for PKI-based message authentication

and key exchange protocols.

For our analysis, we apply the style of [33] to the larger

and more complex OpenStack framework and utilize aspects

of [34], [35] to achieve secure communication. We further use

our construction to demonstrate security flaws in OpenStack’s

current authorization mechanism and assess the improvements

provided by our suggested changes.

C. Alternative Formalisms

The UC framework is not the only option for formal analysis

of computing systems. In particular, Gu et al. [14] use the Coq

proof assistant to analyze and provide an abstraction of layers

of the computing stack including the kernel, networking, etc.

23

They developed and verified a certified kernel with 37 of these

abstraction layers.

We chose to use UC for our analysis because its modu-

larity and composability aligned well with the structure of

OpenStack which is itself composed of many services that

interact via a series of well defined APIs. These services

support varying interchangeable implementations that would

be difficult to support using a less modular proof framework.

IV. OUR APPROACH

We initiate a study of the security properties provided by

OpenStack when viewed as a service to external users which

is a typical model for most (large scale) applications. This

includes properties such as confidentiality and integrity of

data (both in storage and in transition), confidentiality and

correctness of computations, as well as timeliness and resource

preservation. We also consider the extent to which these

properties are preserved under various attack vectors and when

various components of the system are compromised.

We base our analysis in the universally composable security

(UC) framework, which provides a way to articulate security

properties in a rigorous and precise way. According to the

definition of universal composability, a UC-secure component

remains secure if it is universally composed with other UC-

secure components [7]. The extendability property of universal

composability allows us to analyze a part of a system and

additively analyze the remaining components. The framework

provides a natural and convenient mechanism for arguing

about the preservation of security when programs and systems

are composed in a modular way. Indeed, from this perspective

the UC framework appears to be ideally suited to analyzing

OpenStack whose design is inherently and predominantly

modular.

On the other hand, the UC framework was initially created,

and predominantly used, for analyzing cryptographic proto-

cols. These are very different than OpenStack: while their

analysis requires creative reductions to hard computational

problems, they are vastly simpler in terms of number of

components, cases, and volume of code. Indeed, coming up

with an effective modeling of OpenStack within the UC

framework is a labor intensive, non-trivial line of research.

This work paves the way in this direction.

Recall that in the UC framework the security requirements

from the analyzed system (or, service) π are analyzed jointly

with the functionality requirements from the service. This is

done by way of formulating an ideal service F, which specifies

the desired response (or lack thereof) to any potential external

input. Roughly speaking, the service π is said to emulate the

ideal service F if no external environment can tell whether it

is interacting with π or with F.

In order to account for some level of allowable “slack” for

π relative to F, the framework allows the analyst to introduce

an intermediary, or a simulator S that controls some of the

interfaces between F and the environment. That is, service

π is now said to emulate an ideal service F if there exists a

simulator S such that no external environment can tell whether

it is interacting with π or with a system where some of its

APIs connect to F, and other APIs connect to S. (Typically,

S connects to APIs that we don’t consider to be part of

the desired functionality, such as the communication between

components of the implementing protocol.)

An attractive property of this definitional style is the fol-

lowing natural security-preserving composability: Since the

specification F is written as an “idealized” service in and

of itself, one can design and analyze some other system (or,

service) ρ where the components of ρ make calls to one or

more instances of the service F. The UC framework guarantees

that the protocol ρF→π , where each instance of F is replaced

by an instance of π, continues to exhibit the same security and

correctness properties as the original protocol ρ. In particular,

if ρ emulates some other ideal service G, then ρF→π will

emulate G just the same. (Note that both π and ρ may well be

distributed, multi-component systems in and of themselves.)

Our goal is to demonstrate an approach that enables analysts

to analyze the security of OpenStack in a structured and

perceptible manner. To do so, we provide initial modeling and

analysis of the overall design and operation of OpenStack,

as well as the functionality and security requirements from a

number of core modules (essentially the modules described

above with the exception of Swift and Neutron). Our analysis

validates the overall security of the design, while at the

same time formulating some security weaknesses. Although,

the weaknesses are conceptually known to the OpenStack

community, our analysis shows the right level at which these

issues must be dealt. For example, Sze et al. [28] tried to

solve the token problem by assuming a trusted component

inside Nova. Our analysis shows that such designs are not a

suitable design decision if we are looking for a UC-secure

system. We also propose and analyze methods for properly

overcoming these weaknesses. Our analysis method developed

in this paper covers the high-level design of some main

components of OpenStack. While of course there are numerous

vulnerabilities within each module that are beyond the scope

of this foundational work, our method of analysis developed

in this work paves the way for their eventual capture within

the UC framework.

We first formulate an ideal cloud FCloud that provides a

simple specification of the functionality and security that we

assert OpenStack achieves. This formulation naturally involves

many design choices and parameters that affect the security

and functionality requirements imposed on the system. We

discuss them within. One important aspect of our ideal cloud

specification is the expected behavior upon various types of

partial corruption (which correspond to corruption of individ-

ual modules in an OpenStack service). This is where we depart

from the current OpenStack package, which does not provide

any security guarantees as soon as any module is corrupted.

Next we formulate ideal functionalities that correspond

to the four services we capture, namely FCompute, FImage,

FBlockStorage, and FIdentity. Our models for each OpenStack

24

service aim at capturing the functionality and intricacies of

the actual components of OpenStack, modulo some necessary

modifications that are essential for security. Also here we face

a number of choices that represent different levels of security

of these services.

These services communicate with each other via secure

message transmission FSMT. Additionally, they use an external

network FExtNet to communicate with the user, or more specifi-

cally to connect to the user’s Dashboard program (which is our

abstraction of Horizon). Collectively, the joint interactive effort

of these services and protocols comprise a cloud of OpenStack
Services. In the two main results of our paper (Theorems 1

and 2), we prove that the OpenStack services collectively UC-

realize our ideal cloud.

