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Abstract—
Software applications that employ secure multi-party com-

putation (MPC) can empower individuals and organizations to
benefit from privacy-preserving data analyses when data sharing
is encumbered by confidentiality concerns, legal constraints,
or corporate policies. MPC is already being incorporated into
software solutions in some domains; however, individual use cases
do not fully convey the variety, extent, and complexity of the
opportunities of MPC. This position paper articulates a role-
based perspective that can provide some insight into how future
research directions, infrastructure development and evaluation
approaches, and deployment practices for MPC may evolve.

Drawing on our own lessons from existing real-world deploy-
ments and the fundamental characteristics of MPC that make
it a compelling technology, we propose a role-based conceptual
framework for describing MPC deployment scenarios. Our
framework acknowledges and leverages a novel assortment of
roles that emerge from the fundamental ways in which MPC pro-
tocols support federation of functionalities and responsibilities.
Defining these roles using the new opportunities for federation
that MPC enables in turn can help identify and organize the
capabilities, concerns, incentives, and trade-offs that affect the
entities (software engineers, government regulators, corporate
executives, end-users, and others) that participate in an MPC
deployment scenario. This framework can not only guide the
development of an ecosystem of modular and composable MPC
tools, but can make explicit some of the opportunities that
researchers and software engineers (and any organizations they
form) have to differentiate and specialize the artifacts and services
they choose to design, develop, and deploy. We demonstrate how
this framework can be used to describe existing MPC deployment
scenarios, how new opportunities in a scenario can be observed
by disentangling roles inhabited by the involved parties, and how
this can motivate the development of MPC libraries and software
tools that specialize not by application domain but by role.

I. INTRODUCTION

Individuals and organizations face a tension between har-

nessing the power of data and the liability associated with

the possession or potential exposure of that data, leading to

lost opportunities in data analysis and the consequent benefits

thereof. Software systems and applications that employ secure

multi-party computation (MPC), a cryptographic technique

that allows independent parties to jointly compute a shared

result without revealing their private inputs to the parties

performing the computation, can empower individuals and

organizations to benefit from privacy-preserving computations

over data in contexts where data sharing is limited by confi-

dentiality concerns, legal constraints, or corporate policies.

In the near future, academic and industry organizations will

begin drawing from a rich body of existing work on MPC

to develop and implement novel software tools, systems, and

platforms. These will in turn enable individuals, researchers,

businesses, government agencies, and policymakers to use

modern frameworks and development environments to build

and deploy applications that allow cooperating parties to

compute analytics over data belonging to multiple entities

without the expense, liability, or privacy loss associated with

contributors submitting that data to a single trusted entity.

Real-world applications enabled by such an infrastructure can

empower their users by allowing for new forms of collabora-

tive data analysis.

MPC has been an active area of cryptography research for

more than 35 years [1]–[4]. The past decade has seen intense

focus on improving MPC algorithms and designing MPC

frameworks that perform quickly enough on domain-specific

functions likely to be of interest in practice [5]–[9]. Due to

these efforts, MPC is starting to become a mature technology

that is ripe for transition to practice in appropriate application

domains: real-world deployments of MPC are accumulating,

and it is clear that domain-specific solutions can have the

requisite performance and usability properties that drive (or

at least do not hinder) adoption of MPC. However, we can

envision that at some inflection point, researchers, practition-

ers, organizations, and entrepreneurs will see opportunities to

create more general solutions.

The opportunities and benefits associated with the use of

MPC techniques can be subtle, highly sensitive to context,

unfamiliar, and counterintuitive to the full range of stakehold-

ers: software engineers, government regulators, corporate ex-

ecutives, end-users, and others. While acceptable performance

within the target domain is a necessary requirement for adop-

tion of MPC, it is by no means sufficient when considering the

broader deployment context [10], [11]. To address the concerns

of all stakeholders, performance, scalability, and modularity

of techniques and functionalities can ensure the means, but

all key players must also have the incentive and capability
to use these techniques. Basic research alone cannot (and

should not, given the potentially limited resources of research

communities) address all of these challenges.

If other individuals and organizations wish to contribute

to the development of MPC (and if those in the research
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community wish to support and encourage them to do so), how

can they motivate and organize their contributions? Modularity

through domain specialization provides one natural answer, but

this may lead to lost opportunities for reuse of knowledge,

reuse of code, and exploitation of heterogeneities and asym-

metries among stakeholders that occur in multiple domains.

Such an approach may also overlook opportunities and incen-

tives for those who wish to (inevitably) build and contribute

general-purpose solutions that cut across domains. Through

our deployment efforts, we have observed an orthogonal way

to introduce modularity: via specialization of roles that entities

can inhabit within MPC deployment scenarios.

Our explicit focus on roles may in some ways look familiar

to practitioners within the broader cybersecurity domain [12].

However, the manner in which roles are incorporated into

our proposed framework differs from past work: the primary

reason that an entity inhabits a role in our framework is to

identify how it enables the federation (via MPC) of some
functionality or responsibility (and not, unless by coincidence

or implication, to identify its capabilities or responsibilities

with relation to disclosure or integrity). At a higher level,

the purpose of introducing roles is also distinct from that of

previous work: we argue that our role-based approach provides

a novel way to explicitly identify, articulate, and motivate
future directions for research and development efforts that

incorporate MPC technologies and software solutions.

Secure MPC as an Accessible Service: Compelling real-

world uses of MPC are numerous; applications include anal-

ysis of pay inequities [10], disease surveillance [13], satellite

collision prevention [14], tax fraud detection [15], electricity

trading markets [16], scientific discovery [17], genomics [18],

and global advanced persistent threat identification in corpo-

rate network data [19].

