
A Qualitative Investigation of Insecure Code
Propagation from Online Forums

Wei Bai
University of Maryland

wbai@umd.edu

Omer Akgul
Univerity of Maryland

akgul@umd.edu

Michelle L. Mazurek
University of Maryland

mmazurek@umd.edu

Abstract—Research demonstrates that code snippets listed on
programming-oriented online forums (e.g., Stack Overflow) –
including snippets containing security mistakes – make their
way into production code. Prior work also shows that software
developers who reference Stack Overflow in their development
cycle produce less secure code. While there are many plausible
explanations for why developers propagate insecure code in this
manner, there is little or no empirical evidence. To address
this question, we identify Stack Overflow code snippets that
contain security errors and find clones of these snippets in
open source GitHub repositories. We then survey (n=133) and
interview (n=15) the authors of these GitHub repositories to
explore how and why these errors were introduced. We find
that some developers (perhaps mistakenly) trust their security
skills to validate the code they import, but the majority admit
they would need to learn more about security before they
could properly perform such validation. Further, although some
prioritize functionality over security, others believe that ensuring
security is not, or should not be, their responsibility. Our results
have implications for attempts to ameliorate the propagation of
this insecure code.

I. INTRODUCTION

Many or even most security vulnerabilities do not arise from

new or unknown problems; they often occur when software

developers make well-known mistakes. For example, insuffi-

cient validation of user input is a well-known problem that can

lead to vulnerabilities ranging from buffer overflows to SQL

injection. Despite the fact that proper checking of user input

is all but axiomatic in the security community, vulnerabilities

related to this issue remain common and serious [1], [2].

There are many possible explanations for the persistence

of security errors that are (in this sense) “solved” problems,

including but not limited to human error, lack of security

education, overly complex APIs, addressing security at the end

of the development lifecycle rather than building it in from the

beginning, and the prioritization of other requirements over

security [3]–[6].

Prior research suggests that one contributing factor is the

presence of insecure code in online forums — such as the

programming Q&A site Stack Overflow — that developers

reference when searching for help [3], [5]. These works have

demonstrated that developers who reference Stack Overflow

tend to produce less secure code, and have found evidence

of insecurities propagating into production code. Prior work,

however, has not explored why or how these effects occur. For

example, do developers fail to recognize that code drawn from

online forums may not be secure, or do they understand this

but reuse it anyway? If they do recognize possible security

concerns, why and how do they overcome them before using

code? Conventional wisdom suggests that perhaps developers

simply prioritize convenience over security [3], [7], but there

are other possible explanations. Without understanding devel-

oper motivations and practices when propagating this code, it

will be difficult to design effective mitigations for this source

of vulnerability.

To address these questions, we designed a qualitative,

descriptive survey and interview study to investigate why

developers propagate insecure code from Stack Overflow. We

identified a set of common cryptography-related errors drawn

from the security literature, then searched for Stack Over-

flow posts containing code snippets that exhibit these errors.

Using the MOSS code-matching tool, we located GitHub

repositories that appear to reuse these snippets. After ranking

these repositories according to both their similarity score

and various popularity-relevant GitHub statistics, we invited

developers of these repositories to take a survey about their

projects (without mentioning the potential vulnerabilities), and

then invited survey participants to a follow-up interview. In

total, 133 developers took the survey, and 15 participated in

interviews.

Many participants were defensive about admitting that

reusing code from Stack Overflow had led to potential vul-

nerabilities. Nonetheless, we find that most participants seem

cognizant that code drawn from online forums raises potential

security concerns. Participants use such code anyway, for

several often overlapping reasons. Some participants said they

did not know enough about security to properly validate code

they encounter, while others trust their own security skills

and believe (evidently not always correctly) that they can

properly vet such code. Some participants explicitly report

prioritizing functionality or convenience over security, and

some feel that security is not (or should not be) their job, but

rather should be outsourced to a security team or a service

provider. Despite the fact that all the projects we identified

include some cryptographic code — which suggests some

level of interest in security — some participants reported that

security was not important to the referenced project.

These results have important implications for how to think

about preventing or mitigating the propagation of insecure

code from Stack Overflow and other online forums into

34

2019 IEEE Secure Development (SecDev)

978-1-5386-7289-1/19/$31.00 ©2019 IEEE
DOI 10.1109/SecDev.2019.00016

production code.
The rest of the paper is organized as follows: We describe

related work (II), present the study protocol (III), describe the

participants and their projects(IV), present our findings(V,VI),

and discuss implications from our findings for alleviating

insecure code propagation (VII).

II. RELATED WORK

We briefly discuss related work in two key areas: the

effects of Q&A platforms such as Stack Overflow on software

development in general, and specific investigations of how

these platforms intersect with security.

A. Stack Overflow and software development, broadly
Vasilescu et al. measured how question asking and an-

swering on Stack Overflow relates to committing changes

to open-source repositories‘ [8]. They found that among de-

velopers who actively commit to Github repositories, asking

and answering questions boosts GitHub commits. Using the

same dataset, Wu et al. examined how developers use source

code from Q&A platforms [9]. By manually inspecting 289

source code files that reference Stack Overflow posts, they

conclude that 31.5% of developers who cite Stack Overflow

code modify the code in some way before using it. The authors

also find via a survey (n=380) that the majority of developers

report preferring to reimplement code rather than reusing

code from Stack Overflow directly. The top reason given for

reimplementation is that developers need to fit the code into

their existing code bases. Yang et al. perform quantitative

analysis to find how snippets from Stack Overflow get ported

into GitHub projects [10]. While they find empirical evidence

of copy & pasting behavior, they claim that only a small

portion is exact duplication of code. In this study, we primarily

identify exact or very close matches as candidates for our

survey and interview.
Treude et al. studied the types of questions that are most

commonly asked and answered on Stack Overflow [11], find-

ing that conceptual questions or questions asking for code

reviews have a higher chance of being answered. Relatedly,

Nasehi et al. investigated attributes that make good answers

on Stack Overflow [12]. Via qualitative analysis, they identify

how customized the answer is to the original question as the

most important feature of a high-quality answer. In a similar

study Yang et al. find that question edits are related to a

question’s quality [13].
Yang, et al. use qualitative and quantitative analysis to

investigate how ready-to-use Stack Overflow code snippets

are, finding that snippets in dynamically typed languages are

substantially more likely than in statically typed languages

to be ready to use [14]. In an empirical study, Zhang et al.

find that 58.4% of obsolete answers on Stack Overflow were

probably obsolete when first posted, and only a small portion

of these answers ever get updated [15].
Wang et al. investigate askers and answerers, finding that

most askers ask only one question, most answerers answer

only one question, and a majority of contributors only ask

and never answer [16].