V. MODELING OPENSTACK SERVICES

In this section, we provide an informal account of our

modeling of OpenStack and the security guarantees we assert.

We first describe the behavior of each service and the risk

associated with its compromise. Then, we generalize from

the service-level issues to provide informal, holistic security

properties about OpenStack as a whole. Finally, we survey the

design decisions and degrees of freedom that influence our

model. The informal account in this section is then followed

by the actual definitions of the OpenStack services (Section

VII) and the ideal cloud (Section VI).

Following the approach of the UC framework, we consider

an adversarial environment E that controls all the interfaces of

the legitimate users with the analyzed service, and in addition

controls the communication network and the compromised

components of the system.

In the context of our OpenStack service, this means that

E can create new compute nodes with specific images of its

choice, and link nodes to storage volumes subject to their

capabilities. In addition, E can delay or drop arbitrary traffic

on the external network (e.g., the Internet) over which users

communicate with OpenStack. Next, E can compromise one

or more OpenStack services, and thus we reinforce the services

to provide defense-in-depth against service-level compromise.

We consider both passive corruptions in which the compro-

mised services continue to function normally but only leak

their internal states to E, and complete corruptions where the

compromized services start running code provided by E.

It is stressed that, while the modeling and analysis considers

only the interaction between E and a single instance of our

cloud service, the universal composition theorem guarantees

that the same security guarantees continue to hold even when

E is interacting concurrently with other instances of our

system and with arbitrary other systems.

A. Functionality and Security of Each Service

We begin by describing several functionalities that encapsu-

late both the functionality and security relationships between

the OpenStack services and the user’s dashboard protocol. In

particular, we model the following functionalities in this work:

a) Dashboard: Unlike the services described below, the

Dashboard protocol is owned and operated by a single user.

The Dashboard specifies the sequence of service requests

needed to satisfy the user’s desires.

Compromising either the Dashboard or the user directly

gives E the user’s credentials. Hence, E can execute any

operation that the user has privileges to perform, but cannot

otherwise tamper with the services in any way; in particular,

users never learn each other’s credentials.

b) Identity: FIdentity is responsible for managing cre-

dentials. It communicates with all users and services. We

presume that FIdentity is instantiated with credentials for each

user and service; in practice, these credentials correspond

to bearer tokens that can be acquired via an authentication

protocol involving a username/password. Subsequently, when

any service FService receives a request, it may ask FIdentity to

validate whether the request is authorized based upon the

credentials provided. Additionally, note that while OpenStack

uses a project/role based permissions system, our modeling is

agnostic to the design of credentials.

When E compromises FIdentity essentially has full control of

OpenStack. It immediately acquires the credentials of all users

and can even change the permissions associated with them.

Furthermore, because all services outsource their authorization

decisions to FIdentity, E can make any request and convince all

services to execute it.

c) Compute: FCompute is responsible for managing the

computing nodes on the cloud. It expects that the commands it

receives over the network originate with the user’s dashboard

service. Then, it relies upon the other OpenStack services to

aid in fulfilling these requests. In more detail, FCompute accepts

commands from users to create, access, or delete computing

nodes. In response, it may request images from FImage, connect

to volumes stored on FBlockStorage.

Compromising FCompute gives the environment extensive

power: it may create or delete arbitrary nodes from FCompute’s

records and may also capture the credentials of any user who

subsequently accesses the service and use these credentials to

falsify requests to other services.

d) Image: FImage stores virtual machine images that can

be used when instantiating new nodes. These images may

either be publicly accessible, or restricted only to users in the

appropriate project. It only provides one method that FCompute

may invoke to request an image. FImage will respond as long

as credentials with appropriate permissions are provided.

Compromising FImage allows the environment to learn both

the images stored on the service as well as all user credentials

that pass through it. However, a compromised FImage cannot

directly influence other services since they never expect in-

coming connections directly from FImage.

e) Node: FNode is our abstraction of a virtual machine;

it can execute arbitrary programs on behalf of the project

that owns it. Nodes are spawned by FCompute but then act

independently. Because FCompute sends the code of a node over

the network when it is instantiated, E may view the initial

25

code.

Compromising FNode gives the environment the ability to

view all the current executing code and to maul the computa-

tion performed within the node.

f) Storage and volumes: FBlockStorage manages the collec-

tion of data volumes available for use by users. It provisions

volumes and attaches them to nodes, but then is out of the

loop during subsequent data accesses.

Compromising FBlockStorage permits the environment to at-

tach and detach volumes from nodes of her choice. As a coun-

termeasure to protect the data from unauthorized disclosure,

the volume can be encrypted with a key that is only known to

users with the correct project permissions.

g) Message bus: OpenStack has an internal message

queue to handle communication between services. It allows us

to optionally enable TLS for the inter-service communication.

We model the TLS-enabled message bus using a secure mes-

sage transmission functionality FSMT that protects the integrity

of messages; additionally, it protects the confidentiality of

tokens. This is a deviation from OpenStack as-is, which would

allow any compromised service to breach message integrity

and token confidentiality [36].

External communication between services and users (or

their Dashboards) is handled instead by FExtNet, which provides

data confidentiality but does not authenticate the message’s

sender. This modeling decision reflects the fact that OpenStack

never verifies whether the user sending the message is actually

the owner of the credentials contained therein.

B. Security Assertions

We list below several security guarantees. We stress that

this is an informal description of forbidden or ‘blacklisted’

activities; the UC modeling of Sections VII and VI specifies

exactly the set of permissible activities in a ‘whitelist’ format.

