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Abstract—We initiate an effort to provide a rigorous, holistic
and modular security analysis of OpenStack. OpenStack is the
prevalent open-source, non-proprietary package for managing
cloud services and data centers. It is highly complex and consists
of multiple inter-related components which are developed by
separate, loosely coordinated groups. All of these properties make
the security analysis of OpenStack both a worthy mission and a
challenging one. We base our modeling and security analysis in
the universally composable (UC) security framework. This allows
specifying and proving security in a modular way — a crucial
feature when analyzing systems of such magnitude. Our analysis
has the following key features:

1) It is user-centric: It stresses the security guarantees given
to users of the system in terms of privacy, correctness, and
timeliness of the services.

in 2010 as a collaboration between two groups: Rackspace,
a public TaaS provider selling cloud services, and NASA,
a part of the United States government that wanted to take
advantage of the elasticity and datacenter efficiency benefits
that come from combining different workloads into a single
private cloud [1]. Since then, it has grown to be a large open
source project with over 9 million lines of code, and over
6,000 contributors and hundreds of implementations around
the world [2], [3]. There is a governance body [4] that
actively manages the development and stability of OpenStack.
Analyzing security properties of such a large-scale information
system is a daunting task.

A first challenge is to adequately articulate and rigorously

2) It considers the security of Op-enStack.even when some of express the security requirements of the system in the first
the components are compromised. This departs from the . . .
traditional design approach of OpenStack, which assumes place. Indeed, adequately capturing even simple, intuitive con-
that all services are fully trusted. cerns is non-trivial. Furthermore, security is often inseparable

3) Itis modular: It formulates security properties for individual from the expected functionality, which is complex in and of

components and uses them to prove security properties of
the overall system.

Specifically, this work concentrates on the high-level struc-
ture of OpenStack, leaving the further formalization and more
detailed analysis of specific OpenStack services to future work.
Specifically, we formulate ideal functionalities that correspond to
some of the core OpenStack modules, and then proves security
of the overall OpenStack protocol given the ideal components.

As demonstrated within, the main challenge in the high-
level design is to provide adequately fine-grained scoping of
permissions to access dynamically changing system resources.
We demonstrate security issues with current mechanisms in case
of failure of some components, propose alternative mechanisms,
and rigorously prove adequacy of then new mechanisms within our
modeling.

Index Terms—Modular Security Analysis, Universal Compos-
ability, Cloud Security, OpenStack

I. INTRODUCTION

OpenStack is a software package for data centers and
virtualization services, including remote computation, storage,
networking, and related services. The OpenStack project began

1 The first three authors contributed equally to this effort.

itself. It also invariably has multiple facets and competing
requirements that need to be reconciled.

A second challenge is to rigorously assert the specified
properties. This challenge is even more daunting, especially
when the system consists of multiple components and one
has to take into account inter-component interactions, potential
failure of individual components, and the associated potential
vulnerabilities.

Modular security analysis: The natural way to deal with
such complexities is modularity: formulate and assert the
security properties of individual components, and then deduce
security properties of the overall, composite system from the
security properties of the components, as well as those of the
way in which the components are put together. This breaks
down the overall analysis into multiple steps where each
step deals with a much simpler system. Furthermore, when
successful, the analysis would deduce the overall security of
the system from the security of the components, and the
security of the overall design given the components. Still,
breaking down a system to components in a way that allows
for effective composable security analysis is a non-trivial task
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in and of itself.

A number of frameworks for modular security analysis
for cryptographic protocols have been developed over the
years, e.g. [5]-[12]. Furthermore, a number of works have
used these frameworks to analyze security of security-sensitive
systems that are non-cryptographic in nature, e.g. [13]-[16].
Extending these cryptographic frameworks to handle systems
with complex interfaces and sizeable codebase is a challenging
endeavor — but one that holds great promise. In particular, it
opens the door to a rigorous, yet modular and approachable
security analysis of large-scale software systems. Indeed, such
analysis can be very valuable even in systems that use little
or no cryptography.

Our contributions: In this work, we initiate modular secu-
rity analysis of OpenStack, which is a large-scale distributed
system with complex interfaces whose security is important
to many cloud computing use cases. We perform our analysis
within the Universally Composable (UC) security framework,
which provides a way to articulate security properties rig-
orously and precisely — and supports security-preserving
modularity.

We first formulate specifications (in form of ideal fun-
crionalities within the UC framework) that capture the overall
functionality and security requirements of the openstack suite,
from the point of view of an outside user of the system.

We then formulate specifications (in form of ideal funcrion-
alities within the UC framework) that capture the functionality
and security requirements of a selected set of OpenStack
services, specifically Keystone (key registry), Nova (compute),
Glance (image repository), Cinder (storage), Horizon (user
dashboard).

We then investigate the OpenStack mechanism for realizing
the overall specification (i.e. for realizing the overall ideal
functionality) given ideal realizations of the said services.

Importantly, here we consider the realistic case where
some of the services might be compromised or adversarially
controlled, and the goal is to keep providing security for the
non-compromised mechanisms.

It turns out that the main challenge in this overall protocol
is to provide a sufficiently nimble, fine-grained and flexible
mechanism for controlling access to various services that
change. Indeed, we demonstrate that prevalent protocols (e.g.
the bearer token mechanism) have security flaws.

We then propose a new token mechanism and demonstrate
that, with this mechanism in place, the overall protocol indeed
UC-realizes the overall OpenStack specification, given the
ideal functionalities representing the services.

In summary, this work makes the following contributions.

o Demonstrate the viability of Universally Composable
(UC) security analyses for a system with the complexity
of OpenStack.

o Describe the interaction between the main OpenStack
components, while abstracting the ~9 million of lines
of code that collectively realize these components.
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« Analyze the composite security provided collectively by
these OpenStack components, and how security of the
whole is impacted if some of the parts are corrupted.

o Propose a specification for an improved token mecha-
nism, along with an analysis of the concrete security
improvements it offers to OpenStack.

We emphasize that in this work, we are not doing for-
mal/symbolic/automated analysis. Clearly, it would be great
if we could do the proofs within a pl-style formal framework.
However, the main contribution here should be seen as not
so much the proof, but the dissection of the problem and
determining ‘what’ it is that we want to prove (i.e. the
functionalities). This is a task that cannot be mechanized with
current technology, and this is where our main contribution
lies.

Lessons Learned: The main challenge/goal of the high-level
design is to provide a sufficiently nimble and fine-grained
access control mechanism where users will be able to create
and configure tasks that involve multiple services and at the
same time, keep rogue entities from gaining undesired access.
This is further complicated by the fact that users may not be
aware of all the services they are using and so, the services
themselves should be able to act on behalf of users. We
investigate the current mechanism, which is based on a token
that contains the access control information for the task at
hand and what is being passed in all communications. We
point out how some design flaws are manifested in the current
formalism and then, propose and analyze an alternative token
mechanism. The UC framework is critical in several levels:
(a) it allowed us to identify the above issue (it is hard to lose
sight of it when dealing with all details at once). (b) it allowed
us to define security of the mechanism, and rigorously assert
that the proposed mechanism satisfies the definition.