B. Stack Overflow, code misuse, and security

An et al. identified code-license violations (such as Creative

Commons violations) that seem to originate with code posted

to or taken from Stack Overflow [17]. Baltes et al. also note

that many copied code snippets are missing attribution [18].

Nadi, et al. investigated Stack Overflow posts to iden-

tify problems developers encounter when trying to imple-

ment cryptography [6]. They find that a majority of the top

cryptography-related posts are associated with confusing API

documentation, and many relate to confusion when trying

to use symmetric-key encryption. Our participants may have

experienced similar confusion, which led them to the Stack

Overflow posts we flagged.

In a lab study, Acar et al. found that while Stack Overflow

is easier to use than official documentation, it is more likely

to result in insecure code [3]. This paper builds on this finding

by examining how and why developers use security-relevant,

possibly insecure code they may find on Stack Overflow.

Perhaps most closely related to this paper is work by Fischer

et al. measuring how code from Stack Overflow propagates

to Android applications [5]. The authors use a classifier on

program dependency graphs to match security-relevant code

snippets from Stack Overflow with code found in Android

applications, finding that 15.4% of their Android-application

dataset contains security-related code from Stack Overflow,

and 97.9% of these applications contain at least one insecure

code snippet. Our work complements these findings by exam-

ining qualitatively why and how this insecure code propagates

via surveys and interviews with implicated developers.

III. STUDY PROTOCOL

In this study, we first identified security vulnerabilities by

reviewing related literature. We then found a set of Stack

Overflow posts which included these vulnerabilities. Next, we

built a crawler to search for projects on GitHub which reused

code snippets from these Stack Overflow posts entirely or in

part. Finally, we surveyed and interviewed the developers of

these projects to further understand how and why the insecure

code was propagated.

It is important to note that, because we have no control

group, our results obtained from this methodology are de-

scriptive and qualitative. For context, we provide numbers

of participants who provided a given response. Further, for

open-ended responses in particular, a participant failing to

mention a particular idea may not indicate disagreement; it

may simply have been left out. As such, our results are

not necessarily statistically generalizable beyond our sample;

however, we believe they provide useful insights into the

problem of insecure code propagation. See Section III-I for

more details.

Our study protocol was approved by the University of

Maryland’s Institutional Review Board (IRB).

A. Identifying security vulnerabilities

We reviewed literature about popular security vulnerabilities

related to cryptography, and extracted a few common prob-

35

lems, such as generating insufficiently random numbers, and

implementing encryption/decryption incorrectly.

As an example, one common Java vulnerability is use of

insecure pseudo-random number generation methods (PRNG),

such as java.util.Random(). These pseudo-random

number generators use a seed and a deterministic algorithm

to approximate some properties of truly random number

sequences, but the generated sequences are not cryptograph-

ically secure and may be predictable to attackers in some

situations [19]. As a remedy, Java provides an alternative class,

java.security.SecureRandom(), which complies with statistical

random number generator tests specified by NIST in [20].

Table I list all the vulnerabilities we investigated in this

study, including the sources we drew them from.

B. Identifying insecure Stack Overflow posts

Stack Overflow 1 is a well known Q&A website in the

software development community. On Stack Overflow, devel-

opers can ask questions about the problems they encounter

during development, up- and down-vote answers, and make

comments. These answers, comments and ratings can serve as

a resource for both the asker and for other developers who

may be looking for related answers or topics. However, prior

work has found some correlations between Stack Overflow and

vulnerable code [3], [5]. While Stack Overflow is not the only

such online forum, based on its popularity we chose to use it

as a source of potentially insecure code snippets to investigate.

We searched for answers with insecure code snippets related

to the vulnerabilities listed in Table I. For instance, to search

for code containing ECB mode for encryption, we searched

both Google and Stack Overflow for “How to implement AES

encryption?” and “AES encryption example in Java” (or other

languages). Because prior work we reference focused on Java

and Android, we focused on Java as well, but we also identified

some snippets with similar vulnerabilities in languages such as

PHP, Javascript, and C#. We checked each post we identified

manually and consulted with a security expert to ensure that

each snippet we selected contained a targeted vulnerability.

We then prioritized the selected snippets to focus on the most

viewed and most voted for answers.

The number of Stack Overflow posts we identified for each

vulnerability is listed in Table II.

C. Searching GitHub repositories

For each selected Stack Overflow post, we identified key-

words from the code it contained, which were used to search

projects in GitHub. Table I lists one such keyword example

(i.e., the line of code in one Stack Overflow post) for each

vulnerability. We built a crawler on Amazon Web Services

(AWS) to use the GitHub search API to search for projects

containing these keywords. Table II lists the number of GitHub

repositories we found across all Stack Overflow posts related

to that vulnerability.

For each search result (repository), we extracted the

matched file and used the MOSS tool (Measure Of Software

1https://stackoverflow.com/

Similarity, [23]) to calculate the similarity of this code to the

code snippet from the relevant Stack Overflow post. We then

prioritized our findings based on the MOSS similarity score,

as well as repository attributes like the number of stars, the

number of watchers, the number of forks, the last modification
date, the number of commits, and the number of contributors.

In general, we favored repositories with more popular, and

more recent, activity. Finally, we recorded the developers

responsible for editing these files as potential participants.

D. Recruitment

We sent the identified developers email invitations to par-

ticipate in our initial survey. Some email addresses were listed

on these developers’ GitHub profiles; some were identified in

the repository commit logs. We applied a marketing tool, Mail
Merge2, to send emails in bulk.

The invitation email, which was explicitly designed not to

mention security or vulnerabilities, was as follows:

Hi [username],

We are [institution] researchers conducting a study

of how software developers reuse code across

GitHub and StackOverflow. We are interested in

learning about you and your project [project name]

on GitHub. If you’d like to tell us about it, please

consider taking our survey: [url].

Table II shows how many invitations were sent for each

vulnerability, as well as how many invitees participated.

E. Survey

The survey contained three main sections.

In the first part, we asked about the participant’s software

development practices and experiences, such as how many

years of software development experience they had, whether

they had contributed to open-source software, how often they

engage in code review activities, how they evaluate the quality

of code obtained from online forums, and how often they asked

and answered questions in Stack Overflow or similar websites.

In the second part, we asked participants about their security

background, including how often they handle tasks related

to security, how they evaluate the security aspects of code

obtained from online forums, and whether they have used any

software verification or static analysis tools (e.g., FindBugs,

Pylint).