A main ingredient in our modeling and analysis is the

behavior of the ideal cloud upon corruption of individual ser-

vices. This way, we capture the compromises we consider and

the security properties we guarantee in face of compromise.

a) Authentication & authorization: As long as FIdentity is

uncompromised, E is limited to perform only those actions

authorized by her projects and roles. Corrupt services can

perform actions within their scope on behalf of the environ-

ment, but cannot influence uncorrupted services to perform

unauthorized actions.

b) User control: By moving away from bearer tokens,

we can provide some user control even in the face of service-

level compromises. Bearer tokens allow a corrupted service to

impersonate a user to other, uncorrupted services and perform

unintended actions. See Section VIII for details on our new

tokening mechanism that removes the ability to replay user

tokens and thus reduces the scope of a corrupted service to

only those actions the service is able to perform directly. As

FNode does not have access to user tokens, a corrupted FNode

is unable to make changes affecting the OpenStack control or

data plane. In this sense we model FNode as being fully isolated

from other FNode instances or OpenStack services. Future

expansion of our FCompute model could include a hypervisor-

like functionality detailing this isolation of FNode.

c) Resource control: Users may restrict the environment

from accessing and tampering with computing nodes, data vol-

umes, and images as long as two services remain uncompro-

mised: FIdentity and the service managing the object. Put simply,

the services properly separate their control and data planes.

For example, a corrupted compute can delete arbitrary user

nodes, but it cannot influence the data stored on unattached

volumes or the actions of other nodes (e.g., request a new

image from the image service) without user authorization.

This guarantee holds only if E does not legitimately hold the

required project/role permissions.

Note that all of the guarantees described above only apply

at the OpenStack layer. For instance: if you use OpenStack

to spawn a web server with several known vulnerabilities and

then connect it to the Internet, it is certainly possible for E
to compromise your node. We make no guarantees about the

safety of objects stored within OpenStack, only about their

management by OpenStack.

Additionally, enforcing these security guarantees may come

at the expense of flexibility. Having all security at the border

and full trust within OpenStack makes it easier to realize the

cloud vision of fungibility; for instance, if one node fails then

any worker can be tasked automatically to take over for it. By

chaining all authorization decisions back to the user, we reduce

the cloud’s ability to self-regulate load balancing, scaling, and

failover decisions.

C. Modeling Decisions

In this section, we discuss some of the decisions that

impacted our modeling. First, we needed to decide the scope

of FCompute within Nova, the largest OpenStack service. At a

high level, Nova comprises both the front-end API/scheduler

and the back-end worker nodes. We choose to be more fine-

grained so that our model is capable of describing the effects

of compromising part, but not all of the (large) Nova code-

base. This decision is made without loss of generality; com-

promising the entire Nova service corresponds in our mode

to corrupting FCompute and all FNode functionalities. Second,

we augment FIdentity in Section VIII to strengthen tokens so

they aren’t susceptible to data spills. Third, FSMT assumes that

services register keys with the message queue so that it can

enforce data integrity and token confidentiality in transit on

the internal network.

VI. THE IDEAL CLOUD

Our ideal cloud functionality is a UC functionality that

provides the user with the following set of commands:

a) CreateNode: Allows a user to create a new node.

b) DeleteNode: Allows a user to delete a node that they

had previously created.

c) AccessNode: Allows a user to execute a command on

one of their nodes.

26

Algorithm 1 Simplified Ideal Cloud (See the full version of

this paper [22] for the detailed version)

1: Upon receiving (Receiver, “Delete Node”, session-id,

node-id) from E: � Step 1

2: Send-Sim (Receiver, ”Delete Node”, session-id, user-id,

node-id); � Step 2

3: Upon receiving (”Confirm”, session-id) from S: � Step 3

4: valid=False; NodeExist = False; Result = Fail;

5: if user-id is valid & user-id is allowed to delete node node-

id then
6: valid=True;

7: end if
8: Send-Sim (Receiver, ”Delete Node”, session-id, user-id,

node-id, valid); � Step 4

9: Upon receiving (”Delete Node”, session-id, Continue)

from S: � Step 5

10: if valid & there is node with id=node-id then
11: NodeExist = True; Result = Success;

12: Delete node-id from the Node list;

13: end if
14: Send-Sim (”Delete Node Completed”, session-id, valid,

NodeExist); � Step 6

15: Upon receiving (”Output Delete Node”, session-id) from

S: � Step 7

16: Output(”Delete Node”, session-id, node-id, Result) to E;

� Step 8

d) AttachVolume: Allows a user to attach one of their

volumes to an existing node.

e) DetachVolume: Allows a user to detach a volume

that had been attached to one of their nodes.

It is, in a sense, the simplest specification that is faithful

in both functionality and security to the real services. As

with all UC functionalities, the simplicity of the ideal cloud

is intended to promote understanding and transparency of

OpenStack’s behavior. Here, we exemplify a simplified version

of ideal cloud functionality FCloud for the Delete Node function

in Algorithm 1. (The full version of this algorithm, which

includes message buffering, is written in the full version of

this paper [22].) Our formulation of FCloud is simple: FCloud

asks the permission of the simulator S for receiving every

Delete Node request, and also its permission for sending each

notification back to the environment. Also, FCloud does not hide

the user credential validity information and the node existence

information, as the adversary may discover the information

from the execution of requests.

The information sent from the ideal cloud to the ideal-model

adversary (i.e., to the simulator) represents the information

that’s allowed to be leaked. Specifically, we hide the user

and service credentials from the adversary, but leak all other

information. We show that, even with this advantage, the ideal

cloud guarantees that the adversary cannot impersonate a user

and make requests on their behalf without compromising the

Env

Ideal Cloud

8

Si
m

ul
at

or

1
2

4
3

6
5

7

Fig. 1. Delete Node in Ideal Cloud with the Simulator.

user or services.

The ideal cloud also captures the security guarantees that

are still provided in case some of the services get corrupted.

In particular, the ideal cloud specifies the allowed degradation

in security when a particular service is corrupted. (Notice

that in the context of the ideal cloud the various services are

merely names, or tags for the corruption operation made by

the adversary.)