Security weaknesses formalized and contextualized: As
mentioned above we have learned the main security challenge
in a multi-tenant data center management system like Open-
Stack is to provide an appropriately fine-grained, yet secure
mechanism for controlling the access of users (and agents
of these users within the system) to services. This includes
controlling access to compute, storage, networking, and other
services, as well as preventing users from stepping into each
others data and virtual machines. Indeed, much of our attention
has been focused on analyzing the mechanisms provided by
OpenStack to provide this control.

The design of OpenStack implicitly assumes that all com-
ponents of an OpenStack-based service are trusted. Our work
demonstrates that as long as this assumption holds, the
OpenStack design indeed provides adequate security: namely,
secrecy and correctness of data and computations. Conversely,
our analysis formally shows the extent to which OpenStack is
vulnerable (and also the extent to which it remains safe) when
a subset of components is compromised.

We remark that the case where some components become
compromised is quite realistic. Indeed, one known security
concern within OpenStack is that the VM manager Nova



is more susceptible to attack than other services because it
is exposed to a richer attack surface from malicious VMs.
Specifically, if an attacker is able to compromise only one VM
by exploiting any vulnerability, then in fact he can compromise
the compute node hosting the VM and get the credential of
the compute-node. By having the credential of one compute-
node, the attacker can observe or even modify all the messages
in Nova message queue, including all tokens passed to Nova.
This realistic example shows that it is prudent to design the
system so as to minimize the damage from the compromise of
individual components, and to perform analysis that provides
some security guarantees even in case that some components
are adversarially controlled.

We turn to describing the flaw in bearer token mechanism
to authenticate users and verify their authorization to access
resources. Bearer tokens given by OpenStack’s credentialing
service Keystone effectively permit a user to pass her cre-
dentials to services that can then make actions on her behalf.
As long as the communication between services is secured
via point-to-point secure session protocols (say, via TLS), this
mechanism provides security against external attackers that
only control the network. However, this mechanism allows a
corrupted component (say, Nova) to impersonate tokens on
behalf of any user. When the inter-process communication
is not secured in a point-to-point way, any rogue OpenStack
entity that can eavesdrop to the inter-service communication
(say, a hypervisor that was compromised by its tenant VM)
can potentially have access to all current bearer tokens in
the system. Indeed, previous works (e.g. [17]) have already
pointed out this weakness and proposed limiting the scope
of these bearer tokens by setting expiration times and other
scoping mechanisms.! It should be stressed that, upon each
new use of the token, each new service verifies the token
again with Keystone. Ergo, tokens that are invalid will not
cause damage. However, when the tokens are broadly scoped,
nothing prevents a rogue component from using legitimate
tokens of existing unsuspecting users to compromise both the
integrity and the secrecy of their data.

This work analyses OpenStack with two token mechanisms.
First, we analyze OpenStack’s existing bearer tokens. Our
analysis formulates that the current OpenStack realizes an
“ideal cloud” specification that provides little security as soon
as any component is corrupted. We then specify the attributes
of a stronger one-time token mechanism; we show that the
additional security provided by the limitation to one-time use,
together with the ability to identify the entity that provides the
token, suffices for realizing a significantly stronger variant of
the ideal cloud specification that limits the damage caused by
corrupted services.

!For simplicity of exposition we leave the timeout mechanism (as well as
measurement of real time) outside the model. We note that timing mechanisms
can be added in a relatively straightforward way, using the UC-style modeling
of network time of Canetti et al. [18]. Indeed, the ability to modularly add the
consideration of time is another demonstration of the power of composable
security analysis.
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Towards modular and mechanized analysis: One of the
most important aspects of this work, that sets it apart from
many previous works in the UC framework, is that we provide
in full detail the specifications of the ideal cloud and the in-
dividual services, as well as the descriptions of the simulators
and the proofs of security, without glossing over steps. As a
consequence, our proofs and specifications are decently long
and tedious. Indeed, while for this paper we stick to pen-and-
paper proofs, we believe that our modeling and analysis are
readily amenable to mechanization, and also to some level
of automation. Natural candidates for tools that would enable
such mechanized analysis include the EasyCrypt tool [19], the
FCF tool [20], or the CryptHOL tool [21].

Organization: We begin in Section II by providing some
background for OpenStack. Section III points to some related
works and Section IV describes our approach toward the
security analysis of OpenStack. Section V provides an infor-
mal account of our modeling of OpenStack services and the
security properties we chose to model. We also motivate our
design decisions. We then proceed to introduce the modeling in
more detail. Specifically, Section VI presents the ideal cloud,
namely our security specification. Section VII presents our
modeling of selected OpenStack services. In Section VIII we
explain the properties needed for stronger tokens (i.e., more
secure) variant of the ideal cloud. We conclude by discussing
future work in IX.

II. BACKGROUND

Due to space constraints, we relegate an overview of uni-
versally composable (UC) security to the full version of this
paper [22], and also refer interested readers to [7] and [23]
for more details.

In this section, we focus on surveying OpenStack. As out-
lined in the Introduction, OpenStack is a modular, distributed,
open-source cloud computing software stack for providing
Infrastructure as a Service (IaaS) to multiple (potentially
untrusting) users. In this section, we describe OpenStacks
operation with a focus on some of the security concerns of
its authorization system.

1) Modular services: The design of OpenStack is inher-
ently modular, with 23 modules where each module has some
pre-specified functionality, as well as interfaces with the other
modules it interacts with. It should be noted though that
the functionality of the interfaces is not completely pinned
down; indeed some modules have multiple implementations
that provide slightly different functionality. Also many of the
modules allow for a variety of underlying software packages
as plug-ins. Some of the main modules of OpenStack include:

Nova (compute): Manages the creation, maintenance and re-
moval of virtual machines (VMs).

Glance (image repository): Stores and manages the images
loaded to VMs.

Cinder & Swift (block & object storage): Manage the
storage of data (in blocks, volumes, and more general
objects) for VMs.



Neutron (networking): Provides internal and external virtual
networks for VMs.

Keystone (access control and key management): Holds
the permission information controlling the access of
users to the services and data. Interacts with users and
all other modules to enforce the permission policies.

Horizon (user-side dashboard): Provides an interface be-
tween users of the system and its service modules.

Each one of these modules is a complex, distributed system
in and of itself, sometimes with multiple subdivisions, plug-
ins, and alternative implementations.