Despite a small number of successful deployments of MPC

for social good in areas such as tax fraud detection [15],

the impact of MPC has mostly remained limited to proof-

of-concept studies. Adoption of MPC is in part hindered

by the fact that the existing frameworks are engineered to

optimize for metrics that are not sufficient on their own to

drive adoption in practice. Many efforts compete on com-

putational performance for small-scale data (a domain in

which all modern frameworks are adequate [20]) while not

addressing human-scale performance costs: tools require users

to become familiar with new domain-specific languages, to set

up compatible hardware infrastructures, or to understand and

appreciate the benefits of counterintuitive trust relationships.

These circumstances can be burdensome for software engi-

neers, administrators, and non-technical stakeholders.

Lessons learned from experiences in creating and success-

fully deploying MPC solutions for concrete applications reflect

an emphasis on a domain-specific solutions for a particular
deployment scenario; as expressed by others in the community

[21]: “Secure computation is a general scheme; in reality one

has to choose an application, starting from a very real business

need, and build the solution from the problem itself choosing

the right tools, tuning protocol ideas into a reasonable solution,

balancing security and privacy needs vs. other constraints:

legal, system setting, etc.” We also agree with the assertion

[21] that only after a solution addresses a concrete need is

it appropriate to “Understand, employ, and generalize useful

routines: Building more general routines and secure computa-

tion software packages of actual business value may, therefore,

be a result of collecting various examples of actual useful

deployments first, and then creating a common API/software

packages based on actual use and experience, in a bottom

up fashion.” But in what ways is it possible to generalize

solutions? Once numerous solutions exist, how do we expect

the MPC landscape to develop into the future? With a desire

to extrapolate from these sentiments and motivated by an

examination of successful deployments, we propose a model

that will help us (and others) envision and proceed into this

next stage, as well as to replicate such successful sequences

for new use cases and new concrete needs.

Our Vision: This position paper proposes a vision that

consists of a conceptual framework for analyzing and ex-

ploiting the various heterogeneities and asymmetries in roles,

concerns, incentives, and resources/capabilities of parties par-

ticipating in MPC. We believe that MPC frameworks and

tools can allow cryptographers and software engineers to

consciously and deliberately encode these various roles within

complex MPC software systems. Such tools can then be

explicitly designed to assist the different parties (with varying

technical capabilities) in designing, developing, and deploy-

ing these systems. Our proposed conceptual framework is

informed by–and contextualizes–a number of criteria that must

be satisfied to enable a successful MPC deployment. This is

due to the fact that our vision is informed and motivated by

our own experiences in overcoming obstacles to adoption and

deployment while building MPC applications [10], [11], [22]–

[24], by the identification of new applications for MPC via

the disentangling of roles [25], by insights from deployment

efforts undertaken by other groups, and by the rich variety of

approaches to secure MPC found in related research efforts.

II. EXISTING APPROACHES IN RELATED WORK

This position paper draws on prior work to advocate that

developers of MPC libraries, systems, and applications target-

ing real-world scenarios and practical settings should adopt a

particular design perspective. We briefly review related efforts

in developing MPC frameworks, deploying MPC applications

in the real world, and addressing usability and deployability

of applications that utilize MPC.

The past few years have seen several successful deploy-

ments of MPC [26]–[28]. Further, an array of software frame-

works is available. These range from proprietary implemen-

tations [7], [29] to open-source, proof-of-concept work [6],

[8], [9], [30]–[34]. Available frameworks vary not only in

software maturity, security guarantees, and APIs but also in the

roles that parties must inhabit to participate, the requirements

that can be satisfied, and the communication topology of the

participating parties. We note that these frameworks are often

designed with a specific setting in mind, and make a variety
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of implicit assumptions about the concerns, incentives, and

capabilities of participating parties. This leads to restrictions

on the various roles that a party is allowed to inhabit, or the

interactions it is allowed to perform, which may diverge from

many interesting real world settings. These restrictions also

apply to many recent highly-engineered MPC protocols [35]–

[38] that exploit properties of the specific setting for which

they are designed to increase efficiency or achieve desired

properties.

Most frameworks do not clearly distinguish between com-

pute parties, data analysts, data contributors, and policy ex-

perts. However, two predominant communication models can

be identified: (1) peer-to-peer frameworks in which all partic-

ipating parties are connected to each other and are required

to install the MPC framework locally on their own computing

infrastructure to participate, and (2) client-server frameworks

in which there is a central server running an installation of

the MPC framework while the other parties are mutually

unreachable, web-based clients. This distinction most closely

relates to the features of our proposed framework and is of

particular interest with regard to accessibility of deployed

MPC solutions. We examine some of the frameworks avail-

able in each category and highlight some feature-enhancing

opportunities and adaptation challenges to be addressed in

incorporating these frameworks into the proposed ecosystem.

Peer-to-peer: The majority of existing MPC frameworks

follow the peer-to-peer communication model. Among these,

most frameworks are open-source research prototypes [6],

[8], [9], [30]–[34]. In many cases, the framework’s authors

explicitly discourage use in production [6], [8], [9], [31],

[34]; furthermore, in these frameworks all participating parties,

including contributors, must deploy the software framework on

mutually available servers that remain online for the duration

of the protocol execution [30], [32], [33], [39]. The proprietary

frameworks [7], [29] are closed-source, which does not allow

for auditing by the public (auditability is one of the criteria

defined in section IV-A for successful MPC deployments). It

is important to note that there is a variation of the peer-to-peer

model [7] that enhances usability by distinguishing between

the role of a contributor and service provider. In this model

contributors secret-share their input data among multiple ser-

vice providers via the browser. The service providers then

jointly compute the required analytics over the secret-shared

data.

Client-server: In the client-server model one entity ef-

fectively acts as a service provider while the analyst and

contributors can be viewed as resource-constrained clients.