A. Ideal Cloud Walkthrough

In the ideal cloud setting, since we model the cloud as a

single entity, there is no internal communication and it is left

to the simulator to provide the necessary interaction with the

environment. The DeleteNode request begins at Step 1 (Fig.

1) when the environment sends a Delete Node message to

the ideal cloud, through a dummy user who simply forwards

inputs. The ideal cloud, could simply, check that the indicated

user had the correct permissions to delete the requested node

and, if so, removes it from the list of active nodes. However, to

capture the fact that the system leaks the user request, the ideal

cloud sends the user request (without the credential) to the

simulator (Step 2). When the cloud receives the confirmation

message from S in Step 3 it verifies that user has permission

to delete the node and relays this information to the simulator

in Step 4. In Step 5, the simulator tells the cloud to continue.

The cloud will then verify that the node exists and remove the

node from the list of active nodes and notifies S in step 6.

By receiving the continue message from S (step 7), the cloud

outputs the success message to the environment through the

dummy user in Step 8.

The simulator acts somewhat differently if a service (say,

the Nova compute service) has been compromised. For this

reason, the ideal cloud sends S a list of user-ids that have

been compromised when compute is corrupted. Additionally,

we observe that the environment can send any message on

behalf of the corrupted compute; since the simulator cannot

directly answer any requests that the environment might make

to another (uncompromised) service, S must forward such

requests to the ideal cloud and get a response through its

27

specific interface. This decreases the security guarantees that

are provided by the cloud.

B. Accounting for Existing Weaknesses

In the case of having compromised services, in order to UC-

emulate OpenStack Services, we had to weaken the security

guarantees of the ideal cloud. For example, when Nova is

compromised, the adversary is able to send a request to Glance

using user’s credential to get an image. This means that the

simulator should be able to provide the requested image to

the environment. The simulator does not have the image,

therefore it need to ask the ideal cloud. However, the ideal

cloud does not respond to this type of simulator’s requests.

In order to realize the OpenStack Services, we had to remove

some of ideal cloud security check points, which decreases

the security guarantees. That is, for this example, when the

simulator sends a request to get the image (for a corrupted

user) while the user has not requested a node to be created,

the ideal cloud does not check whether the user has made a

”create node” request or not and instead will simply respond to

the simulator. The OpenStack security imperfections discussed

in the introduction under the subtitle Security weaknesses
formalized and contextualized are the principal reasons for

decreasing the security guarantees.

In order to understand why these weaknesses come into

place, in the next section, we look into how real services

work. We will also explore one of these weaknesses (the token

mechanism) in more detail and see how an improved version

yields a stronger ideal cloud (Section VIII).

VII. OPENSTACK SERVICES

Fig. 2. OpenStack Services: Arrows indicated expected lines of commu-
nication; other communication flow is possible, but will be ignored. Gray
arrows show communication with the adversary, dashed black arrows indicate
communication through FSMT, and solid black arrows indicate a direct
communication.

In this section we describe our model of a simplified

OpenStack cloud. The service functionalities, in conjunction

with the message passing functionalities, collectively provide

the same set of possible commands as the ideal cloud in the

previous section.

We require both that the services maintain the confiden-

tiality of users’ credentials while executing the commands

and enforce that only a user in possession of the required

credentials will be able to execute a command.

A. Example Workflow

Env

User

External Network

Compute Identity

6

1

2

5

10

14

3,15

4,16

17

18

SMT

9
7, 11

8, 12

13

Dashboard
Protocol

Fig. 3. The Delete node functionality starts when the environment sends
a ”DeleteNode” message to the user. Next the user adds its credentials and
sends it to the FCompute. Then, FCompute creates a validation request to FIdentity
in order to validate user’s credentials. Based on the validation result and the
node existence, FCompute deletes the node and notifies the user. We describe
the workflow in detail in Section VII-A.

We will walk through an example of how a user would

delete its node using these service functionalities and a

dashboard protocol. This example will show the interaction

between the FCompute and FIdentity services and the user. We

note that all messages between services will pass through

FSMT while any messages between the user and services will

go through FExtNet. We will briefly mention this during the

description and it can be seen in Fig. 3 as well.

This interaction begins at Step 1 (Fig. 3, Algorithm 2)

when the environment sends a DeleteNode message of the

form (”Delete Node”, session-id, node-id) to the user. The

user will then reformat this message in Step 2 to include their

credentials and send it to FExtNet to be forwarded to FCompute.

When FExtNet (Algorithm 3) receives the message it removes

the user’s credentials and leaks the rest of the message to

the adversary in Step 3. After receiving a (Confirm, session-

id) message from the adversary in Step 4, FExtNet sends the

original message on to FCompute. In Step 5, (Algorithm 4)

FCompute receives the message from the user and creates a

request of the form (FIdentity, ”Service Validation”, session-

id, credscompute, creds, ”Delete node-id ”) to FIdentity via FSMT

in Step 6 (Algorithm 5). The message passing by FSMT will

proceed as in Steps 3-4. After FIdentity receives the validation

message from FCompute in Step 9 (Algorithm 6) it will check

that the user has permission to delete the requested node and

send an appropriate response to FCompute, again via FSMT, in

Step 10. Once FCompute receives the validation message from

FIdentity in Step 13, it will delete the requested node if the node

exists and the validation was successful, otherwise it will note

28

that the request failed. In Step 14, FCompute will send a message

to the user, proceeding as before through FExtNet, notifying

them of the result of their request — either the successful

deletion of the node or its failure. The user, upon receiving this

message in Step 17 will output the result to the environment

in the final step.

B. Realization of This Workflow

We write specifications for our functionalities in pseudocode

with relevant snippets for the DeleteNode workflow shown in

simplified Algorithms 2, 3, 4, 5, and 6. The complete, rigorous

algorithms can be find in the full version of this paper [22].