2) Trust model: Many of OpenStack’s design choices and
security issues stem from its broad trust model, which assumes
that all services act as faithful user agents. Providing security
even in the case where some services are comporomized does
not appear to be a design goal. Furthermore, interactions
between services in OpenStack are optimized in light of this
trust. However, OpenStack’s unprotected interior means that
a (partially) compromised service can do a great deal of
harm: acquiring a single bearer token allows the compromised
service to impersonate the user for any subsequent action.

3) Tokens: To determine a user’s project and role, Keystone
gives the user a bearer token after authenticating with their
credentials (e.g., username and password); users include this
token in API requests (e.g., to create a new VM) to other
services for authentication and authorization. Services pass this
token to Keystone, which returns back a (project,role) tuple
if the token was valid. Services then make all authorization
decisions based on that tuple.

Importantly, services can continue to use the bearer token to
make additional API requests of other services as necessary.
For instance, the compute service is able to send a user’s
token to the storage service which can in turn verify with
the identity service that this token has access to the requested
volume and attach it to a node without needing to check
with the end user itself. (A natural alternative to the token
mechanism is a digital signature by Keystone regarding the
user’s capabilities. However, this solution has been rejected
by the OpenStack community due to its computational and
bandwidth overhead.) Bearer tokens are used similarly in other
popular protocols, like OAuth [24]. Because possession of
a bearer tokens grants access to resources, data in transit
protection via TLS [25] is essential to protect the tokens from
being viewed by unauthorized parties.

OpenStack uses plugins to Keystone to implement tokens,
the most popular being UUID and Fernet [26]. UUID tokens
issue random, universally unique identifiers [27] to users after
a successful first authentication with Keystone, and stores
them in a database with other required information such as
expiration time, the project and role associated with it.

The Fernet token is a recent innovation that uses cryp-
tography to provide authenticity without accessing a central
DB. It is a mechanism by which keystone creates a private,
authenticated channel to itself. It has quickly become the
preferred token format for OpenStack as they do not require
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maintaining a central database of valid tokens, which adds
network load and latency.

III. RELATED WORK
A. Security Analysis of Clouds

The OpenStack Security Guide [25] goes into depth about
the security of different aspects of configuring the many
different pieces of OpenStack. However, it does not provide
any security analysis, formal or otherwise, nor does it consider
situations where a cloud service is compromised.

Other works have focused on the compromise of compute
nodes [28] or parts of the management infrastructure [29], and
Sun et al. [30]-[32] specifically discuss limiting the scope
of compromised OpenStack services. These works conclude
that corrupted cloud components have far-reaching security
impact and can in many cases compromise the privacy and
integrity of all cloud operations. Their conclusions highlight
the need for a formal security analysis of service corruptions
in OpenStack, which we provide with our construction. Sze
et al. [28] additionally propose an alternative authorization
tokening mechanism to reduce the effect of corrupted compute
nodes, but their construction neither protects against compro-
mise of other services nor provides token authentication and
replay prevention. We have focused on addressing these re-
quirements as well as shifting control of token generation and
scope to the user responsible for the request. Also, crucially,
we provide a security analysis that concretely specifies the
security gain.

B. Using UC

Canetti et al. [33] show how the UC framework can be
used to analyze the simple components of a file system in
isolation and to guarantee that these components maintain
their behavior in the larger system even under adversarial
conditions. This demonstrates basic integrity properties of the
file system, i.e., the binding of files to filenames and writing
capabilities. Gajek et al. [34] evaluate in the UC framework
the emulation of secure communication sessions by the com-
position of key exchange functionalities that are realized by
the TLS handshake and record layer protocols. Canetti et
al. [35] give a modular and global universally composable
analytical framework for PKI-based message authentication
and key exchange protocols.

For our analysis, we apply the style of [33] to the larger
and more complex OpenStack framework and utilize aspects
of [34], [35] to achieve secure communication. We further use
our construction to demonstrate security flaws in OpenStack’s
current authorization mechanism and assess the improvements
provided by our suggested changes.

C. Alternative Formalisms

The UC framework is not the only option for formal analysis
of computing systems. In particular, Gu et al. [14] use the Coq
proof assistant to analyze and provide an abstraction of layers
of the computing stack including the kernel, networking, etc.



They developed and verified a certified kernel with 37 of these
abstraction layers.

We chose to use UC for our analysis because its modu-
larity and composability aligned well with the structure of
OpenStack which is itself composed of many services that
interact via a series of well defined APIs. These services
support varying interchangeable implementations that would
be difficult to support using a less modular proof framework.

IV. OUR APPROACH

We initiate a study of the security properties provided by
OpenStack when viewed as a service to external users which
is a typical model for most (large scale) applications. This
includes properties such as confidentiality and integrity of
data (both in storage and in transition), confidentiality and
correctness of computations, as well as timeliness and resource
preservation. We also consider the extent to which these
properties are preserved under various attack vectors and when
various components of the system are compromised.

We base our analysis in the universally composable security
(UC) framework, which provides a way to articulate security
properties in a rigorous and precise way. According to the
definition of universal composability, a UC-secure component
remains secure if it is universally composed with other UC-
secure components [7]. The extendability property of universal
composability allows us to analyze a part of a system and
additively analyze the remaining components. The framework
provides a natural and convenient mechanism for arguing
about the preservation of security when programs and systems
are composed in a modular way. Indeed, from this perspective
the UC framework appears to be ideally suited to analyzing
OpenStack whose design is inherently and predominantly
modular.

On the other hand, the UC framework was initially created,
and predominantly used, for analyzing cryptographic proto-
cols. These are very different than OpenStack: while their
analysis requires creative reductions to hard computational
problems, they are vastly simpler in terms of number of
components, cases, and volume of code. Indeed, coming up
with an effective modeling of OpenStack within the UC
framework is a labor intensive, non-trivial line of research.
This work paves the way in this direction.

Recall that in the UC framework the security requirements
from the analyzed system (or, service) 7 are analyzed jointly
with the functionality requirements from the service. This is
done by way of formulating an ideal service &, which specifies
the desired response (or lack thereof) to any potential external
input. Roughly speaking, the service 7 is said to emulate the
ideal service J if no external environment can tell whether it
is interacting with 7 or with J.

In order to account for some level of allowable “slack” for
« relative to &, the framework allows the analyst to introduce
an intermediary, or a simulator S that controls some of the
interfaces between F and the environment. That is, service
7 is now said to emulate an ideal service J if there exists a
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simulator .S such that no external environment can tell whether
it is interacting with 7 or with a system where some of its
APIs connect to F, and other APIs connect to S. (Typically,
S connects to APIs that we don’t consider to be part of
the desired functionality, such as the communication between
components of the implementing protocol.)