Unfortunately, this setting has received far less attention in

the community and available frameworks are sparse [40],

[41]. The work by Schröpfer et al. [40] is a web-based

implementation of Yao’s garbled circuit scheme that allows

two browser clients to perform a secure two-party compu-

tation leveraging a web server for communication and code

delivery. The framework is closed-source and restricted to

two parties. Canon-MPC [41] offers a web-based system that

supports MPC with symmetric binary functions. Each partic-

ipant registers an account on the system, can start a session

by choosing a symmetric binary function, and can indicate

which other registered users are contributors. The contributors

evaluate the agreed-upon function with the aid of a service

provider. Each contributor interacts with the service provider

exactly once, simultaneously submitting data and performing

part of the computation. At the end of the computation the

contributors receive the outcome of the function. While Canon-

MPC addresses many of the shortcomings of the traditional

peer-to-peer model, it falls short of meeting several usability

requirements that we will introduce in Section IV: auditability

(the cryptographic library is delivered as a compiled binary

and runs in Google’s proprietary NativeClient), accessibility

(only Google Chrome is supported because of the reliance on

NativeClient; Google has also indicated it ceased development

on NativeClient [42]), asynchronicity (while participants do

not have to enter data in any particular order, no two partic-

ipants can access the system at the same time; this does not

scale past a few participants), and idempotence (data cannot

be corrected after submission). Furthermore, we remark that if

not all contributors submit their data, a second pass is required

to finish the session. Importantly, Canon-MPC does not distin-

guish between the contributor and service provider roles: any

party that contributes data must also actively participate in the

computation. In terms of usability this is, in a sense, a step

backwards from the model adopted in peer-to-peer frameworks

such as Sharemind, which do distinguish between contributors

and service providers. Minimizing the participation effort for

contributors and increasing the robustness of the platform

to contributors failing or neglecting to participate can be

crucial as it addresses the fact that, in some deployment

scenarios, contributors only have weak incentive to contribute

data. At the same time, it may be natural to expect more

active and reliable involvement from the analysts since these

parties directly benefit from a successful completion of the

computation.

The underlying implicit assumptions in these frameworks

motivate our discussion of the role-based framework in the

next section, where these assumptions are made explicit and

configurable by the various participating parties. An MPC

system should allow solutions to reflect and utilize these asym-

metries in a deployment scenario, and to assist in choosing the

optimal primitives and protocols used in the system [43].

III. ROLE-BASED FRAMEWORK

Transitioning MPC techniques to practice in a way that

drives adoption necessitates a multi-faceted approach that

begins well before software engineering efforts commence.

MPC’s social benefits cannot be realized unless the decision

makers that ultimately choose to adopt MPC (i.e., executives,

directors, and legal advisors) have a clear and confident under-

standing of exactly what role they (and other entities) play in

the process, as well as how MPC protects their sensitive data

and mathematically guarantees compliance with data sharing

restrictions. Once a solution is accepted, it should ideally be

easily and rapidly deployable at little or no cost, and should
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not necessitate changes to existing infrastructures and internal

data-management processes (e.g., the various schemas that

participants use internally). Finally, it should in all aspects

support the needs of the users who interact with the solution.

One way to introduce MPC capabilities into practical sce-

narios in a manageable way is to separate existing func-

tionalities into distinct, modular, reusable, and composable

components. These components should individually satisfy

concrete needs identified by early adopters of MPC facing

real-world use cases. These can then be generalized through

incorporation of alternative and complementary techniques and

software systems found in the literature. Finally, they can be

applied in the construction and deployment of novel MPC-

based solutions.

When examining a deployment scenario, it is critical to eval-

uate the roles that various parties take on, what their concerns

are, what incentives exists for each party to participate, and

their capabilities (as enumerated in Table I).

Roles Concerns Incentives Resources

Decision Maker Cost Legal Compliance Web Browser
Policy Expert Security Business Need Web Server

Data Contributor Privacy Data Access Database
Programmer Liability Compensation Cloud Service
Data Analyst Reputation CDN

Recipient Usability
Storage Service Participation

Compute Service Correctness
Code Auditor

Code Distributor

TABLE I
ROLES AND DIMENSIONS OF INTEREST TO PARTICIPATING PARTIES

A. Roles.

An effective infrastructure should have functionalities subdi-

vided into distinct roles (see Figure 1) that might be inhabited

by different agents (such as servers, mobile devices, desktops,

human users, organizations, and so on) within a broader con-

text. In a given MPC solution, each agent can inhabit multiple

roles. We advocate for a clean separation of the duties and

functionalities that may be required for an MPC application

into roles that are distinct, modular, and composable. Together,

we can view all these as being supported by an ecosystem
of interdependent and interacting software (and potentially

hardware) solutions.

The design of ecosystem components (including libraries

and applications) can be organized around these roles, and

should not predetermine which roles the agents (i.e., servers,

devices, application instances, and human users) must inhabit.

Ultimately, functionalities can then be exposed via a frame-

work and API as roles that are coupled with information about

which agents can inhabit those roles and which needs they

satisfy. We enumerate some of the roles we have identified (ac-

knowledging that there may be others) and note in a scenario

each agent may inhabit more than one role simultaneously.

• A decision maker makes informed decisions on behalf

of organizations and businesses and in return increases

the willingness of participants to contribute their sensitive

data. Decision makers must first gain confidence in the

technologies proposed, appreciate that it would impose

no significant burdens on their staff and infrastructure,

and be assured that features such as idempotence and

asynchrony would make deployment logistically feasible

and likely to produce meaningful results.

• A policy expert can provide expertise on how to specify

appropriate policies over the data schema (e.g., given

legal restrictions, best practices, or constraints chosen by

the data contributors). The policy expert may have the

expertise to participate in the development of an appli-

cation, or may have no such expertise and would require

an accessible way to express policies on contributed data

that the application would then enforce.

• A data contributor is the user (an individual or an

organization) of an application that supplies the sensitive

data to be analyzed. Note that the data contributor may

not know in advance the particular analyses that others

may want to apply to the contributed data (in other words,

any policies the data contributor may be able to specify

may be analysis-agnostic at the time the data is being

contributed). Note also that a contributor may not have

the sophistication necessary to deploy virtual machines

or servers when participating in a protocol (for example,

it may be an individual using a mobile device or a web

browser).