Algorithm 2 Dashboard Example Workflow

Upon receiving Request-Message from E:

User U Creates (UDashboard, FService, Request-Message,

creds);

Send-FExtNet(UDashboard, FService, Request-Message, creds); �
Step 2

Upon receiving (Sender, Output-Message) from FExtNet: �
Step 17

Output (Output-Message) to E; � Step 18

Algorithm 3 External Network Example Workflow

1: Upon receiving (Sender, Receiver, Message): � Step 2

2: Create New-Message by removing the credentials and

replacing them by their IDs;

3: Send-Adversary(Sender, Receiver, New-Message); � Step

3

4: Upon receiving (”Confirm”, session-id) from Adversary:

� Step 4

5: Send-Receiver(Sender, Message); � Step 5

Algorithm 4 Compute Example Workflow

Upon receiving (Receiver, ”Delete Node”, session-id, node-

id, creds) from FExtNet: � Step

5

Send-FSMT (FCompute, FIdentity, ”Service Validation”, session-

id, credscompute, creds, ”Delete node-id ”); � Step

6

Upon receiving (FIdentity, ”Service Validated”, session-id,

user-id, service-id, Request, valid) from FSMT: � Step 13

Result = Fail;

if valid & a node with id=node-id exists then
Delete node with id=node-id; Result = Successful;

end if
Send-FExtNet (FCompute, Receiver, ”Delete Node”, session-id,

node-id, Result); � Step 14

We allow the adversary to compromise users or services

(Algorithms 7 shows corrupted Compute). A compromised

user or service will reveal all of its internal state to the

adversary and will from that point on be under full adversarial

control. In particular, compromised users and services will not

Algorithm 5 SMT Example Workflow

Upon receiving (Sender, Receiver,Message): � Steps 6, 10

Create New-Message by removing the credentials and re-

placing them by their IDs;

Send-Adversary(Sender, Receiver, New-Message); � Steps

7,11

Upon receiving (”Confirm”, session-id) from Adversary: �
Steps 8, 12

Send-Receiver(Sender, Message); � Steps 13, 9

Algorithm 6 Identity Example Workflow

Upon receiving (Receiver, ”Service Validation”, session-id,

credsservice, creds, Request) from FSMT: � Step 9

if credsservice & creds are valid & creds is allowed to

perform the Request then
valid=True; else valid=False;

end if
Send-FSMT (FIdentity, Receiver, ”Service Validated”, session-

id, user-id, service-id, Request, valid); � Step

10

necessarily follow any specified protocol and can form their

own messages at will. This is particularly relevant in our case

because, upon compromising a service the adversary will learn

not only its credentials, which are part of the internal state of

the service, but also any credentials that service learns in the

future. That is, any user that makes a request to a compromised

service will also leak its own credentials to the adversary.

C. Security Analysis

The following theorem connects our UC models of the

services to that of the ideal cloud.

Theorem 1. The OpenStack Services protocol from §VII UC-
realizes the Ideal Cloud FCloud from §VI in the (FExtNet, FSMT)-

Algorithm 7 Corrupted Compute

function RECEIVEMESSAGE

Upon receiving (Source, message) from FSMT \FExtNet:

Send-FSMT (source, Adversary, message);

end function

function SENDMESSAGE

Upon receiving (Adversary, ”Forward”, message, desti-

nation) from FSMT:

Send-FSMT (FCompute, destination, message);

end function

function MAIN

Upon receiving a message which does not contain

“Forward” & Source=Adversary from FSMT:

Apply the request;

Send-FSMT (FCompute, Adversary, result of the request);

end function

29

hybrid model.

We defer to the full version of this paper [22] a rigorous

specification of the all ideal services, the ideal cloud, and

the simulator connecting the two. In this space, we simply

highlight the main ideas involved in the proof.

Proof sketch. As with most UC analyses, our argument pro-

ceeds via induction on the steps taken by the environment

E. We show that for any message that E might send, the

next incoming message received by E maintains the invariant

that E’s view in the ideal cloud and OpenStack Services is
identical. More specifically, for any state that E can reach,

the action of the simulator S up to that point must have

ensured that E’s view is the same in both worlds. Ergo, E
cannot distinguish whether it is interacting with the OpenStack

Services or with the composition of ideal cloud and the

simulator. At each step of the induction, we show that the

following three properties are maintained.

1) The simulator faithfully emulates the entire workflow

required to process one user-provided command, when

viewed standalone.

2) The simulator faithfully emulates two interleaved user-

provided commands such that the resulting state is the

correct outcome after executing the two commands in an

adversarially-controlled order. Put differently, there are

no race conditions that cause the services to reach any

kind of “weird” state.

3) An adversary who compromises services can only lever-

age them to damage other (uncompromised) services by

leveraging OpenStack’s token mechanism for authentica-

tion and authorization. Our ideal worlds accurately reflect

the extent of the damage that the environment can cause

by misusing acquired bearer tokens.

In the full version of this paper [22], we demonstrate these 3

properties via a tedious, yet straightforward, case analysis of

all types of valid messages E can send and all actions that S
is programmed to perform in response.

Looking ahead to the next section, only property 3 of this

analysis must change if the token mechanism is improved.

VIII. IMPROVED TOKENING MECHANISM

Our analysis has shown that the simulator of the ideal cloud

cannot emulate the corrupted services unless we relax the

security promises of the ideal cloud. To a large extent, these

concerns arise due to the use of bearer tokens, which enable

anyone who can see a token to masquerade as corresponding

user and perform any action allowed to the owner of the token

on behalf of him. Bearer-tokens are leaked to the adversary in

both partially and fully corrupted services which could happen

through a vulnerability. Once a service corrupted, it could be

malicious in at least two important ways:

• A service can use a token to obtain unrequested services

charged to the user.

• A service can use a token to access other resources

at another service (like exporting a disk with sensitive

information).

The above problems are not tolerated by the cloud users.