An attractive property of this definitional style is the fol-
lowing natural security-preserving composability: Since the
specification F is written as an “idealized” service in and
of itself, one can design and analyze some other system (or,
service) p where the components of p make calls to one or
more instances of the service &. The UC framework guarantees
that the protocol p? ~7, where each instance of J is replaced
by an instance of 7, continues to exhibit the same security and
correctness properties as the original protocol p. In particular,
if p emulates some other ideal service G, then pbt_”T will
emulate G just the same. (Note that both 7 and p may well be
distributed, multi-component systems in and of themselves.)
Our goal is to demonstrate an approach that enables analysts
to analyze the security of OpenStack in a structured and
perceptible manner. To do so, we provide initial modeling and
analysis of the overall design and operation of OpenStack,
as well as the functionality and security requirements from a
number of core modules (essentially the modules described
above with the exception of Swift and Neutron). Our analysis
validates the overall security of the design, while at the
same time formulating some security weaknesses. Although,
the weaknesses are conceptually known to the OpenStack
community, our analysis shows the right level at which these
issues must be dealt. For example, Sze et al. [28] tried to
solve the token problem by assuming a trusted component
inside Nova. Our analysis shows that such designs are not a
suitable design decision if we are looking for a UC-secure
system. We also propose and analyze methods for properly
overcoming these weaknesses. Our analysis method developed
in this paper covers the high-level design of some main
components of OpenStack. While of course there are numerous
vulnerabilities within each module that are beyond the scope
of this foundational work, our method of analysis developed
in this work paves the way for their eventual capture within
the UC framework.

We first formulate an ideal cloud Feyyg that provides a
simple specification of the functionality and security that we
assert OpenStack achieves. This formulation naturally involves
many design choices and parameters that affect the security
and functionality requirements imposed on the system. We
discuss them within. One important aspect of our ideal cloud
specification is the expected behavior upon various types of
partial corruption (which correspond to corruption of individ-
ual modules in an OpenStack service). This is where we depart
from the current OpenStack package, which does not provide
any security guarantees as soon as any module is corrupted.

Next we formulate ideal functionalities that correspond
to the four services we capture, namely JFcompure> Fimages
FBlockstorages ANd Fpgensiry. Our models for each OpenStack



service aim at capturing the functionality and intricacies of
the actual components of OpenStack, modulo some necessary
modifications that are essential for security. Also here we face
a number of choices that represent different levels of security
of these services.

These services communicate with each other via secure
message transmission Fgyr. Additionally, they use an external
network JFgyne; to communicate with the user, or more specifi-
cally to connect to the user’s Dashboard program (which is our
abstraction of Horizon). Collectively, the joint interactive effort
of these services and protocols comprise a cloud of OpenStack
Services. In the two main results of our paper (Theorems 1
and 2), we prove that the OpenStack services collectively UC-
realize our ideal cloud.

V. MODELING OPENSTACK SERVICES

In this section, we provide an informal account of our
modeling of OpenStack and the security guarantees we assert.
We first describe the behavior of each service and the risk
associated with its compromise. Then, we generalize from
the service-level issues to provide informal, holistic security
properties about OpenStack as a whole. Finally, we survey the
design decisions and degrees of freedom that influence our
model. The informal account in this section is then followed
by the actual definitions of the OpenStack services (Section
VII) and the ideal cloud (Section VI).

Following the approach of the UC framework, we consider
an adversarial environment E' that controls all the interfaces of
the legitimate users with the analyzed service, and in addition
controls the communication network and the compromised
components of the system.

In the context of our OpenStack service, this means that
FE can create new compute nodes with specific images of its
choice, and link nodes to storage volumes subject to their
capabilities. In addition, E can delay or drop arbitrary traffic
on the external network (e.g., the Internet) over which users
communicate with OpenStack. Next, &/ can compromise one
or more OpenStack services, and thus we reinforce the services
to provide defense-in-depth against service-level compromise.
We consider both passive corruptions in which the compro-
mised services continue to function normally but only leak
their internal states to F, and complete corruptions where the
compromized services start running code provided by F.

It is stressed that, while the modeling and analysis considers
only the interaction between E and a single instance of our
cloud service, the universal composition theorem guarantees
that the same security guarantees continue to hold even when
E is interacting concurrently with other instances of our
system and with arbitrary other systems.

A. Functionality and Security of Each Service

We begin by describing several functionalities that encapsu-
late both the functionality and security relationships between
the OpenStack services and the user’s dashboard protocol. In
particular, we model the following functionalities in this work:
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a) Dashboard: Unlike the services described below, the
Dashboard protocol is owned and operated by a single user.
The Dashboard specifies the sequence of service requests
needed to satisfy the user’s desires.

Compromising either the Dashboard or the user directly
gives I the user’s credentials. Hence, F/ can execute any
operation that the user has privileges to perform, but cannot
otherwise tamper with the services in any way; in particular,
users never learn each other’s credentials.

b) Identity: T igensiry is responsible for managing cre-
dentials. It communicates with all users and services. We
presume that Fjgeniry is instantiated with credentials for each
user and service; in practice, these credentials correspond
to bearer tokens that can be acquired via an authentication
protocol involving a username/password. Subsequently, when
any service Fsenice Teceives a request, it may ask Fjgensiry to
validate whether the request is authorized based upon the
credentials provided. Additionally, note that while OpenStack
uses a project/role based permissions system, our modeling is
agnostic to the design of credentials.

When E compromises Fgeniry €ssentially has full control of
OpenStack. It immediately acquires the credentials of all users
and can even change the permissions associated with them.
Furthermore, because all services outsource their authorization
decisions to Figensiry, 2 can make any request and convince all
services to execute it.

¢) Compute: Fcompue 1 responsible for managing the
computing nodes on the cloud. It expects that the commands it
receives over the network originate with the user’s dashboard
service. Then, it relies upon the other OpenStack services to
aid in fulfilling these requests. In more detail, Fcompue accepts
commands from users to create, access, or delete computing
nodes. In response, it may request images from F;,,q4., connect
to volumes stored on Fpjocksiorage-

Compromising Fcompure gives the environment extensive
power: it may create or delete arbitrary nodes from JFcompure’s
records and may also capture the credentials of any user who
subsequently accesses the service and use these credentials to
falsify requests to other services.

d) Image: Fpyqq. stores virtual machine images that can
be used when instantiating new nodes. These images may
either be publicly accessible, or restricted only to users in the
appropriate project. It only provides one method that Feoppure
may invoke to request an image. JFjuqge Will respond as long
as credentials with appropriate permissions are provided.

Compromising Fjuqg. allows the environment to learn both
the images stored on the service as well as all user credentials
that pass through it. However, a compromised JFjqg. cannot
directly influence other services since they never expect in-
coming connections directly from J ;4.

e) Node: Fn,q. 18 our abstraction of a virtual machine;
it can execute arbitrary programs on behalf of the project
that owns it. Nodes are spawned by Fcoppure but then act
independently. Because Fc,mpure sends the code of a node over
the network when it is instantiated, /7 may view the initial



code.