• A data analyst (often the same as the result recipient)
specifies the analytics to be computed on data. This is

normally done by an analyst with full knowledge of the

schema of the data, but not necessarily with advance

knowledge about who owns the data or what data sharing

constraints apply to that data (in other words, the data

analyst’s algorithm specification may be policy-agnostic).

• The recipient is the party that receives the result of com-

puting the secure multi-party analytic. Only recipients can

benefit from the result of the computation, but different

parties may receive different kinds of information (e.g.,
an individual user might only have access to information

about how their own metrics stack up against other users,

while a service provider might see aggregate metrics

across all users). As before, the recipient may not have

sophisticated hardware, software, or technical expertise.

• A compute service has the capacity to deploy and main-

tain computational resources to allow analytics to be

computed (e.g., on data that may already be secret-

shared). Once again, for simple applications, the service

provider may only have a mobile device or web browser

to contribute; in more complex scenarios, the service

provider maybe be a large organization or even an entire

cloud provider. Such a service provider may also act as

a proxy or aid for data contributors or analysts that have

limited resources [44].

• A code auditor verifies the correctness of the code to be
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Fig. 1. An instance of the ecosystem that includes a collection of entities, the roles they inhabit, and the workflows that exist among them; a distinction is
made between the design/development stage during which entities agree on the solution, and the deployment stage during which it is executed.

executed by compute services and data contributors, and

must participate in additional mechanisms for ensuring

integrity of delivered code.

• A code distributor makes available the actual application

(or the specification of the particular computation) to be

executed by compute parties on data provided by the

data contributors. Since the integrity of the computation

(and its conformance to the policy specialist’s constraints)

relies on the trustworthiness of the delivery mechanism,

it should be possible to federate trust among code dis-

tributors [45] by allowing multiple entities to inhabit this

role.

B. Concerns.

Within the ecosystem, entities have varying concerns that

must be accounted for from design to deployment. These

concerns may span between roles, be unique to a single entity,

and change depending on the use case. Properly addressing

them can reduce the barrier to participation and enhance

trust that each entity is carrying out their role properly.

The disentangling of roles may also create new opportunities

to exploit trade-offs between competing concerns (e.g., data

contributors with limited computing resources need not be

computing parties), or to turn concerns into incentives by

taking advantage of market competition (e.g., an organization

with a lower liability profile than others may choose to take

on additional liability and enhance the performance of a

computation by operating on data in the clear).

• Cost in terms of efficiency, deployment expenses, and

efforts required by users and analysts to learn and use

the application (including any schema transformation or

internal data collection and curation). Various trade-offs

in costs can be tailored to account for different kinds of

use cases.

• Security concerns may disincentivize participation if no

guarantee is made to certify that only users with the

correct privileges may have access to different pieces of

computational data and to ensure that no malicious user

may influence the result of the computation.

• Privacy may be vital in the scenario and is the key criteria

that may call for its use in a scenario.

• Usability dictates that a successful deployment should

not assume that data contributors and data analysts have

any knowledge of MPC. Therefore usability needs to be

emphasized in all design choices to lower the barrier

to participation as much as is possible. For MPC to

be widely adopted, the platforms developed need to be
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intuitively understood by users and mimic workflows

that users are already familiar with. Facilitating the

user through simple contribution processes and proactive

error-handling can also help ensure correctness.

• Correctness is critical for the legitimacy of the application

and a shared concern among many parties as it may

impact the reputation of various entities. It is also critical

for the data analyst, in particular, for the integrity of the

a deployment.

• Participation from entities in the ecosystem is critical for

any well-designed architecture. Each entity must fulfill

their respective roles during deployment. Even though

clear instructions are made, data contributors may drop

out of participating while the application is deployed.

Managing incentives is crucial to maintaining a mean-

ingful level of participation, thus enhancing the privacy

and integrity of the final results.

• Liability concerns impede participation if the security

guarantees of MPC are not well understood by all.

Compute services may be hesitant to be a conduit for

data if there are potential legal risks.

• The reputation of various entities may be staked to the

success of an MPC deployment. These concerns can drive

incentives and also prevent against malicious behavior

such as colluding with other parties to reconstruct data.

It may also influence participation and disincentivize data

contributors who are concerned about the impact to their

reputation based on the results. Choices should be made

with the consideration of what is at stake and for whom

to navigate the incentives around proper role fulfillment.

C. Incentives.

Different parties often have several different incentives to

participate in an MPC computation, these incentives are often

closely related to the party’s role, and may provide insight

into the expectations of the party, and what it can be trusted

to do (e.g., which parties it is most trusted not to collude

with). Our ecosystem can leverage the asymmetry in these

incentives to encourage participation, increase trust in the

system, and improve efficiency. The ecosystem can perform

as a marketplace, creating new incentives and magnifying

existing ones. We discuss this in greater details in section

IV-D.

D. Resources and Capabilities.

Capabilities will vary for each use case but the core

resources that may be needed include web browser, web

server, database, cloud service, and content distribution net-

work (CDN). It is worthwhile to determine which entities can

provide each of these resources while in the design phase.

IV. BENEFITS OF THE ROLES FRAMEWORK IN PRACTICE

In our work developing and deploying MPC solutions, there

has been a need to satisfy a number of concrete criteria that are

derived from the constraints imposed by target users (including

their level of technical literacy, their access to appropriate

kinds of IT infrastructure, and their logistical constraints). We

note that some of these needs may need to be met in order to

satisfy more general, overarching goals or to provide essential

incentives (such as improving usability to drive adoption by a

greater number of participants).

A. Criteria For Successful MPC Deployment.

We enumerate a number of these criteria, explicitly referenc-

ing how they relate back to the roles described in Section III.

• Comprehensibility: To drive initial adoption, either the

MPC protocols themselves or the novel secure comput-

ing opportunities they introduce must be straightforward

enough to explain so that decision-makers and users who

might not possess technical expertise can be confident

that they understand their operation or, at least, their

security guarantees. This is most important for data

contributors and policy experts, who are responsible for

deciding whether participation in a protocol is appropri-

ate, desirable, and safe.