Having a bug free cloud is not realistic, but reducing effects of

buggy code is possible. It is desired to have OpenStack guar-

antee the modularity security requirement defined as follows:

Definition 1. Modularity Security Requirement: If an ad-

versary corrupts a service, other services just do whatever

requested to do by the users, nothing more. For example, if

an adversary corrupts the Image service, he cannot create or

delete a node, but if a user issues a “create node” command,

it is possible to create a node with a corrupted image because

of the image service corruption.

We propose to limit the impact of service corruption by

preventing replay attacks and scoping tokens only to handle

the request desired by the user by following an idea laid out

in [17], [28]: building tokens that can only be used once.

A. One Time Tokens

Within the OpenStack services, we modify all uses of tokens

so that each token may only be used to perform a single

request requested by the user (even if this request necessitates

action by many services). Specifically, we modify Keystone to

sign tokens that have been scoped by the user (and potentially

scoped further down as it is passed from one service to the

next) and also to maintain a blacklist of all redeemed tokens.

A one-time use token scoped to a specific job resembles a

“ticket” as used in Kerberos [37] or in TLS 1.3’s zero round

trip time mechanism [38].

Restricting tokens to be single use with specific parameters

limits the capability of the adversary to misuse tokens that

he captures by corrupting a service. Previously a corrupted

service could store all tokens it sees and use them at will.

This modification ensures that once a token has been used it

will not be accepted again in the future. Additionally, since

tokens are scoped, it is not possible for a corrupted service

to lie to uncorrupted services about the content of a user’s

request. Specifically, users will indicate when requesting a

token exactly which of their resources it grants access to. This

would not prevent a corrupted Compute from deleting a node

when a user had asked to create one or creating a node with a

completely different specification since Compute could simply

do these things without bothering to verify the token, but it

would prevent Compute from requesting a different image

from the Image service than the one the user had intended.

This helps in the case where the adversary has not already

seen, via a request by a different user, the image it would like

to have Compute use. Scoped, single use tokens even benefit

functionalities that go beyond those captured in our model;

for example, an adversary who corrupts a VM is not able

to bring down the cloud by observing user tokens in Nova

message queue (this issue was discussed in [28]). We also

remark that there is another notion of limited-use tokens with

30

a security-performance tradeoff. Many OpenStack engineers

desire a stateless Keystone architecture in order to distribute

the authentication process over several servers for improved

scalability and performance. If it is desirable to keep Keystone

stateless, then one could instead design “limited-reuse” tokens

with a short lifetime. While one could model the impacts of

limited reuse by combining rate limiting with a UC model of

network time [18], we focus on the One-Time token presented

above with an explicit blacklist to prevent reuse.

B. Improved Security Analysis

We demonstrate that the improved services collectively

realize a more secure cloud framework. We defer to the full

version of this paper [22], where we provide a complete

specification of all improved services, the new ideal cloud,

and the simulator connecting the two.

Theorem 2. The strengthened version of OpenStack Services
using a one-time token securely realizes the less-leaky ideal
cloud FCloud OneTime in the (FExtNet, FSMT)-hybrid model.

Proof sketch. The simulator in the scoped one-time token

model is more stringent than the simulator in the unscoped

bearer token model. To enforce the single-use constraint, S
creates a black list to store the services that have already

checked the validity of a credential using session-id; the

simulator then rejects all future attempts to validate the same

credential. To enforce the scoping constraint, S only issues

credentials when given both a session-id and a request scope;

the simulator records this intended scope and subsequently

rejects all attempts to validate the credential in pursuit of a

request outside of this scope.

With this augmentation to the simulator, the modularity

of UC allows us to prove Theorem 2 with only a few

modifications to the existing proof structure. Properties 1 and 2

from Section VII-C continue to hold in the one-time token case

because those properties only demonstrate correctness when

all services are uncompromised, in which case there are no

tokens (of any type) for the adversary to abuse. Hence, we

must only augment one property and add one more.

3’) The view of E is identical in the FCloud OneTime and the

OpenStack services even when services are compromised,

as long as each observed token can only be used one time.

4) The cryptographic design of our stronger tokens ensures

that each token may only be used once.

C. Making Security Analyses Accessible

Juxtaposing the ideal clouds in the bearer token and one-

time token scenarios can be quite illustrative. As an example,

from the code of the two ideal clouds, it is easy to see that a

corrupted FBlockStorage can tamper with the delivery of an image

from FImage to FCompute during a Create Node operation in the

bearer token model, whereas the same attack is not possible in

the ideal cloud for the one-time token model. Importantly, this

comparison can be observed without looking at our simulators

and proofs; put another way, only the ideal cloud algorithms

are in the trusted code base. As a result, our analysis is

accessible to the OpenStack development community, since

they are already comfortable with reading code.

More generally, the UC ideal cloud that models any sug-

gested security improvement permits OpenStack developers to

understand concretely the value added by this improvement.

This is an example for how UC modeling can provide devel-

opers with a valuable new tool that they can use to balance

the relative importance of addressing any of the numerous bug

reports on their plate at any given time.

IX. CONCLUSION & FUTURE WORK

This work lays the foundation for a full-scope composable

security analysis for the popular cloud management framework

OpenStack. It brings a number of communities together:

On the one hand, our abstract model is substantially easier

to absorb than the code of OpenStack and therefore opens

OpenStack to a wider group within the cryptography and

programming languages communities. On the other hand,

our modular analysis provides the OpenStack development

community with a better understanding of the security con-

cerns surrounding some of its core design issues as well as

(more importantly) a concise, tangible description of how the

security of the overall cloud concretely improves by making

moderate software improvements. Put differently: the modular

analysis can both expose bugs and provide motivation for the

developers to address them. Importantly, our approach can also

be used to assert security, namely prove lack of flaws.

This work covers only some of the core functionality

provided by a full featured cloud. In particular, there are still

many remaining features necessary for fine grained access

control. More work is needed in order to: (a) cover more

services, (b) consider more attack (corruption) options and the

security guarantees provided in these cases, and (c) analyze

implementations of the various services and the associated

security caveats and vulnerabilities.