In the final part, we asked general demographic questions.

The survey took a median of 10 minutes to complete and

was not compensated.

F. Interview

At the end of the survey, we asked respondents if they

were willing to participate in a follow-up interview and if

they were comfortable conducting an interview in English.

We invited willing, English-speaking participants to schedule

a video interview via Skype or Google Hangouts. Interviews

2https://digitalinspiration.com/product/gmail-mail-merge

36

ID Security Vulnerability Description Code Snippet Keyword Example

1
Using Crypto-insecure Pseudo-Random
Number Generators (RNG) [21]

A Crypto-insecure PRNG increases the attacker’s ability to
predict the random number. E.g., Using the java.util.Random
function instead of java.security.SecureRandom

k += r * random.nextInt(3);

2 Using ECB mode for encryption [21]
ECB block cipher mode for AES is not semantically secure,
i.e., observing the ciphertext can reveal information about the
plaintext.

var decipher =
crypto.createDecipheriv(’aes-128-ecb’,
new Buffer(key, ’hex’), ”);

3
Using Non-random Initialization
Vector (IV) for CBC encryption [21]

Using a non-random IV increases the attacker’s ability to
guess the plaintext.

private String iv =
”fedcba9876543210”;

4
Using constant (hardcoded) encryption
keys [21], [22]

Increases the attacker’s ability to recover the encrypted text.
String myKey = “ThisIsAStrongPass-
wordForEncryptionAndDecryption”;

5
Using constant salts for
password-based encryption [21]

Makes the ciphertext vulnerable towards dictionary-based
offline attacks

byte[] salt = ”DYKSalt”.getBytes()

6
Using fewer than 1000 iterations for
password based encryption [21]

Decreases the average time needed for an attacker to crack the
ciphertext.

PBEParameterSpec pbeParamSpec =
new PBEParameterSpec(salt, 20);

7 Using static seeds to seed RNGs [21]
Non-random seeding increases the attacker’s ability to
predict/guess the next number in the sequence.

Random random = new
Random(37461831);

8 Improperly seeding RNGs [22]
Seeding a RNG with a predictable value (e.g., time, process
ID) can increase the attacker’s ability to guess a future
generated number.

init(”123456”);

TABLE I
LIST OF SECURITY VULNERABILITIES CONSIDERED FOR OUR ANALYSIS.

ID Security Vulnerabilities #SO Posts #Repos #Surveys Sent #Surveys Taken #Interview

1 Using Crypto-insecure Pseudo-Random Number Generators (RNG) 8 887 221 7 1
2 Using ECB mode for encryption [21] 6 953 271 11 0
3 Using Non-random Initialization Vector (IV) for CBC encryption [21] 15 1766 426 29 4
4 Using constant (hardcoded) encryption keys [21], [22] 18 953 199 7 4
5 Using constant salts for password-based encryption [21] 14 2576 50 6 1
6 Using fewer than 1000 iterations for password based encryption [21] 41 10521 1062 73 9
7 Using static seeds to seed RNGs [21] 1 394 3 0 0
8 Improperly seeding RNGs [22] 2 45 25 0 0

TABLE II
SECURITY VULNERABILITIES IN DIFFERENT PHASES OF OUR STUDY. VULNERABILITIES WITHOUT PARTICIPANTS ARE GRAYED OUT.

lasted 30 minutes on average (min 18.5 minutes, max 60

minutes), and participants were compensated with a $15 or

equivalent (if in a different currency) Amazon gift card.

In the interview, we first asked about the identified project

and its development broadly, including the goal of the project,

who it was designed for, whether the participant worked alone

or collaboratively, and whether there was a deadline.

Next, we asked specifically about the potentially vulnerable

code we had identified. After asking about its functionality,

we explained the potential vulnerability. If we had identified

other vulnerabilities not taken directly from the matched Stack

Overflow post, we also mentioned these vulnerabilities to the

participant. We then asked whether someone else had com-

mented on this vulnerability before, whether the vulnerability

was important or not, how the problem occurred, and whether

and how the participant intended to fix it. More broadly, we

asked what supports and obstacles were available when the

participant tried to write secure code.

G. Pilot Study

Before conducting the surveys and interviews described

above, we conducted a pilot interview study with nine partici-

pants. For this pilot, we manually searched Stack Overflow for

posts with insecure code snippets and then manually searched

GitHub for code that appeared to include these snippets.

We invited the developers of these projects to an interview

study. These interviews suggested several potential reasons for

reusing insecure code, including lack of expertise and tight

deadlines; responses to these interviews shaped the questions

we included in our final survey and interview protocol.

H. Data Analysis

For closed-item survey questions, we report aggregate de-

scriptive statistics.

To analyze the data from the interviews as well as the two

free response questions from the survey, we used open coding

with two coders. For the two free-response questions in the

survey, the coders initially worked together to code a subset

of answers and develop a codebook, stopping when no new

codes emerged (19 and 20 responses, respectively). The two

coders then independently coded the remaining responses to

each question. After discarding any responses deemed invalid

(unclear or off-topic) by either coder, the two coders achieved

reliability (measured using Cohen’s Kappa) of K = .90

37

and 0.82 for the two questions respectively. Kappa values

greater than 0.8 are commonly considered “almost perfect

agreement” [24].

For the interviews, we first transcribed the audio record-

ings. Two researchers worked together to open code eight

interviews, stopping when no new codes were being added.

The two then independently coded 3 interviews (20%) and

calculated K = 0.81 (again, “almost perfect”). With sufficient

reliability, one researcher coded the rest of the interviews.

In all cases, having reached sufficient reliability, the authors

resolved all differences for 100% agreement.

I. Limitations

As with most empirical studies, our results should be

considered in the context of our limitations.

Most importantly, we were unable to obtain a control group

of developers who do not produce vulnerable code when using

code from online forums. (It is unclear how such a group could

be identified.) Thus, we can use only descriptive statistics,

and we do not know if the habits and behaviors observed in

this study are specific to developers who produce vulnerable

code or not. Further, we cannot estimate whether the projects

we identified represent our participants’ typical outcomes.

Nonetheless, our findings shed light on the mindsets and

behaviors of developers who do at least sometimes produce

vulnerable code drawn from online forums, and therefore

provide insight into this unfortunate propagation.

Our results exhibit limitations common to self-reported

data, including satisficing, social desirability, and difficulty

remembering. (We discuss some of these in the context of

our results below.) Despite these limitations, our surveys and

interviews produced rich data about developers’ motivations

and practices, as well as the contexts in which they work.

We examined a limited set of vulnerabilities, exclusively

focusing on issues related to misuse of cryptography (Table I).