• Auditability: To inspire trust, applications must have

complete transparency, with open-source code and/or

support for outside auditing. In most cases, those most

closely involved with a particular application (analysts,

contributors, and policy experts) will not possess the

resources to inspect source code or perform auditing over

the entire application stack. However, this presents an

opportunity for those in the code distributor role (e.g.,
cloud distribution networks may choose to offer this as a

service coupled with application delivery).

• Accessibility: To minimize any hurdles that might dis-

courage participation by data contributors and data an-

alysts, solutions must be easily and rapidly deployable,

requiring no setup, specialized software, specialized hard-

ware, or public Internet addresses for agents behind

firewalls. The way that compute service providers, code

distributors, brokers, and the communications medium are

incorporated can all have an effect on an application’s

accessibility.

• Simplicity: The software must be usable within a rela-

tively narrow time window by non-expert human con-

tributors and data analysts whose technical expertise may

only include basic familiarity with common software

applications.

• Asynchronicity: Agents only need to be online while

actively performing relevant tasks (i.e., not throughout the

duration of a protocol’s operation). This would primarily

apply to data analysts and data contributors, and may

be enabled through the inclusion of compute service

providers.

• Idempotence: Contributors must be able to resubmit (i.e.,
update) their data if they discover the data they submitted

was corrupted (either through human error, through a

software application failure, or both).

• Non-commitment: Contributors may decide not to partic-

ipate, or may be unable to participate due to technical

or logistical issues. The protocol should not require

134



advance knowledge of which parties will participate or

their quantity.

• Robustness: Incorrect or malformed data from even one

contributor destroys the value of aggregate analytics.

Hence, interfaces must proactively warn users about

spurious data. Furthermore, data analysts should have

some assistance in assembling algorithms that are robust

to outliers or common errors (one natural source of such

expertise might be the security experts, though it could

come from a distinct entity or toolchain).

Many of the existing protocols and tools discussed in

Section II can be wrapped, adapted, adopted, or translated into

a common infrastructure (using a shared modern language and

platform such as JavaScript and Node.js) that arranges them

into role variants that satisfy different combinations of the

requirements enumerated above (and that can be inhabited by

different agents). However, substantial software engineering

efforts may be required to do so; in many cases a frame-

work’s authors explicitly discourage direct use of their tools

in production [6], [8], [9], [31], [34].

B. Accessibility and Composability.

With regard in particular to accessibility: we believe that

there is no “one size fits all” accessibility measurement. Differ-

ent agents in the ecosystem have different usability concerns.

For example, different potential participants “speak” different

(programming) languages: distributed systems engineers on

the cloud speak Spark, data analysts speak R, and lawyers

and privacy experts speak their own less-structured languages.

As a result, one of the most important accessibility metrics is

the participants’ ability not to be burdened by understanding

the actions and responsibilities of roles they do not inhabit.

Consequently, the viability and success of such an ecosys-

tem depends on the secure distributed applications being com-
posable at the software and algorithmic layers. Composability

allows each participant to use and build upon prior contribu-

tions while only learning succinct API-level specifications of

functionality and security. It also facilitates upgrading: if one

component is improved, all derived software packages gain its

benefits too.

As we mentioned in Section III, policy agnostic program-

ming [46]–[48] can provide composability at the software

layer. At the algorithmic layer, one way to provide separation

of responsibilities is via universal composability (UC) [49].

UC has been specialized and simplified for the MPC setting

[50], and the potential value of UC has been shown throughout

the computing stack [51]–[53].

C. Assisted Design.

Our proposed ecosystem consists of several frameworks and

tools that facilitate and assist in the design, analysis, and

deployment of MPC systems. In particular, we envision a set

of tools that utilize information about the roles provided by the

system designers and various participating parties, to generate

parts of the system, analyses the efficiency of its protocols,

and manage and deploy its components.

Given a component or a protocol of an MPC system, as

well as auxiliary information about the roles and capabilities

of the different parties, a static analysis tool may calculate

an estimated performance evaluation, which may be used to

determine the different trade-offs in costs in various settings.

The system may make black-box usage of some primitive

or functionality, this functionality may be achieved using

a variety of protocols (e.g., PRF protocols [54], protocols

for generating multiplication triplets in Preprocessing [55],

each protocol relies on different assumptions or models (e.g.

preprocessing model), and the computation or communication

complexity of these protocol may grow differently on different

set of parameters (e.g. number of bits, number of parties). The

performance evaluation tool can produce various metrics and

charts (e.g. number of messages as a function of the number

of parties or size of the input) that help the designers choose

the optimal underlying protocols.

Additionally, the ecosystem can contain a knowledge base

containing a variety of popular protocols for generic primitives

or functionality (e.g., comparisons, encryption, sorting, and

so on). The knowledge base encodes the various properties

and assumptions of these protocols. An automated tool may

search the knowledge base to find suitable protocols given

information about the roles of the parties and their privacy

policies. The performance evaluation tool can be utilized to

automatically determine which implementation of the primi-

tives to use, or to reduce the number of choices the designer

has to manually analyze. There has been recent advances in

this direction [43], where a large knowledge base spanning

over 180 papers from the literature was compiled in addition

to several metrics for comparing MPC protocols.

This separation introduces the possibility of synthesizing

potential compatible policies from analysis algorithm defini-

tions [55] or interviews of data contributors [56]. The policy

expert could then take on the task of evaluating or curating

such policies. The policies can be encoded in a format that the

framework understands, as well as a human-friendly format

which the system displays to the data contributors before they

submit their data.

D. Incentives: the Ecosystem as a Marketplace.

The population of the role-based ecosystem with appropri-

ate, scalable, and usable MPC systems, applications, tools,

and libraries provides an opportunity to explicitly address

and leverage the incentives that may drive the agents that

inhabit various roles. This naturally suggests the notion of

a marketplace, and such a framing mechanism can further

motivate, delineate, and constrain development efforts.