While we leave these challenges to future work, we note that

this last point is where the power of universal composability

is put to use: our model can be extended to include internal

components of services such as Compute and Storage in order

to show how these subsystems combine to realize the ideal

services FCompute and FBlockStorage that we use in this work.

This level of modeling also enables clearer discussion of the

effects of single-node compromises.

Furthermore, our model is easily extensible to add additional

OpenStack components. There are four steps involved in

adding a new service to the model: create an abstraction of

its own functionality, apply local changes to other services

that interact with the new service, extend the ideal cloud,

and augment the simulator. Creation of a new service FService

is modular, and the second and third steps are very simple

to do. While augmenting the simulator is currently tedious

and non-modular, our work shows that a domain specific

language for UC functionalities could streamline this process

by expressing its current programming (which is mostly case

31

statements based upon the messages it receives) in a more

abstract and event-driven style. Such a change would synergize

with another direction for future research: mechanizing the

analysis, especially the proofs of security.

Overall, we believe that this work provides an impor-

tant benchmark to show the feasibility of modeling large-

scale software packages within the framework of Universal

Composability. Modularity was a crucial component toward

keeping the models and analyses manageable. Indeed, this

work demonstrates the value of conducting similar analyses

of other software deployments in the future.

ACKNOWLEDGEMENT

This work is supported by the National Science Foun-

dation as part of the MACS Frontier project under NSF

grants 1413996 and 1414119 (https://www.bu.edu/macs/). Ran

Canetti is also supported by ISF grant 1523/14 and is a

member of CPIIS.

REFERENCES

[1] C. Metz, “The secret history of OpenStack, the free cloud software
that’s changing everything,” WIRED, April 2012. [Online]. Available:
https://www.wired.com/2012/04/openstack-3/

[2] A. Venkatraman, “OpenStack market size will cross
$1.7bn by 2016, says 451 research,” August 2014. [On-
line]. Available: http://www.computerweekly.com/news/2240226930/
OpenStack-market-size-will-cross-17bn-by-2016-says-451-Research

[3] Heidi Joy Tretheway. (2017, April) Users stand up, speak out,
and deliver data on OpenStack growth. [Online]. Available: https:
//opensource.com/article/17/4/openstack-user-survey

[4] O. G. Body, 2016. [Online]. Available: https://governance.openstack.org/
[5] B. Pfitzmann and M. Waidner, “Composition and integrity preservation

of secure reactive systems,” 2000, pp. 245–254.
[6] M. Backes, B. Pfitzmann, and M. Waidner, “A composable crypto-

graphic library with nested operations,” in Proceedings of the 10th ACM
Conference on Computer and Communications Security, CCS 2003,
Washington, DC, USA, October 27-30, 2003, 2003, pp. 220–230.

[7] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in 42nd Annual Symposium on Foundations
of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas,
Nevada, USA. IEEE Computer Society, 2001, pp. 136–145.

[8] M. Backes, J. Dreier, S. Kremer, and R. Künnemann, “A novel approach
for reasoning about liveness in cryptographic protocols and its applica-
tion to fair exchange.” IEEE Computer Society, 2017.

[9] F.-X. Standaert, T. G. Malkin, and M. Yung, “A unified framework
for the analysis of side-channel key recovery attacks,” in Advances in
Cryptology - EUROCRYPT 2009, A. Joux, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 443–461.

[10] C. Kudla and K. G. Paterson, “Modular security proofs for key agree-
ment protocols,” in Advances in Cryptology - ASIACRYPT 2005, B. Roy,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 549–565.

[11] A. Duc, S. Dziembowski, and S. Faust, “Unifying leakage models: From
probing attacks to noisy leakage.” P. Q. Nguyen and E. Oswald, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 423–440.

[12] K. Bhargavan, B. Bond, A. Delignat-Lavaud, C. Fournet, C. Hawblitzel,
C. Hritcu, S. Ishtiaq, M. Kohlweiss, R. Leino, J. R. Lorch, K. Maillard,
J. Pan, B. Parno, J. Protzenko, T. Ramananandro, A. Rane, A. Rastogi,
N. Swamy, L. Thompson, P. Wang, S. Z. Béguelin, and J. K. Zinzin-
dohoue, “Everest: Towards a verified, drop-in replacement of HTTPS,”
in 2nd Summit on Advances in Programming Languages, SNAPL 2017,
May 7-10, 2017, Asilomar, CA, USA, 2017, pp. 1:1–1:12.

[13] R. Canetti, S. Chari, S. Halevi, B. Pfitzmann, A. Roy, M. Steiner, and
W. Venema, “Composable security analysis of OS services,” in Applied
Cryptography and Network Security - 9th International Conference,
ACNS 2011, Nerja, Spain, June 7-10, 2011. Proceedings, 2011, pp. 431–
448.

[14] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. N. Wu, S. Weng,
H. Zhang, and Y. Guo, “Deep specifications and certified abstraction
layers,” in Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015,
Mumbai, India, January 15-17, 2015. ACM, 2015, pp. 595–608.

[15] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and D. Costanzo,
“Certikos: An extensible architecture for building certified concurrent
OS kernels,” in 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4,
2016., 2016, pp. 653–669.

[16] H. Chen, X. N. Wu, Z. Shao, J. Lockerman, and R. Gu, “Toward com-
positional verification of interruptible OS kernels and device drivers,” in
Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2016, Santa Barbara, CA,
USA, June 13-17, 2016, 2016, pp. 431–447.

[17] P. Desnoyers, J. Hennessey, B. Holden, O. Krieger, L. Rudolph, and
A. Young, “Using open stack for an open cloud exchange(OCX),” in
2015 IEEE International Conference on Cloud Engineering (IC2E), pp.
48–53.