Further, these issues were not evenly represented in the Stack

Overflow posts or GitHub repositories that we found, and

our participant recruitment is correspondingly unbalanced (Ta-

ble II): most participants were recruited from three individual

vulnerabilities. This limits the generalizability of our findings,

but we believe our results still have value for understanding

how at least some vulnerabilities propagate from online forums

into open-source repositories.

IV. PARTICIPANTS AND THEIR PROJECTS

In this section we describe the participants in our survey and

interview studies; we also describe the projects our participants

contributed to in which we identified security problems.

A. Participants

We received 133 complete survey responses. Of these, 58

expressed interest in follow-up interviews and were comfort-

able using English. We invited 48 of these to interviews; 16 of

these scheduled interviews, and one no-showed, resulting in

15 completed interviews. 10 were not scheduled because we

Gender Male 94.7%
Female 2.3%
Others 0.8%

Age 18-24 10.5%
25-29 33.1%
30-39 33.1%
40-49 13.5%
50+ 2.3%

Education Completed H.S. or below 12.0%
Some college, no degree 7.5%
Associate’s degree 1.5%
Bachelor’s degree 44.4%
Master’s degree or higher 33.8%

Occupation Software developer 54.1%
Faculty member 1.5%
Graduate students 2.3%
Undergraduate student 1.5%

Years of develep- 0-2 9.8%
ment experience 3-4 19.5%

5-9 29.3%
10-14 21.1%
15-24 15.0%
25+ 5.3%

TABLE III
PARTICIPANT DEMOGRAPHICS FOR SURVEY. PERCENTAGES MAY NOT ADD

TO 100% DUE TO “OTHER” CATEGORIES AND ITEM NON-RESPONSE.

had reached saturation in the interviews, with no new themes

emerging.

Demographic information about the survey and interview

participants is summarized in Tables III and IV respectively.

In many respects, our interview participants appear to be a

fairly representative sample of our survey respondents. Among

survey participants, 116 (87%) reported having attended at

least some college, including 59 with a bachelor’s degree

and 45 with a postgraduate degree. Survey participants also

reported an average of 9.2 years (range: 0.5–35 years) of

software development experience and an average of 4.9 years

Fig. 1. Responses to the survey question: “How would you rate your
background in computer security?” Answer choices ranged from “Not
at all knowledgeable” to “Extremely knowledgeable” on a five-point scale.

38

ID Age Education Job Vuln Action Team
size

Monetary
compensation

Deadline
Pressure

Encption usage

P1 38 MS/PhD G.S. 1 Fixed 2-6 Yes-emp. N.D. File encryption with public key cryptography.
P2 18 HS U.S. 6 N/A 2-6 No N.D. User credential storage on client device.
P3 21 BS Dev. 4 N/A 1 No Somewhat Encryption for client-server communications.
P4 41 CND Dev. 6 Fixed 2-6 Yes-emp. N.D. User credential storage on client device.
P5 - MS/PhD Dev. 6 N/A 1 Yes-emp. N.D. User credential storage on server.
P6 25 BS Dev. 3,4 N/A 1 No Somewhat Encrypting arbitrary strings.
P7 22 MS/PhD Dev. 3,4 Repo Del. 2-6 No Very Enc. for client-server comm. and User data storage.
P8 27 HS Dev. 3 Acc. Del. 2-6 No N.D. Encryption for client-server communications.
P9 28 BS Dev. 3,4 N/A 1 Yes-emp. N.D. Encryption of intellectual property on client device.
P10 20 CND U.S. 5,6 N/A 1 No N.D. User credential storage on client device.
P11 28 CND Dev. 6 N/A 1 Yes-ent Somewhat Unique id generation for client verification.
P12 44 BS Dev. 5,6 N/A 1 Yes-ent N.D. Encryption of software configuration files.
P13 32 BS G.S. 5,6 N/A 2-6 Yes-emp. Extremely FTP functionality integration.
P14 23 BS - 5,6 N/A 1 No N.D. Encryption of data stored in a database.
P15 24 MS/PhD Dev. 5,6 N/A 2-6 No Not at all User data storage in a database.

TABLE IV
DEMOGRAPHICS AND VULNERABLE CODE USE DESCRIPTION OF INTERVIEW PARTICIPANTS. EDUCATION: HS–HIGH SCHOOL; CND–ATTENDED

COLLEGE, NO DEGREE; MS/PHD–POST GRADUATE DEGREE; BS–BACHELOR OF SCIENCE. JOB: DEV.–SOFTWARE DEVELOPER; G.S.–GRADUATE

STUDENT; U.S.–UNDERGRADUATE STUDENT. ACTION INDICATES THE ACTIONS TAKEN BY PARTICIPANTS AFTER OUR INTERVIEW:
FIXED–VULNERABILITY WAS FIXED; REPO DEL.–ENTIRE REPOSITORY WAS DELETED; ACC. DEL.–GITHUB ACCOUNT WAS DELETED; N/A–NO

ACTION. MONETARY COMPENSATION MEANS WHETHER AND HOW DEVELOPERS GOT PAID: YES-ENT.–PAID BY DEVELOPING AND SELLING

SOFTWARE; YES-EMP.–MONETIZED AN ENTREPRENEURIAL EFFORT. N.D.: NO DEADLINE.

(range: 0–18 years) of education in computer science or a

related field.

Similarly, 12 (80%) of the interview participants reported

having attended at least some college: four reported bachelor’s

degrees and six reported postgraduate degrees. Our interview

participants reported an average of 9.4 years of software

development experience (range: 1–35) and 4.2 years (range:

0–11 years) of education.

The majority of survey participants (72, 62%) indicated their

primary occupation was software development. In addition,

seven respondents indicated they were in academia (two fac-

ulty members, three PhD students, and two undergraduates).

Overall, 111 survey participants (83%) reported having been

employed as a software developer in the past year. Eighty-two

survey participants (62%) reported contributing to open-source

software projects in the past year.

The statistics for interview participants were fairly similar:

10 (67%) reported a primary occupation of software devel-

opment, two were undergraduate students, two were graduate

students, and one did not specify. The majority (12, 80%) of

interview participants were employed as a software developer

in the past year, and 10 (67%) reported contributing to open-

source projects in the past year.

The vast majority of survey participants (126, 95%) reported

being male, along with three female, one other, and three who

opted not to answer. Similarly, but unfortunately, all of our

interview participants were male. The average age was 33

years for survey participants (range: 18–55) and 28 years for

interview participants (range: 18–44).