The major challenges of populating the marketplace, in our

opinion, lie less with the design of faster MPC algorithmic

building blocks but with developing developer- and user-

centric software packages that span the range of possible

security, usability, and performance trade-offs. Interfacing with

existing languages and platforms already in widespread use

within the community allows use of existing code distribution
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infrastructures and enables a broader population of users to

participate immediately.

We use the term marketplace because a successful ecosys-

tem must provide rational incentives for parties to interact.

The multiplier effect of composition is not merely a benefit

to software engineers but an incentive to deliver modular

code in the first place (a principle that is well-known to

all software engineers but is sorely lacking in the security

domain). The marketplace must also incentivize data owners,

who have not yet contributed data, to make their data available

for secure analyses (e.g., by giving responses quicker [57] or

more accurately to those who provide more data). Additionally,

data owners can secret-share their data with a custom privacy

policy, so that many computations may utilize their data in

the future, given that the stated policy of the computation

respects the policy of the data owners. Data owners may

be compensated for providing valuable data (monetarily or

otherwise), and the value of the data can be determined

under MPC without compromising its confidentiality. Next, by

being open to (and in some cases requiring) multiple compute

service providers [58], our vision reduces the current cloud

computing incentives toward vendor lock-in and instead favors

compute service providers who compete and specialize in

areas like trusted client application code delivery, untrusted

high-performance computing, data analysis, policy synthesis,

and reliable data delivery. Finally, a marketplace allows for

new types of actors to emerge who broker the exchange

of information or offer suggested advice on privacy policies

governing this exchange. This has the effect of further reducing

barriers to entry: data contributors and analysts may not need

to work as hard to understand the details of MPC in order

to receive its benefits (as others may be incentivized to help

them understand or to shield them from having to do so).

Finally, we observe that such a marketplace model naturally

points to mechanism design [59], [60] as an important area

of MPC research–one that can lead to opportunities to exploit

the benefits of secure computing for maximal social good.

V. USE CASES IN THE ECOSYSTEM CONTEXT

The recommendations in this report are in part informed by

planning, development, and deployment efforts on a number of

real-world applications (including each of our own MPC de-

ployment experiences [10], [22], [24] and development efforts

[61]) with a need for accessible, secure analytics solutions that

are critical to their missions. We briefly discuss three use cases

within the context of the proposed role-based ecosystem.

A. MPC For Tax Fraud Detection

In 2013, estimates quantified Estonia’s losses over VAT

evasion at 220 millions euros a year. Companies offered

resistance against legislation that required them to declare their

purchase and sales invoices to tax authorities, both due to the

sensitive nature of this data and due to the burden it places on

companies to curate the data. An MPC system for detecting

such evasion was proposed as a way to protect companies’

confidentiality [15]. Companies use the system to secret share

their VAT declarations, which are then analyzed under MPC

to calculate risk scores associated with each company. The

results are then revealed to the Estonian Tax and Customs

Board (MTA). The system was presented to decision makers

at the MTA, who understood the value of utilizing MPC in this

application and considered using MPC for future applications.

However, the MPC system was not adopted.

This use case offers a variety of interesting insights into the

importance of the role-based ecosystem and its benefits. The

companies with VAT declarations are the data contributors in

this system; they secret share their declarations to the compute

parties, who then execute the MPC analysis. The companies do

not participate in the analysis and are not required to operate

a sophisticated computing stack or powerful hardware; this is

consistent with their concerns about the burden of maintaining

or acquiring appropriate resources and expertise. The two

main compute parties between whom trust is federated are the

MTA and the Estonian Trade Association (ETA). These two

parties can be trusted not to collude because their respective

incentives are entirely different: the MTA is a government

agency concerned with detecting tax fraud, while the ETA is a

representative body of the companies (data contributors) that

is concerned with protecting their privacy and interests. The

Information Systems and Registers Center (under the Estonian

Justice Department) is the third compute party. Although the

third party is also trusted not to collude with the others

due to incentives and various organizational independence

requirements, the authors explicitly stated that its participation

improves performance: having three compute parties increases

efficiency by enabling the use of more optimized MPC pro-

tocols (the Sharemind framework also requires exactly three

compute parties [7]). The MTA is the analyst (since it specifies

the analytics to compute) and the recipient of the results

of the computation. Additionally, the MTA plays the role

of a decision maker: the MPC protocols and their security

guarantees had to be explained to the MTA, and the MTA

raised multiple concerns about the system.

The authors state that two concerns unique to the MTA

hindered the adoption of their MPC system: (1) the per-

formance of their system was considerably slower than that

of a non-MPC system (processing 30 days of VAT data

would require spending about 10 days on the computation,

as opposed to three days using the non-MPC system), and

(2) the MTA was concerned about the transparency of the

risk scoring algorithms (since the other compute parties must

jointly execute the algorithms using MPC, they must know the

code describing the algorithms).

The authors attempted to utilize the capabilities and in-

centives of the participating parties to argue against these

two concerns. First, the protocol was split into two stages to

increase efficiency: (1) a parallel MPC task executed by each

contributing company to aggregate that company’s data, and

(2) a global aggregation and analysis task. This optimization

is possible for two reasons: the desired analytics can be paral-

lelized by input company before the global aggregation takes

place, and the compute parties are capable of acquiring and
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managing a powerful computing infrastructure. Second, the

authors argued that transparency can improve the acceptance

of the MPC system, since the ETA and other companies can

inspect the analysis algorithms. The MTA agreed that the

transparency and auditability of the MPC system is a step

towards incentivizing tax payers to think of paying taxes as

a social obligation at the grassroots level. However, the MTA

remained concerned about the changes that would need to be

instituted across the analysis process in order to enable sharing

of risk analysis algorithms with other parties.

Both of these attempts can be understood through the lens

of the role inventory and dimensions discussed in Section III.