Compromising Fy,q. gives the environment the ability to
view all the current executing code and to maul the computa-
tion performed within the node.

f) Storage and volumes: Fpjocisiorage Manages the collec-
tion of data volumes available for use by users. It provisions
volumes and attaches them to nodes, but then is out of the
loop during subsequent data accesses.

Compromising Fpjocksiorage Permits the environment to at-
tach and detach volumes from nodes of her choice. As a coun-
termeasure to protect the data from unauthorized disclosure,
the volume can be encrypted with a key that is only known to
users with the correct project permissions.

g) Message bus: OpenStack has an internal message
queue to handle communication between services. It allows us
to optionally enable TLS for the inter-service communication.
We model the TLS-enabled message bus using a secure mes-
sage transmission functionality Fgy,r that protects the integrity
of messages; additionally, it protects the confidentiality of
tokens. This is a deviation from OpenStack as-is, which would
allow any compromised service to breach message integrity
and token confidentiality [36].

External communication between services and users (or
their Dashboards) is handled instead by Fgyner, Which provides
data confidentiality but does not authenticate the message’s
sender. This modeling decision reflects the fact that OpenStack
never verifies whether the user sending the message is actually
the owner of the credentials contained therein.

B. Security Assertions

We list below several security guarantees. We stress that
this is an informal description of forbidden or ‘blacklisted’
activities; the UC modeling of Sections VII and VI specifies
exactly the set of permissible activities in a ‘whitelist’ format.

A main ingredient in our modeling and analysis is the
behavior of the ideal cloud upon corruption of individual ser-
vices. This way, we capture the compromises we consider and
the security properties we guarantee in face of compromise.

a) Authentication & authorization: As long as JFjgensiry 18
uncompromised, £ is limited to perform only those actions
authorized by her projects and roles. Corrupt services can
perform actions within their scope on behalf of the environ-
ment, but cannot influence uncorrupted services to perform
unauthorized actions.

b) User control: By moving away from bearer tokens,
we can provide some user control even in the face of service-
level compromises. Bearer tokens allow a corrupted service to
impersonate a user to other, uncorrupted services and perform
unintended actions. See Section VIII for details on our new
tokening mechanism that removes the ability to replay user
tokens and thus reduces the scope of a corrupted service to
only those actions the service is able to perform directly. As
Fnode does not have access to user tokens, a corrupted Fypqze
is unable to make changes affecting the OpenStack control or
data plane. In this sense we model JFy,,. as being fully isolated
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from other Fy,4. instances or OpenStack services. Future
expansion of our F¢,ppue model could include a hypervisor-
like functionality detailing this isolation of Fnyge.-

¢) Resource control: Users may restrict the environment
from accessing and tampering with computing nodes, data vol-
umes, and images as long as two services remain uncompro-
mised: Figeniry and the service managing the object. Put simply,
the services properly separate their control and data planes.
For example, a corrupted compute can delete arbitrary user
nodes, but it cannot influence the data stored on unattached
volumes or the actions of other nodes (e.g., request a new
image from the image service) without user authorization.
This guarantee holds only if E' does not legitimately hold the
required project/role permissions.

Note that all of the guarantees described above only apply
at the OpenStack layer. For instance: if you use OpenStack
to spawn a web server with several known vulnerabilities and
then connect it to the Internet, it is certainly possible for E
to compromise your node. We make no guarantees about the
safety of objects stored within OpenStack, only about their
management by OpenStack.

Additionally, enforcing these security guarantees may come
at the expense of flexibility. Having all security at the border
and full trust within OpenStack makes it easier to realize the
cloud vision of fungibility; for instance, if one node fails then
any worker can be tasked automatically to take over for it. By
chaining all authorization decisions back to the user, we reduce
the cloud’s ability to self-regulate load balancing, scaling, and
failover decisions.

C. Modeling Decisions

In this section, we discuss some of the decisions that
impacted our modeling. First, we needed to decide the scope
of Fcompue Within Nova, the largest OpenStack service. At a
high level, Nova comprises both the front-end API/scheduler
and the back-end worker nodes. We choose to be more fine-
grained so that our model is capable of describing the effects
of compromising part, but not all of the (large) Nova code-
base. This decision is made without loss of generality; com-
promising the entire Nova service corresponds in our mode
to corrupting Feompure and all Fyoqe functionalities. Second,
we augment Fygenir, in Section VIII to strengthen tokens so
they aren’t susceptible to data spills. Third, Fgyr assumes that
services register keys with the message queue so that it can
enforce data integrity and token confidentiality in transit on
the internal network.

VI. THE IDEAL CLOUD

Our ideal cloud functionality is a UC functionality that
provides the user with the following set of commands:
a) CreateNode: Allows a user to create a new node.
b) DeleteNode: Allows a user to delete a node that they
had previously created.
c) AccessNode: Allows a user to execute a command on
one of their nodes.



Algorithm 1 Simplified Ideal Cloud (See the full version of
this paper [22] for the detailed version)
1: Upon receiving (Receiver, ‘“Delete Node”, session-id,
node-id) from E: > Step 1
2: Send-Sim (Receiver, “"Delete Node”, session-id, user-id,
node-id); > Step 2
3: Upon receiving ("Confirm”, session-id) from S: > Step 3
4: valid=False; NodeExist = False; Result = Fail;
5. if user-id is valid & user-id is allowed to delete node node-
id then
6: valid=True;
7. end if
8: Send-Sim (Receiver, "Delete Node”, session-id, user-id,
node-id, valid); > Step 4
9: Upon receiving ("Delete Node”, session-id, Continue)

from S: > Step 5
10: if valid & there is node with id=node-id then
11: NodeExist = True; Result = Success;
12: Delete node-id from the Node list;
13: end if
14: Send-Sim ("Delete Node Completed”, session-id, valid,
NodeEXxist); > Step 6
15: Upon receiving ("Output Delete Node”, session-id) from
S: > Step 7
16: Output(’Delete Node”, session-id, node-id, Result) to F;

> Step 8

d) AttachVolume: Allows a user to attach one of their
volumes to an existing node.

e) DetachVolume: Allows a user to detach a volume
that had been attached to one of their nodes.

It is, in a sense, the simplest specification that is faithful
in both functionality and security to the real services. As
with all UC functionalities, the simplicity of the ideal cloud
is intended to promote understanding and transparency of
OpenStack’s behavior. Here, we exemplify a simplified version
of ideal cloud functionality F ¢y, for the Delete Node function
in Algorithm 1. (The full version of this algorithm, which
includes message buffering, is written in the full version of
this paper [22].) Our formulation of Fcyue is simple: Fepoua
asks the permission of the simulator S for receiving every
Delete Node request, and also its permission for sending each
notification back to the environment. Also, F¢y,.q does not hide
the user credential validity information and the node existence
information, as the adversary may discover the information
from the execution of requests.