On average survey participants considered themselves

“somewhat knowledgeable” (the middle of five Likert options)

about computer security, as illustrated in Figure 1. Interview

participants were roughly comparable, but reported slightly

less security knowledge overall.

Majorities of both survey and interview participants reported

experience with software verification or static analysis tools.

Among survey respondents, 82 (62%) reported having such

experience, 35 (26%) said they did not, and 10 (8%) did not

recognize the terms. For interview participants, these numbers

were 11 (73%), three (20%), and one (7%) respectively.

B. Participants’ GitHub projects

Here we outline some characteristics of the GitHub projects

in which we identified vulnerable code potentially originating

from Stack Overflow.

Among the 15 projects associated with our interviewees,

four were written for personal use, four for colleagues, and

three aimed at software developers generally. Other projects

(n=3) were written for specific users populations: stock traders,

people who play a specific video game, and students. One was

written for the general population.

Two of our interviewees’ projects were written as course-

work, and one project was created for a job interview. Seven

interviewees reported being compensated for their work on

the indicated project. For nine projects (60%), the interviewee

was the sole author; five (33%) were authored together with

friends or colleagues, and one was written cooperatively by the

open-source community. Similarly, among survey respondents,

80 (60%) worked on the project alone, 42 (32%) worked in

groups of up to five people, two (2%) worked in teams of 6-10

people, two (2%) worked in teams of 11-15 people, and six

(5%) worked in groups of more than 15 people.

More than half of the survey respondents (74, 56%) reported

having a deadline when working on the identified (potentially

vulnerable) project. Similarly, seven interview participants

(47%) reported working under a deadline. The reported pres-

sure associated with these deadlines is illustrated in Figure 2.

39

In the survey, we asked about the languages and devel-

opment platforms used in the projects we identified. Of 127

respondents with valid answers to this free-response question,

the most common language reported was Java (n=56). The

most commonly mentioned editors were Eclipse (n=17), Visual

Studio (n=11), and Android Studio (n=9). Ten respondents

mentioned Linux, nine mentioned Windows, and three men-

tioned MacOS. Interview participants’ responses were fairly

typical of these trends: they mentioned Java (n=10), Eclipse

(n=3), Android Studio (n=1), and Linux (n=2).

As expected, all interview participants said the potentially

vulnerable code was related to encryption. Short descriptions

of what the encryption was used for can be found in table IV.

None of the interview participants said they had previously

been informed about the vulnerability before we pointed it out.

After the interview, two participants fixed the vulnerabilities.

One deleted that Github repository, and one closed his Github

account. The rest of 11 participants didn’t make changes for

the vulnerabilities we pointed out.

Seven interview participants said the vulnerable code was

not important to the function of the overall program. We

discuss this further in Section VI-G.

V. BEHAVIORS WHEN DRAWING FROM ONLINE SOURCES

Here we discuss how our participants report using online

sources, such as Stack Overflow, during software development.

A. Developers do refer to online sources

The vast majority of both our survey and interview par-

ticipants report referring to online sources when developing

software. We also see that participants report caring about

community feedback that is available from these resources.

Among 111 respondents who had been employed as a

software developer in the past year, two participants (2%)

said they never refer to Stack Overflow during professional

development, and seven (6%) said they rarely refer to it.

Among 82 respondents who reported contributing to open-

source software in the past year, one (1%) and 14 (17%)

Fig. 2. Responses to the survey question: “How pressured did you feel
to complete the project by the deadline?”

said they never or rarely referred to the site during such

development.

We also asked specifically about referring to Stack Overflow

for questions relating to security. Among past-year open-

source contributors, 45 said they never or rarely do so, 28

said they sometimes do so, and 8 said they often or always

do so.

When asked about the vulnerable project specifically, 84

out of all 133 participants (63%) reported they had used online

forums, 57 (43%) had requested help from other collaborators,

and 39 (29%) did both.

These trends are reflected in our interviewees: all reported

they used online forums in context of the vulnerable project.

(Two interviewees reported in the survey that they had not used

online forums for this project, but both did report using such

forums for the project during the interview.) In more detailed

interview questions, 12 interview participants mentioned Stack

Overflow explicitly, including four who mentioned that they

use Google search and then click on Stack Overflow threads

within the results. For example, P5 said “I used Google to

query how to do things, and that normally provides me with

Stack Overflow.”

In line with prior work [16], [25], 96 of 133 survey

respondents reported having asked at least one question on

online programming forums, 98 out of 133 answered at least

one question on them. In addition, we observe that 34 out

of 96 participants asked security related questions; 23 out

of 98 participants answered security related questions on the

aforementioned platforms.

B. Many claim to take precautions when importing code

In the survey, we asked a free-response question about

how respondents evaluate the quality of code drawn from

online forums. (For the rest of Section V, we report only

on the 104 respondents who provided valid answers to this

question.) Respondents generally report skepticism of such

code, describing several strategies for evaluating it before

using it.

Thirty participants (29%) reported checking for good coding

practices, including well-documented or well-written code, as

well as code with correct syntax and good resource manage-

ment. Additionally, 25 respondents (24%) mentioned trying

to understand the snippet via code review, or code-review-

like behaviors, such as tracing the logic of the provided code.

For instance, one survey respondent noted, “I evaluate code

based on software engineering principles. . . It is important to

me that I understand code snippets before I am comfortable

using them in my own software.” Another common strategy

(n=14, 13%) was to write test cases for code the respondent

intended to import. Overall, 54 respondents (52%) mentioned

at least one of these three strategies, all of which reflect some

degree of confidence in their own ability to correctly assess

code they plan to reuse. As we will discuss in Section VI-D,

many participants also reflect this confidence in a security

context.

40

Fig. 3. Responses to the survey question: “How often do you engage in
the following activities in professional software development? - writing
tests’

Fig. 4. Responses to the survey question: “How often do you engage in
the following activities in open source software development? - Writing
test cases for your code?’

On the other hand, several respondents described strategies

that rely less on their own skills and more on external

validation. Sixteen participants (15%) reported using com-

munity feedback features to evaluate the trustworthiness of

code snippets. Examples include upvotes (n=8), community

comments about the snippet (n=3), and author reputation

(n=3). Further, seven respondents (7%) mentioned searching

for multiple solutions to the same problem and then comparing

them to obtain a consistent answer. As we will discuss below,

a number of participants report relying on external validation

for security code as well, either because they feel they have

insufficient knowledge (Section VI-C) or because security is

or should be someone else’s job (Section VI-F).