This highlights the importance of designing and deploying

MPC solutions while maintaining a role-based perspective,

as this can help stakeholders enumerate possible alternatives

when incentives are misaligned, can help drive adoption of

MPC, and can more explicitly guide selection of improvements

to the quality of MPC systems (e.g., in terms of their usability

and/or efficiency). The MTA’s concerns about transparency

exemplify an interesting tension between the auditability of

software and the incentives some parties have to keep their

analysis algorithms secret. This raises the possibility of de-

veloping MPC protocols where the program itself is garbled

as part of the input (potentially at the cost of efficiency): the

generic protocol can be auditable and public, but the inputs

and program can be secret. Such a protocol might need to

analyze the program to confirm that it satisfies necessary

privacy policies (without revealing it or running it on inputs).

B. Accessible MPC for Privacy-Preserving Data Analytics.

In 2013, the Boston Women’s Workforce Council (BWWC)

[62] initiated a study of wage gaps among employers within

Greater Boston. Uniquely, they planned to use employer-

provided data from over over 200 companies to quantify and

track progress over time [63]. For an organization, participat-

ing in the tracking portion involves aggregating data internally

and then contributing that data to a computation across all

organizations. The BWWC’s efforts were initially stymied by

privacy and legal barriers to sharing of sensitive payroll data.

Companies refused to submit data to a “trusted third party”,

and conversely the BWWC had difficulties recruiting an entity

to serve in a trusted data collection role due to the risk of

being held liable by Compact signers if the payroll data were

accidentally leaked or breached. Ultimately, the BWWC used

a web-based MPC system for three data analysis sessions to

collect payroll analytics securely, thus sidestepping the legal

risks involved in handling payroll data [64]. This system used

a lightweight solution: a simple browser-based application that

could accommodate the familiar look and feel of a spreadsheet

[22], with transparent open-source code to enable outside

auditing. A variant of a simple, well-known protocol [23],

[65] met users’ needs and was just expressive enough for the

deployment scenario while still being comprehensible enough

for key decision makers to feel comfortable.

In this scenario, the signing companies play the role of data

contributors (and, indirectly, recipients). The BWWC is the

analyst and also a recipient, viewing the employee earnings to-

tals aggregated across all companies while individual company

aggregates remain private. The BWWC’s collaborating partner

(i.e., Boston University) facilitates the private aggregation by

supplying the personnel (thus fulfilling the policy expert role)

and by installing and running the application back-end on

an Amazon Web Services (AWS) cloud-based server (thus

acting together with AWS as a compute service provider). The

latter arrangement also means that AWS acts as the sole code

distributor. The Internet is the communications medium, with

secure end-to-end communications achieved via TLS.

The choice of MPC protocol was determined by negotiation

and reconciliation of a number of trade-offs and constraints,

including which of the roles from Section III participants could

inhabit and which of the requirements listed in Section IV-A

had to be satisfied. An asynchronous variant of a secret-sharing

protocol was used that allows multiple parties to collectively

compute a sum of their individual quantities [65]. This solu-

tion was comprehensible, required only one compute service

provider, did not burden the data contributors or recipient, and

had acceptable performance characteristics. However, it was

also limited in its expressiveness and in its security guarantees:

(1) it only allowed for the computation of linear combinations

on the input data and (2) it did not protect against collusion

between the compute party and recipient.

This experience showed that for data contributors and recip-

ients the computational efficiency of the MPC component is

not the primary performance bottleneck. For simple analytics

over relatively small sets of data, all modern frameworks

perform rather well (i.e., seconds to minutes) [20]. However,

other seemingly unrelated considerations such as choice of

client-side cryptographic library have a substantial effect [64].

Furthermore, human time can dominate computing time when

a window spanning multiple days is required to collect data

from a large number of human contributors with incompatible

schedules; asynchrony was an essential protocol feature.

Passive (also known as semi-honest) security [66] suffices in

this scenario because incentives derived from existing privacy

laws are leveraged: the service provider and analyst lack

any clear incentive to falsify the results of the aggregation

or to learn private input data. To the contrary, completing

the study successfully is directly beneficial to the BWWC

(as the initiator of the study) as well as to the compute

service provider (as an institution reliant upon a reputation

of integrity). Additionally, obtaining any of the contributors’

private data would create a liability risk for the service

provider and analyst (as would any other type of collusion).

Thus, the passive model is natural in this case: the service

providers are protected from the usual legal risks of processing

sensitive data so long as the parties follow the protocol.

An important insight from this deployment was the recog-

nition (through discussions with data contributors about the

potential attack surfaces of the software application) that one

of the compute service providers and the code distributor

were one and the same. It was recognized that this risk can

be mitigated by federating the code distribution service itself

137



using MPC [45].

In a similar use case to that of the BWWC, the Greater

Boston Chamber of Commerce (GBCC) launched an economic

inclusion initiative called Pacesetters in 2018 [10]. The goal of

the initiative is to track (in aggregate) corporate spending on

contracts with minority and female-owned businesses within

the region. As part of the initiative, companies must contribute

information about their spending on a national, state, and local

level. MPC is used to derive global insights on corporate

spending toward minority and female-owned businesses. The

same web-based MPC software is used for this initiative,

demonstrating ease of re-usability and how a generalizable

solution can arise from this design and development process.

C. Scalable MPC Supporting Heterogeneous Data Stacks.

The goal of our Conclave framework [61], [67] is to

enable deployment of MPC in scenarios that involve multiple

organizations that want to collectively analyze their large data

sets. The roles of data contributor and compute service are

inhabited by the same entities, and the framework assumes that

all parties have the capacity (in terms of access to hardware

resources and of availability of software frameworks such

as Hadoop) both to store large data sets and to compute

over them. Conclave is explicitly designed to exploit this

assumption to enhance performance: a data query workflow

is optimized to use the local computing resources available to

each party as much as possible (limiting MPC computation

and communication overhead to only the part of the workflow

for which it is essential).