The information sent from the ideal cloud to the ideal-model
adversary (i.e., to the simulator) represents the information
that’s allowed to be leaked. Specifically, we hide the user
and service credentials from the adversary, but leak all other
information. We show that, even with this advantage, the ideal
cloud guarantees that the adversary cannot impersonate a user
and make requests on their behalf without compromising the
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Ideal Cloud
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Fig. 1. Delete Node in Ideal Cloud with the Simulator.

user or services.

The ideal cloud also captures the security guarantees that
are still provided in case some of the services get corrupted.
In particular, the ideal cloud specifies the allowed degradation
in security when a particular service is corrupted. (Notice
that in the context of the ideal cloud the various services are
merely names, or tags for the corruption operation made by
the adversary.)

A. Ideal Cloud Walkthrough

In the ideal cloud setting, since we model the cloud as a
single entity, there is no internal communication and it is left
to the simulator to provide the necessary interaction with the
environment. The DeleteNode request begins at Step 1 (Fig.
1) when the environment sends a Delete Node message to
the ideal cloud, through a dummy user who simply forwards
inputs. The ideal cloud, could simply, check that the indicated
user had the correct permissions to delete the requested node
and, if so, removes it from the list of active nodes. However, to
capture the fact that the system leaks the user request, the ideal
cloud sends the user request (without the credential) to the
simulator ( Step 2). When the cloud receives the confirmation
message from S in Step 3 it verifies that user has permission
to delete the node and relays this information to the simulator
in Step 4. In Step 5, the simulator tells the cloud to continue.
The cloud will then verify that the node exists and remove the
node from the list of active nodes and notifies .S in step 6.
By receiving the continue message from S (step 7), the cloud
outputs the success message to the environment through the
dummy user in Step 8.

The simulator acts somewhat differently if a service (say,
the Nova compute service) has been compromised. For this
reason, the ideal cloud sends S a list of user-ids that have
been compromised when compute is corrupted. Additionally,
we observe that the environment can send any message on
behalf of the corrupted compute; since the simulator cannot
directly answer any requests that the environment might make
to another (uncompromised) service, S must forward such
requests to the ideal cloud and get a response through its



specific interface. This decreases the security guarantees that
are provided by the cloud.

B. Accounting for Existing Weaknesses

In the case of having compromised services, in order to UC-
emulate OpenStack Services, we had to weaken the security
guarantees of the ideal cloud. For example, when Nova is
compromised, the adversary is able to send a request to Glance
using user’s credential to get an image. This means that the
simulator should be able to provide the requested image to
the environment. The simulator does not have the image,
therefore it need to ask the ideal cloud. However, the ideal
cloud does not respond to this type of simulator’s requests.
In order to realize the OpenStack Services, we had to remove
some of ideal cloud security check points, which decreases
the security guarantees. That is, for this example, when the
simulator sends a request to get the image (for a corrupted
user) while the user has not requested a node to be created,
the ideal cloud does not check whether the user has made a
“create node” request or not and instead will simply respond to
the simulator. The OpenStack security imperfections discussed
in the introduction under the subtitle Security weaknesses
formalized and contextualized are the principal reasons for
decreasing the security guarantees.

In order to understand why these weaknesses come into
place, in the next section, we look into how real services
work. We will also explore one of these weaknesses (the token
mechanism) in more detail and see how an improved version
yields a stronger ideal cloud (Section VIII).

VII. OPENSTACK SERVICES

Env

I I I

User

User User

Dashboard

I |

External Network

Dashboard Dashboard

T

| Compute | Storage |

i
| Volume |

i i
| Volume | | Volume I

Fig. 2. OpenStack Services: Arrows indicated expected lines of commu-
nication; other communication flow is possible, but will be ignored. Gray
arrows show communication with the adversary, dashed black arrows indicate
communication through JFgyr, and solid black arrows indicate a direct
communication.

In this section we describe our model of a simplified
OpenStack cloud. The service functionalities, in conjunction
with the message passing functionalities, collectively provide
the same set of possible commands as the ideal cloud in the
previous section.
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We require both that the services maintain the confiden-
tiality of users’ credentials while executing the commands
and enforce that only a user in possession of the required
credentials will be able to execute a command.

A. Example Workflow

Env

g

User
Dashboard
Protocol
171 (2
il "
| External Network
4,16
14T15
|Compute| | Identity |
13{16 9[110
7,11
SMT
8,12

Fig. 3. The Delete node functionality starts when the environment sends
a "DeleteNode” message to the user. Next the user adds its credentials and
sends it to the Fcompure- Then, F compure creates a validation request t0 Fygensiry
in order to validate user’s credentials. Based on the validation result and the
node existence, Fcompure deletes the node and notifies the user. We describe
the workflow in detail in Section VII-A.

We will walk through an example of how a user would
delete its node using these service functionalities and a
dashboard protocol. This example will show the interaction
between the Feompure and Figensiry services and the user. We
note that all messages between services will pass through
Fsur while any messages between the user and services will
go through Fgyne,. We will briefly mention this during the
description and it can be seen in Fig. 3 as well.

This interaction begins at Step 1 (Fig. 3, Algorithm 2)
when the environment sends a DeleteNode message of the
form ("Delete Node”, session-id, node-id) to the user. The
user will then reformat this message in Step 2 to include their
credentials and send it to Fgyne to be forwarded to Fcompure-
When Fgyne, (Algorithm 3) receives the message it removes
the user’s credentials and leaks the rest of the message to
the adversary in Step 3. After receiving a (Confirm, session-
id) message from the adversary in Step 4, Frunes sends the
original message on to Fcompue. In Step 5, (Algorithm 4)
Fcompure TECEIVES the message from the user and creates a
request of the form (Fygeniry, “Service Validation”, session-
id, creds ompuse, creds, "Delete node-id ) t0 Frjensiry Via Fgyr
in Step 6 (Algorithm 5). The message passing by Fgyr will
proceed as in Steps 3-4. After Fjeniry receives the validation
message from Fcompue in Step 9 (Algorithm 6) it will check
that the user has permission to delete the requested node and
send an appropriate response t0 Fcompure, again via Fgyr, in
Step 10. Once Feompure receives the validation message from
Fldentiry in Step 13, it will delete the requested node if the node
exists and the validation was successful, otherwise it will note



that the request failed. In Step 14, F¢ompure Will send a message
to the user, proceeding as before through Fgyy., notifying
them of the result of their request — either the successful
deletion of the node or its failure. The user, upon receiving this
message in Step 17 will output the result to the environment
in the final step.