C. Others claim they do not copy code

In response to the same free-response question, several

developers (17/104, 16%) claimed to rarely or never use code

from online forums directly. These participants claimed to

gather ideas from online forum answers, but then to modify or

even completely rewrite it before using it. One survey partic-

ipant wrote, “I everything re-parse, re-write in my own code

style that any piece of taken code corresponded same naming

conventions and other code style guidelines. Every class name,

Fig. 5. Responses to the survey question: “How often do you refer to
code snippets relating to computer security on online forums such as
Stack Overflow or others?”

method, property, variable, everything. Even comments could

rewrite that more clearly explained what this code does and

often re-implement some parts if I have better ideas about

them.”

One interviewee (P12), relatedly, claimed copying directly

from forums was an error made primarily by junior program-

mers: “I call it monkey behavior ... it’s a problem of juniors. ...

I advise them not to do this stuff, search Google or whatever,

developer forums, and directly insert code into and run. I think

this is not behavior for professional company.”

As all of our participants were recruited by identifying

code matches with Stack Overflow posts (Section III-C), the

participants who claimed never to engage in such copying raise

interesting questions. Perhaps the matching was incorrect, per-

haps the “modifications” made by the developer were too small

to prevent MOSS matching, or perhaps a collaborator added

that code. It’s also possible, however, that these participants

are exhibiting a social desirability bias, because they believe

that admitting to copying code from online forums would be

embarrassing. We note that we manually checked the code for

all interviewees and found the MOSS matching to be correct

in all cases.

D. Sometimes functionality is all that matters

A large minority of participants (20/104), by contrast, read-

ily admitted in response to the same free response question that

they prioritize code functionality over other concerns. These

participants indicated they would run code found in online

forums and then accept it, as-is, if the desired functionality

was observed. As one survey respondent put it, “I try them

out, if they work, I use them.” This type of behavior can

also be seen in a security context, as we explore further in

Section VI-E.

VI. SECURITY-RELEVANT BEHAVIOR

In this section we describe security relevant practices re-

ported in the survey and interview responses.

41

A. Introducing security problems

We identified participants because of the overlap between

their code and vulnerable code that we found on Stack

Overflow. When we asked participants how the vulnerability

occurred, however, only five of the 15 interview participants

explicitly blamed an external source. (Three mentioned Stack

Overflow, one mentioned a book, and one did not specify a

source.) The three participants who mentioned Stack Overflow

directly admitted the bug might have been caused by copy &

pasting. P14 said, “I think it’s just copy and paste from another

website . . . I need fast-forward encryption techniques, not how

it works.” Interestingly, P1 blamed the external source while

avoiding mentioning copying code: “In that book, there were

a lot of receipts you have to follow. Maybe the part to create

the random generator was not written in the book. It just says

how to do the encryption.”

The other causes for these security bugs that participants

mentioned included that they weren’t prioritizing security

(n=8), they didn’t know enough to properly do security

evaluation (n=4), they prioritized code efficiency (n=2). Two

participants said they could not remember. We note that these

reasons are not necessarily incompatible with copy & pasting,

but rather may explain why they copy & pasted vulnerable

code. We explore these issues in more detail in the following

subsections.

B. Participants claim to be skeptical about security code

Many participants claimed to be particularly skeptical about

drawing code from online forums in a security context.

We asked survey respondents who are open-source software

developers and reported referring to security code on stack

overflow whether and how they validate such code. Seven

out of 43 participants (16%) said they do not make security

evaluations at all. (We discuss the strategies used by the

other 36 in further subsections). However, only four out of

12 interviewees who said they had used online forums for

the vulnerable projects claimed to have considered security

aspects when using code from these forums.

There are several possible explanations for this disparity:

perhaps our interview sample was not representative of the

survey sample in this respect, or perhaps our interview partic-

ipants typically validate security code found online carefully

but didn’t for the projects we referenced. On the other hand,

the survey responses might reflect a social desirability bias:

developers recognize that they “should” perform additional

validation for security-relevant code, but in practice they either

choose not to or are unable to.

We hypothesize that the propagation of vulnerable code

from online forums to GitHub projects suggests either that

developers do not realize that security-relevant code may

need extra validation, or that they know but either do not

or cannot perform this validation; these results suggest the

latter rather than the former. In the following subsections, we

explore reasons why developers do not or cannot perform this

validation.

C. Insufficient security knowledge

Many participants in both the survey and interview sug-

gested that their security knowledge is insufficient to perform

security-relevant tasks like validating code from online forums

and fixing identified bugs. Several participants suggested that

further reading and education might help them secure their

code.

All but one of the interviewees referenced the importance of

security knowledge during the interview. Four of 15 explicitly

said the security bug we identified originated because they

didn’t know enough about security to properly validate code

they wrote, and eight said that lack of security knowledge

would hinder them from properly integrating security-relevant

code (including that from online forums). Nine participants

said that in order to integrate security-relevant code correctly

and efficiently, they would need educational resources, such

as blogs and articles (n=4) or online forums (n=3). However,

these resources themselves must be vetted for correctness: P5

wanted to find “Well-written articles to explain the problems,

explain the pitfalls, explain mistakes people commonly make.

And I would love to see an article written like that. . . if you do

enough googling, you can find the answer to almost anything.

You just have to get good at choosing which results to believe

and which ones not to believe.”

Further, six interviewees said they would need to learn more

about security before they could avoid future problems similar

to the vulnerability we identified. When asked whether and

how they would fix the code in question, three participants

said they did not know how to fix it but claimed they would

learn about the problem and implement a fix. To explain how

he would fix the bug, P1 said, “The first thing to check is

what is the secure way to do this kind of password encryption

in Java right now.” Interestingly, P1 did eventually fix their

pseudorandom-number-generator problem (Table IV).

As mentioned in Section VI-B above, 36 survey respondents

described specific strategies for validating security-relevant

code found in online forums. Of these, 13 mentioned learning

from information resources, including online forums, blogs,

and articles (n=9) as well as more official sources such

as security-industry organizations or official documentation

for security libraries (n=4). As examples of the latter, one

respondent specifically mentioned the OWASP Top Ten list3

and another mentioned documentation a Java EE security

tutorial4.

D. Developers trust their security skills

In contrast to participants who claim they do not know

enough to implement security correctly, other participants do

trust their own secure-development skills to protect their code.

When asked how they evaluate security aspects of code

they find in online sources, many respondents indicated that

they can evaluate security code sufficiently themselves. Of the

36 respondents who gave specific validation strategies (see

3https://www.owasp.org/index.php/Category:OWASP Top Ten Project
4https://docs.oracle.com/javaee/6/tutorial/doc/bnbwj.html

42

Section VI-B), 19 said they would try to understand how the

code works, seven said they would write tests or otherwise

try to break the code, and four reasoned that simpler code

would inherently be more secure than complex code. Two

respondents said they simply will not reuse code from online

sources if it deals with user data.