[18] R. Canetti, K. Hogan, A. Malhotra, and M. Varia, “A universally
composable treatment of network time,” in 30th IEEE Computer
Security Foundations Symposium, CSF. IEEE Computer Society, 2017,
pp. 360–375. [Online]. Available: https://doi.org/10.1109/CSF.2017.38

[19] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and
P. Strub, “Easycrypt: A tutorial,” in Foundations of Security Analysis
and Design VII - FOSAD 2012/2013 Tutorial Lectures, ser. Lecture
Notes in Computer Science, vol. 8604. Springer, 2013, pp. 146–166.
[Online]. Available: https://doi.org/10.1007/978-3-319-10082-1 6

[20] A. Petcher and G. Morrisett, “The foundational cryptography
framework,” in Principles of Security and Trust - 4th International
Conference, POST, ser. Lecture Notes in Computer Science, vol.
9036. Springer, 2015, pp. 53–72. [Online]. Available: https:
//doi.org/10.1007/978-3-662-46666-7 4

[21] D. A. Basin, A. Lochbihler, and S. R. Sefidgar, “Crypthol: Game-based
proofs in higher-order logic,” IACR Cryptology ePrint Archive, vol.
2017, p. 753, 2017. [Online]. Available: http://eprint.iacr.org/2017/753

[22] K. Hogan, H. Maleki, R. Rahaeimehr, R. Canetti, M. van Dijk,
J. Hennessey, M. Varia, and H. Zhang, “On the universally composable
security of openstack,” IACR Cryptology ePrint Archive, vol. 2018, p.
602, 2018. [Online]. Available: https://eprint.iacr.org/2018/602

[23] R. Canetti, Y. Dodis, R. Pass, and S. Walfish, “Universally composable
security with global setup,” in Theory of Cryptography, 4th Theory
of Cryptography Conference, TCC 2007, Amsterdam, The Netherlands,
February 21-24, 2007, Proceedings, 2007, pp. 61–85.

[24] M. Jones and D. Hardt, RFC 6750: The OAuth 2.0 authorization
framework: Bearer token usage. Internet Engineering Task Force
(IETF), 2012, https://tools.ietf.org/html/rfc6750.

[25] OpenStack Security Group, “Openstack security guide,” 2015.

[26] OpenStack Foundation, “Tokens,” 2017. [Online]. Available: https:
//docs.openstack.org/security-guide/identity/tokens.html

[27] P. Leach, M. Mealling, and R. Salz, “A Universally Unique IDentifier
(UUID) URN Namespace,” RFC 4122 (Proposed Standard), RFC
Editor, Fremont, CA, USA, pp. 1–32, Jul. 2005. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc4122.txt

[28] W. K. Sze, A. Srivastava, and R. Sekar, “Hardening openstack cloud
platforms against compute node compromises,” in Proceedings of the
11th ACM on Asia Conference on Computer and Communications
Security. ACM, 2016, pp. 341–352.

[29] J. Somorovsky, M. Heiderich, M. Jensen, J. Schwenk, N. Gruschka,
and L. Lo Iacono, “All your clouds are belong to us: Security analysis
of cloud management interfaces,” in Proceedings of the 3rd ACM
Workshop on Cloud Computing Security Workshop, ser. CCSW ’11.
New York, NY, USA: ACM, 2011, pp. 3–14. [Online]. Available:
http://doi.acm.org/10.1145/2046660.2046664

[30] Y. Sun, G. Petracca, T. Jaeger, H. Vijayakumar, and J. Schiffman, “Cloud
armor: Protecting cloud commands from compromised cloud services,”
in 2015 IEEE 8th International Conference on Cloud Computing, June
2015, pp. 253–260.

[31] Y. Sun, G. Petracca, and T. Jaeger, “Inevitable failure: The flawed trust
assumption in the cloud,” in Proceedings of the 6th edition of the ACM
Workshop on Cloud Computing Security. ACM, 2014, pp. 141–150.

[32] Y. Sun, G. Petracca, X. Ge, and T. Jaeger, “Pileus: Protecting user
resources from vulnerable cloud services,” in Proceedings of the 32nd

32

Annual Conference on Computer Security Applications. ACM, 2016,
pp. 52–64.

[33] R. Canetti, S. Chari, S. Halevi, B. Pfitzmann, A. Roy, M. Steiner, and
W. Venema, “Composable security analysis of OS services,” in Applied
Cryptography and Network Security - 9th International Conference,
ACNS 2011, Nerja, Spain, June 7-10, 2011. Proceedings, ser. Lecture
Notes in Computer Science, vol. 6715, 2011, pp. 431–448.

[34] S. Gajek, M. Manulis, O. Pereira, A.-R. Sadeghi, and J. Schwenk, “Uni-
versally composable security analysis of tls,” in International Conference
on Provable Security. Springer, 2008, pp. 313–327.

[35] R. Canetti, D. Shahaf, and M. Vald, “Universally composable authenti-
cation and key-exchange with global PKI,” in Public-Key Cryptography
- PKC 2016 - 19th IACR International Conference on Practice and
Theory in Public-Key Cryptography, Taipei, Taiwan, March 6-9, 2016,
Proceedings, Part II, ser. Lecture Notes in Computer Science, vol. 9615.
Springer, 2016, pp. 265–296.

[36] H. Albaroodi, S. Manickam, and P. Singh, “Critical review of openstack
security: Issues and weaknesses,” Journal of Computer Science, vol. 10,
no. 1, pp. 23–33, 2014.

[37] J. G. Steiner, B. C. Neuman, and J. I. Schiller, “Kerberos: An authenti-
cation service for open network systems,” in Proceedings of the USENIX
Winter Conference. USENIX Association, 1988, pp. 191–202.

[38] H. Krawczyk and H. Wee, “The OPTLS protocol and TLS 1.3,” in IEEE
European Symposium on Security and Privacy, EuroS&P. IEEE, 2016,
pp. 81–96. [Online]. Available: https://doi.org/10.1109/EuroSP.2016.18

33