B. Realization of This Workflow

We write specifications for our functionalities in pseudocode
with relevant snippets for the DeleteNode workflow shown in
simplified Algorithms 2, 3, 4, 5, and 6. The complete, rigorous
algorithms can be find in the full version of this paper [22].

Algorithm 2 Dashboard Example Workflow
Upon receiving Request-Message from F:
User U Creates (Upashboards Fservice» Request-Message,
creds);

Send'\rfExtNet(UDaxhboard’ ?Service’ Request—Message, crea’s); >
Step 2

Upon receiving (Sender, Output-Message) from Frgne: >
Step 17

Output (Output-Message) to F;

> Step 18

Algorithm 3 External Network Example Workflow

1: Upon receiving (Sender, Receiver, Message): > Step 2

2: Create New-Message by removing the credentials and
replacing them by their IDs;

3: Send-Adversary(Sender, Receiver, New-Message); > Step
3

4: Upon receiving (’Confirm”, session-id) from Adversary:
> Step 4

5: Send-Receiver(Sender, Message); > Step 5

Algorithm 4 Compute Example Workflow
Upon receiving (Receiver, ”"Delete Node”, session-id, node-
id, creds) from Fpyunes: > Step
5
Send-Fsuyr (Fcomputes Fidentiry, "Service Validation”, session-
id, credscompuse, creds, “Delete node-id 7); > Step
6
Upon receiving (Fjgensiry, ~“Service Validated”, session-id,
user-id, service-id, Request, valid) from Fgyr: > Step 13
Result = Fail;
if valid & a node with id=node-id exists then

Delete node with id=node-id; Result = Successful;

end if
Send-Fruner (Fcompute, Receiver, “Delete Node”, session-id,
node-id, Result); > Step 14

We allow the adversary to compromise users or services
(Algorithms 7 shows corrupted Compute). A compromised
user or service will reveal all of its internal state to the
adversary and will from that point on be under full adversarial
control. In particular, compromised users and services will not
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Algorithm 5 SMT Example Workflow
Upon receiving (Sender, Receiver,Message): > Steps 6, 10
Create New-Message by removing the credentials and re-
placing them by their IDs;

Send-Adversary(Sender, Receiver, New-Message); > Steps
7,11

Upon receiving ("Confirm”, session-id) from Adversary: >
Steps 8, 12
Send-Receiver(Sender, Message);

> Steps 13, 9

Algorithm 6 Identity Example Workflow
Upon receiving (Receiver, ’Service Validation”, session-id,
credSgemice, creds, Request) from Fgyr: > Step 9
if credsgevice & creds are valid & creds is allowed to
perform the Request then

valid=True; else valid=False;

end if
Send-Fsyr (Frdentiry, Receiver, ”Service Validated”, session-
id, user-id, service-id, Request, valid); > Step
10

necessarily follow any specified protocol and can form their
own messages at will. This is particularly relevant in our case
because, upon compromising a service the adversary will learn
not only its credentials, which are part of the internal state of
the service, but also any credentials that service learns in the
future. That is, any user that makes a request to a compromised
service will also leak its own credentials to the adversary.

C. Security Analysis

The following theorem connects our UC models of the
services to that of the ideal cloud.

Theorem 1. The OpenStack Services protocol from §VII UC-
realizes the Ideal Cloud Fciyuq from §VI in the (Fpuner, Fsmr)-

Algorithm 7 Corrupted Compute
function RECEIVEMESSAGE
Upon receiving (Source, message) from Fsyr \Fruner:
Send-Fgyr (source, Adversary, message);
end function

function SENDMESSAGE

Upon receiving (Adversary, “Forward”, message, desti-
nation) from Fgyr:

Send-Tsyr (Fcompure, destination, message);
end function

function MAIN

Upon receiving a message which does not contain
“Forward” & Source=Adversary from Fgyr:

Apply the request;

Send-Fsyr (Fcompure, Adversary, result of the request);
end function




hybrid model.

We defer to the full version of this paper [22] a rigorous
specification of the all ideal services, the ideal cloud, and
the simulator connecting the two. In this space, we simply
highlight the main ideas involved in the proof.

Proof sketch. As with most UC analyses, our argument pro-
ceeds via induction on the steps taken by the environment
E. We show that for any message that £/ might send, the
next incoming message received by E maintains the invariant
that E’s view in the ideal cloud and OpenStack Services is
identical. More specifically, for any state that F can reach,
the action of the simulator S up to that point must have
ensured that E’s view is the same in both worlds. Ergo, E
cannot distinguish whether it is interacting with the OpenStack
Services or with the composition of ideal cloud and the
simulator. At each step of the induction, we show that the
following three properties are maintained.

1) The simulator faithfully emulates the entire workflow
required to process one user-provided command, when
viewed standalone.

The simulator faithfully emulates two interleaved user-
provided commands such that the resulting state is the
correct outcome after executing the two commands in an
adversarially-controlled order. Put differently, there are
no race conditions that cause the services to reach any
kind of “weird” state.

An adversary who compromises services can only lever-
age them to damage other (uncompromised) services by
leveraging OpenStack’s token mechanism for authentica-
tion and authorization. Our ideal worlds accurately reflect
the extent of the damage that the environment can cause
by misusing acquired bearer tokens.

2)

3)

In the full version of this paper [22], we demonstrate these 3
properties via a tedious, yet straightforward, case analysis of
all types of valid messages F can send and all actions that S
is programmed to perform in response. O

Looking ahead to the next section, only property 3 of this
analysis must change if the token mechanism is improved.

VIII. IMPROVED TOKENING MECHANISM

Our analysis has shown that the simulator of the ideal cloud
cannot emulate the corrupted services unless we relax the
security promises of the ideal cloud. To a large extent, these
concerns arise due to the use of bearer tokens, which enable
anyone who can see a token to masquerade as corresponding
user and perform any action allowed to the owner of the token
on behalf of him. Bearer-tokens are leaked to the adversary in
both partially and fully corrupted services which could happen
through a vulnerability. Once a service corrupted, it could be
malicious in at least two important ways:

« A service can use a token to obtain unrequested services
charged to the user.
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e A service can use a token to access other resources
at another service (like exporting a disk with sensitive
information).

The above problems are not tolerated by the cloud users.
Having a bug free cloud is not realistic, but reducing effects of
buggy code is possible. It is desired to have OpenStack guar-
antee the modularity security requirement defined as follows:

Definition 1. Modularity Security Requirement: If an ad-
versary corrupts a service, other services just do whatever
requested to do by the users, nothing more. For example, if
an adversary corrupts the Image service, he cannot create or
delete a node, but if a user issues a “create node” command,
it is possible to create a node with a corrupted image because
of the image service corruption.

We propose to limit the impact of service corruption by
preventing replay attacks and scoping tokens only to handle
the request desired by the user by following an idea laid out
in [17], [28]: building tokens that can only be used once.