We see a similar theme with our interviewees: seven said

they would try to prevent future vulnerabilities (like the ones

we identified) by trying to understand code drawn from online

forums. Eleven participants reported that they knew enough

to fix the vulnerabilities we identified and provided specific

mechanisms for doing so. (Notably, this was after we had

pointed out and explained the vulnerabilities, many of which

are simple to fix once identified.) For instance, P11 identified

multiple paths to fixing the issue: “I would probably use JWT,

Java Web Tokens. So I might hide the secret with a public key,

maybe even PGP, because this is like a message. Not just fix

one line or two, but to rewrite all the code.”

Two interview participants said that in order to easily

integrate security-relevant code into their projects, they would

rather write their own code instead of using existing li-

braries/frameworks. P6 noted, “It’s not hard to rewrite the code

if the encryption and security aspects is more important than

efficiency, performance. Then writing the function or class by

yourself, means more safety.” This contradicts conventional

wisdom that reusing validated libraries is more secure than

“rolling your own” security software [26].

These responses suggest that in many cases, developers are

confident enough in their own skills that they use (or reuse)

code without referring to external resources or validating it

more formally. The propagation of insecure code from online

forums into GitHub and other production code (as identified

by our work and in prior work such as [5]) suggests that

sometimes this confidence may be misplaced.

Trusting their own skills, or wanting to learn more?
We note that claiming insufficient security knowledge (Sec-

tion VI-D) and trusting one’s own security knowledge to be

sufficient (this subsection) seem at least somewhat contradic-

tory. In the survey data, these two populations seem mostly

disjoint; five participants report validation strategies that fall

into both categories.

In the interview data, however, a majority participants

sometimes indicate that they trust their security skills but

also suggest that they need to learn more. We suspect that

the in-depth interview (in which security flaws are pointed

out) allows participants to reflect more on their processes and

recognize areas where they may want to learn more.

E. Security isn’t the top priority

As previous work has shown, some developers prioritize

other features of software — such as adding functionality or

ensuring computational efficiency — over security [27]. We

found evidence of this trend as well.

Twelve interview participants said they had consulted online

forums when writing the project we identified as vulnerable.

When asked if they considered security aspects when deciding

to use code from these forums, four of the 12 said yes; the

other eight reported that they did not consider security at all.

Two participants who said they did not consider security

explicitly said that they just needed the code to work. When

asked how or why a security problem occurred in their project,

eight indicated that functionality was the highest priority, or

that security was “an afterthought” (P4). According to P12,

“This was an acceptable solution. I did not search again and

again to find the best solution or to find the weakness in my

code. I grabbed it from some forum and oracle developers or

something like that. Just take, use, and go on.”

Two participants explicitly cited efficiency concerns. For

example, P15, who used a hard-coded salt when generating a

key from a password, said that “the hard-coded thing probably

is because it took less time for me to encrypt and decrypt.”

Other participants (n=5) suggested that prioritizing func-

tionality would inhibit the correct integration of security code

in general, not just in the project we identified as potentially

vulnerable. As P6 said, “I usually use the cipher method that

looks simple: encryption stuff comes with it. Use the easiest

way to finish the crypto task. None of my projects are focusing

on the security aspects. I didn’t see any point to get into more

details about encryption stuff.”

F. Security should be someone else’s job

We also found evidence that some developers would rather

not deal with security-relevant programming, by themselves

or at all, and that some consider security not to be a core

aspect of software development but rather someone else’s

responsibility. This result accords with prior work in software

engineering [28],as well as research into end users’ security

decision-making [29].

Five interview participants said they would need security-

oriented code reviews to avoid similar security bugs (to the

ones we pointed out) in the future. P1 said, “When you use

the code into your project, have some[one] to check or give

it to some security department in the company to verify a

little bit.” Two of these five specifically stated they would

refer to mentors for security-oriented code reviews. A sixth

participant cited lack of security-oriented code review as a

factor that might prevent developers from integrating security-

relevant code correctly in general.

Two participants said that to prevent future security prob-

lems, they would want to abstract security-related code using

methods “trusted by the community” (P4, P10). Two others

said they would prefer to completely outsource security-

relevant code to other developers. P11 said he wanted “Some-

one else in a service to do it for me, like some other company,

to offload problems to someone else. I would probably use

some service like Firebase from Google, they have all the

authentication service.”

Two participants wished for automated code analysis tools

to help with integrating security-relevant code: “Being able to

pop this code into whatever editor it was I was using, if the

editor had the ability to highlight potential vulnerabilities I

should focus in on, . . . it would be pretty handy” (P13).

43

In all of these responses we see that participants are trying

to offload the responsibility of writing secure code to some

degree. This is either done by trying to use “community

trusted methods,” looking for security oriented code reviews,

outsourcing security code completely, or using code analysis

tools. From these responses, we hypothesize that believing

that security is or should be someone else’s responsibility may

align well with a willingness to copy & paste security-relevant

code from an online forum with limited validation.

G. Security is not important in my context
A large minority of our interviewees (n=7) reported that the

potentially vulnerable code we identified was not of concern

in their project. Four said the vulnerability was important,

and three were unsure. P10 argued that the relevance of any

security issue depends on “the scope of the platform, and

the scope of the project,” but refused to answer whether the

particular issue we identified was important in his project.
Four said the potential vulnerability was unimportant be-

cause the code in question is not used by many people. For

example, P3 said, “It’s not used by a lot of audience, so it’s

not very important. But it’s important in a broader sense.” Two

interviewees (P1,P4) argued that because the code was used

only in internal, offline tasks, security was irrelevant.
P4 and P11 claimed that the code in question was not

written for a security-sensitive purpose. P11, for example,

was developing a game cheat program, in which gamers pay

periodic fees to enable the functionality. What we identified

as potentially vulnerable code; is code that used encryption to

create unique identifiers for each subscriber, in order to detect

whether a single subscription was being used by multiple

people or devices. P11 argued that this unique identifier use

does not have important security implications: “It’s not for

password encryption or related. It’s just used as an identifier.

Even if you crack it, you really don’t do anything. It’s just

unique information. Just to warn me . . . if someone is sharing

their subscriptions.”
We note that all participants used cryptographic code in

their potentially vulnerable projects, suggesting that on some

level they believed there was some security-relevant purpose.

(For example, P11 could have used a non-encryption-related

unique identifier if he was not concerned about cheating.)