In terms of usability, this framework seeks to eliminate the

burden on data contributors who also act as compute parties

of tasking their in-house software developers and IT adminis-

trators with adopting brand new data storage and computation

stacks. The design also seeks to allow data analysts to use

a familiar data analysis language rather than learning a new

domain-specific language, and to avoid dealing with the issue

of data sharing policies (which should be the domain of the

data contributors or policy experts).

Conclave is also designed to support the separation of a

policy expert (who specifies what data is sensitive and must

remain private) from a data analyst (who specifies the data

query). The data contributors specify which columns in their

contributed data sets are sensitive and must remain private.

They can do so without prior knowledge of the query that will

be applied to the data sets. At the same time, the automated

process that Conclave uses to identify which portion of a

computation must utilize MPC allows the query itself to be

agnostic with respect to the policies that govern the input data

sets. Thus, the author of a query need not be a policy (or

cryptography) expert; they only need to concern themselves

with authoring the query as if the data is available in the clear.

Also particularly relevant is Conclave’s ability to improve

an expensive MPC computation’s performance via the intro-

duction of a selectively trusted party (STP). If directed to

do so, Conclave can expose the plaintext values of some

columns in the data to the STP in order to achieve significant

performance improvements [61], [68]. Such a party may exist

for a number of reasons within a deployment scenario. For

example, certain organizations that act as STPs may choose

to establish legal relationships with the data contributors via

non-disclosure agreements or other mechanisms. If MPC is

being used to mitigate liability, such organizations may choose

to take advantage of insurance and to offer their computing

resources in order to improve the performance of third-party

MPC computations in which they have no interest otherwise.

More generally, Conclave’s features can be viewed as

enabling the navigation of policy-performance trade-offs for

expensive MPC computations over large data sets. This is ac-

complished by exploiting asymmetries in the cost and privacy

constraints among the compute parties. Note the manner in

which Conclave’s target use cases are distinguished from the

previous category of web-based data analytics application use

cases: Conclave targets scenarios in which the organizations

inhabit the same roles but may have different cost and privacy

constraints, while the former software applications target sce-

narios in which the organizations necessarily inhabit different

roles due to resource constraints but mostly have identical

security constraints.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have introduced a collection of organizing

principles and a conceptual framework for identifying, charac-

terizing, and effectively addressing scenarios that can benefit

from the introduction of MPC technologies. We have also

shown how this approach can be used to model and examine

past attempts to deploy MPC.

The proposed model can help guide future directions in

several areas of fundamental research. Work on new MPC

primitives, protocols, and technologies can explicitly disen-

tangle roles, concerns, incentives, and capabilities and can

aim to provide a modular collection of building blocks that

can be used to address regions of the scenario space. Work

can also explore the compositionality of protocols along these

new dimensions. Formal modeling and analysis of protocol

definitions can incorporate these concepts, and work on static

analysis techniques can explore how policy agnostic program-

ming and related approaches can enable the level of modularity

necessary to support the envisioned ecosystem.

On the implementation and deployment end, the concepts

presented can provide a starting point for the vocabulary used

within standards and APIs of software solutions that utilize or

enable MPC. Designs of open source MPC libraries can aim to

support the full range of scenarios, or particular subsets that

represent interesting or valuable trade-offs between privacy,

liability, performance, and other metrics relevant to a scenario.
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[15] D. Bogdanov, M. Jõemets, S. Siim, and M. Vaht, How the Estonian
Tax and Customs Board Evaluated a Tax Fraud Detection System
Based on Secure Multi-party Computation. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 227–234. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-47854-7 14

[16] A. Abidin, A. Aly, S. Cleemput, and M. A. Mustafa, An MPC-
Based Privacy-Preserving Protocol for a Local Electricity Trading
Market. Milan, Italy: Springer International Publishing, November
2016, pp. 615–625. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-48965-0 40

[17] “Open Science Data Cloud,” https://www.opensciencedatacloud.org/,
[Accessed: August 12, 2019].

[18] “NCI Cloud Resources,” https://cbiit.nci.nih.gov/ncip/cloudresources,
[Accessed: August 12, 2019].

[19] “ThreatExchange,” https://developers.facebook.com/products/
threat-exchange, [Accessed: August 12, 2019].

[20] D. W. Archer, D. Bogdanov, B. Pinkas, and P. Pullonen, “Maturity and
performance of programmable secure computation,” IACR Cryptology
ePrint Archive, vol. 2015, no. 1039.

[21] M. Yung, “From mental poker to core business: Why and how to
deploy secure computation protocols?” in Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’15. New York, NY, USA: ACM, 2015, pp. 1–2. [Online].
Available: http://doi.acm.org/10.1145/2810103.2812701

[22] L. Qin, P. Flockhart, A. Lapets, F. Jansen, K. D. Albab, M. Varia,
S. Roberts, and I. Globus-Harris, “From Usability to Secure Computing
and Back Again,” in Proceedings of SOUPS 2019: The 15th Symposium
on Usable Privacy and Security, Santa Clara, CA, USA, August 2019.

[23] A. Lapets, N. Volgushev, A. Bestavros, F. Jansen, and M. Varia, “Secure
Multi-Party Computation for Analytics Deployed as a Lightweight
Web Application,” in 2016 IEEE Cybersecurity Development (SecDev),
November 2016, pp. 73–74.

[24] A. Rajan, L. Qin, D. W. Archer, D. Boneh, T. Lepoint, and M. Varia,
“Callisto: A Cryptographic Approach to Detecting Serial Perpetrators of
Sexual Misconduct,” in Proceedings of the 1st ACM SIGCAS Conference
on Computing and Sustainable Societies, San Jose, CA, USA, June 2018.

[25] F. Jansen, K. D. Albab, A. Lapets, and M. Varia, “Brief Announcement:
Federated Code Auditing and Delivery for MPC,” in Proceedings of SSS
2017: The 19th International Symposium on Stabilization, Safety, and
Security of Distributed Systems, Boston, MA, USA, November 2017.

[26] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen,
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