A. One Time Tokens

Within the OpenStack services, we modify all uses of tokens
so that each token may only be used to perform a single
request requested by the user (even if this request necessitates
action by many services). Specifically, we modify Keystone to
sign tokens that have been scoped by the user (and potentially
scoped further down as it is passed from one service to the
next) and also to maintain a blacklist of all redeemed tokens.
A one-time use token scoped to a specific job resembles a
“ticket” as used in Kerberos [37] or in TLS 1.3’s zero round
trip time mechanism [38].

Restricting tokens to be single use with specific parameters
limits the capability of the adversary to misuse tokens that
he captures by corrupting a service. Previously a corrupted
service could store all tokens it sees and use them at will.
This modification ensures that once a token has been used it
will not be accepted again in the future. Additionally, since
tokens are scoped, it is not possible for a corrupted service
to lie to uncorrupted services about the content of a user’s
request. Specifically, users will indicate when requesting a
token exactly which of their resources it grants access to. This
would not prevent a corrupted Compute from deleting a node
when a user had asked to create one or creating a node with a
completely different specification since Compute could simply
do these things without bothering to verify the token, but it
would prevent Compute from requesting a different image
from the Image service than the one the user had intended.
This helps in the case where the adversary has not already
seen, via a request by a different user, the image it would like
to have Compute use. Scoped, single use tokens even benefit
functionalities that go beyond those captured in our model;
for example, an adversary who corrupts a VM is not able
to bring down the cloud by observing user tokens in Nova
message queue (this issue was discussed in [28]). We also
remark that there is another notion of limited-use tokens with



a security-performance tradeoff. Many OpenStack engineers
desire a stateless Keystone architecture in order to distribute
the authentication process over several servers for improved
scalability and performance. If it is desirable to keep Keystone
stateless, then one could instead design “limited-reuse” tokens
with a short lifetime. While one could model the impacts of
limited reuse by combining rate limiting with a UC model of
network time [18], we focus on the One-Time token presented
above with an explicit blacklist to prevent reuse.

B. Improved Security Analysis

We demonstrate that the improved services collectively
realize a more secure cloud framework. We defer to the full
version of this paper [22], where we provide a complete
specification of all improved services, the new ideal cloud,
and the simulator connecting the two.

Theorem 2. The strengthened version of OpenStack Services
using a one-time token securely realizes the less-leaky ideal
cloud 9:Cl(md_OneTim«e in the (S:ExtNet’ 9:SMT)'hybrid model.

Proof sketch. The simulator in the scoped one-time token
model is more stringent than the simulator in the unscoped
bearer token model. To enforce the single-use constraint, S
creates a black list to store the services that have already
checked the validity of a credential using session-id; the
simulator then rejects all future attempts to validate the same
credential. To enforce the scoping constraint, .S only issues
credentials when given both a session-id and a request scope;
the simulator records this intended scope and subsequently
rejects all attempts to validate the credential in pursuit of a
request outside of this scope.

With this augmentation to the simulator, the modularity
of UC allows us to prove Theorem 2 with only a few
modifications to the existing proof structure. Properties 1 and 2
from Section VII-C continue to hold in the one-time token case
because those properties only demonstrate correctness when
all services are uncompromised, in which case there are no
tokens (of any type) for the adversary to abuse. Hence, we
must only augment one property and add one more.

3’) The view of E is identical in the Fcipuq onerime and the
OpenStack services even when services are compromised,
as long as each observed token can only be used one time.

4) The cryptographic design of our stronger tokens ensures
that each token may only be used once. O

C. Making Security Analyses Accessible

Juxtaposing the ideal clouds in the bearer token and one-
time token scenarios can be quite illustrative. As an example,
from the code of the two ideal clouds, it is easy to see that a
corrupted Fpiocksiorage can tamper with the delivery of an image
from Fppage t0 Fcompure during a Create Node operation in the
bearer token model, whereas the same attack is not possible in
the ideal cloud for the one-time token model. Importantly, this
comparison can be observed without looking at our simulators
and proofs; put another way, only the ideal cloud algorithms
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are in the trusted code base. As a result, our analysis is
accessible to the OpenStack development community, since
they are already comfortable with reading code.

More generally, the UC ideal cloud that models any sug-
gested security improvement permits OpenStack developers to
understand concretely the value added by this improvement.
This is an example for how UC modeling can provide devel-
opers with a valuable new tool that they can use to balance
the relative importance of addressing any of the numerous bug
reports on their plate at any given time.

IX. CONCLUSION & FUTURE WORK

This work lays the foundation for a full-scope composable
security analysis for the popular cloud management framework
OpenStack. It brings a number of communities together:
On the one hand, our abstract model is substantially easier
to absorb than the code of OpenStack and therefore opens
OpenStack to a wider group within the cryptography and
programming languages communities. On the other hand,
our modular analysis provides the OpenStack development
community with a better understanding of the security con-
cerns surrounding some of its core design issues as well as
(more importantly) a concise, tangible description of how the
security of the overall cloud concretely improves by making
moderate software improvements. Put differently: the modular
analysis can both expose bugs and provide motivation for the
developers to address them. Importantly, our approach can also
be used to assert security, namely prove lack of flaws.

This work covers only some of the core functionality
provided by a full featured cloud. In particular, there are still
many remaining features necessary for fine grained access
control. More work is needed in order to: (a) cover more
services, (b) consider more attack (corruption) options and the
security guarantees provided in these cases, and (c) analyze
implementations of the various services and the associated
security caveats and vulnerabilities.

While we leave these challenges to future work, we note that
this last point is where the power of universal composability
is put to use: our model can be extended to include internal
components of services such as Compute and Storage in order
to show how these subsystems combine to realize the ideal
services Feompue and Fpiocksiorage that we use in this work.
This level of modeling also enables clearer discussion of the
effects of single-node compromises.

Furthermore, our model is easily extensible to add additional
OpenStack components. There are four steps involved in
adding a new service to the model: create an abstraction of
its own functionality, apply local changes to other services
that interact with the new service, extend the ideal cloud,
and augment the simulator. Creation of a new service Fgeyice
is modular, and the second and third steps are very simple
to do. While augmenting the simulator is currently tedious
and non-modular, our work shows that a domain specific
language for UC functionalities could streamline this process
by expressing its current programming (which is mostly case



statements based upon the messages it receives) in a more
abstract and event-driven style. Such a change would synergize
with another direction for future research: mechanizing the
analysis, especially the proofs of security.

Overall, we believe that this work provides an impor-
tant benchmark to show the feasibility of modeling large-
scale software packages within the framework of Universal
Composability. Modularity was a crucial component toward
keeping the models and analyses manageable. Indeed, this
work demonstrates the value of conducting similar analyses
of other software deployments in the future.
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