Denying the relevance of security to their project may arise

from participants’ general defensiveness when asked about the

problems we identified, a kind of social desirability bias.

VII. DISCUSSION

In this section we discuss some of our descriptive findings

and propose different methods of mitigating insecure code

propagation via online forums such as StackOverflow.
We find that by and large, developers are aware that there

are risks associated with importing code (in general, and

security-specific) from online forums. Our results demonstrate

that many participants recognize that they “should” perform

validation via code reviews and tests, checking with exter-

nal resources (including community feedback and “official”

sources), and other strategies.

However, the prevalence of vulnerable code propagation [5]

— in addition to the problems we identified in participants’

own code — indicate that there is a critical gap between

participants recognizing the importance of validation and im-

plementing it. It is straightforward, and not unusual, to blame

developers for prioritizing convenience or functionality over

ensuring security, and indeed we find substantial evidence of

such prioritization. We also, however, find other potentially

important explanations, including participants who feel ill-

equipped to properly conduct such validation and participants

who believe, rightly or wrongly, that security should or will be

handled by others. These differing motivations for propagating

insecure code inform our recommended mitigations.

A. Security-oriented feedback system

In response to participants who do not have confidence in

their ability to vet security-relevant code, as well as partici-

pants who rely on third parties and community feedback to

help them, we suggest extending online forums to explicitly

encourage community feedback on the security aspects of

provided code snippets. (This idea was also suggested in [3].)

For Stack Overflow, this could mean extending the already-

in-place flagging system [30] or duplicate-marking system [31]

to allow flagging or marking for insecure code. Further, Stack

Overflow could provide a commenting option specific to

security-relevant concerns, perhaps highlighted with coloring

or placement on the page. These feedback features might help

developers who want to be skeptical of security-relevant code

to make better choices.

Of course, any such community-feedback system can only

be as useful as the expertise of its contributors. To this end,

Stack Overflow could extend its reputation system to include

security reputation, limiting certain community-feedback func-

tions to those users who have previously demonstrated security

expertise in other threads.

Such a system also has potential to influence developers who

do not prioritize security or do not believe security is their

responsibility. The availability of quasi-expert feedback ad-

dresses some developers’ desire to outsource security decision-

making. Further, forum administrators could use security feed-

back system as a factor in search results or recommendation

systems, which would reduce the likelihood of developers who

prioritize convenience encountering insecure results.

B. Linking to educational material

Another potential response to developers who expressed

a desire to learn more about security in order to properly

evaluate code they encounter is to provide them with educa-

tional resources. In particular, we suggest providing an explicit

mechanism to link from threads on Stack Overflow and similar

forums to related educational materials. The sources for these

materials could be official documentation as well as white-

listed experts and publications.

Users of online forums could be incentivized to link this

material by allowing such linking (and subsequent approval

44

by the community) to contribute to the user’s reputation. Al-

ternatively, researchers have explored automated mechanisms

for linking forum posts and other documentation sources [32],

[33]. Further, advancements in post deduplication would allow

both community security feedback and links to educational re-

sources to propagate among posts covering similar topics [34]–

[36].

C. Removing problematic posts

For those developers who do not prioritize security, who

do not believe security matters in their context, or who

believe that security is or should be someone else’s job, these

mitigations may not be sufficient. Such developers may be

likely to ignore warnings and links to educational materials in

favor of effortlessly importing code that superficially solves a

problem. To mitigate this, the problematic code snippets will

have to be either made less visible to search algorithms or

even removed altogether.

This goal could potentially be achieved via ranking posts

using the community security-feedback features described

above. If this approach proves insufficient, it might also be

possible for carefully selected parties — for example, the

U.S. Computer Emergency Readiness Team (US-CERT) —

to explicitly request takedowns of problematic code snippets.

Safeguards to prevent abuse would be required, and perhaps

removed posts could be archived in a fashion that allows

them to be accessed, but with sufficient inconvenience to deter

developers searching for a quick fix. This might require a large

resource investment by the trusted organizations, but even an

effort to remove a few of the worst offenders could provide

dividends.

VIII. CONCLUSION

Previous work has shown insecure code propagates from

online programming forums to production code. In this study,

we explore the reasons behind insecure code propagation from

Stack Overflow to open-source GitHub repositories. In partic-

ular, we identified (from prior work) specific cryptography-

related security vulnerabilities and searched for Stack Over-

flow posts that instantiate these vulnerabilities as code snip-

pets. Using MOSS, we matched these snippets to code in

GitHub repositories. We surveyed 133 authors of these reposi-

tories and conducted follow-up interviews with 15 of them. We

find that while developers can articulate a variety of strategies

for properly vetting security-relevant code they encounter in

online forums, this vetting fails in practice for a variety of

reasons, including choosing not to prioritize security, believing

security is or should not be their job, and having insufficient

knowledge or skill to evaluate specific code.

IX. ACKNOWLEDGMENTS

The authors wish to thank Arunesh Mathur, Angel Plane,

Heba Aly, and Ahmed Taha for their help with early versions

of this work. We also thank all our participants, our anony-

mous reviewers, and our shepherd, Shriram Krishnamurthi.

This work was supported in part by the U.S. Department of

Commerce, National Institute for Standards and Technology,

under Cooperative Agreement 70NANB15H330.

REFERENCES

[1] OWASP, OWASP Top Ten Project, 2017. [Online]. Available:
https://www.owasp.org/index.php/Category:OWASP Top Ten Project

[2] M. Corporation, Common Vulnerabilities and Exposures, 2019. [Online].
Available: https://cve.mitre.org/

[3] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You get where you’re looking for: The impact of information sources
on code security,” in 2016 IEEE Symposium on Security and Privacy
(SP). IEEE, 2016, pp. 289–305.

[4] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek,
and C. Stransky, “Comparing the Usability of Cryptographic APIs,” in
2017 IEEE Symposium on Security and Privacy (SP), May 2017, pp.
154–171.

[5] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack overflow considered harmful? the impact of copy&paste
on android application security,” in 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 2017, pp. 121–136.

[6] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping through hoops:
Why do java developers struggle with cryptography apis?” in Proceed-
ings of the 38th International Conference on Software Engineering.
ACM, 2016, pp. 935–946.

[7] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand,
and M. Smith, “Why do developers get password storage wrong?: A
qualitative usability study,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’17.
New York, NY, USA: ACM, 2017, pp. 311–328. [Online]. Available:
http://doi.acm.org/10.1145/3133956.3134082

[8] B. Vasilescu, V. Filkov, and A. Serebrenik, “Stackoverflow and github:
Associations between software development and crowdsourced knowl-
edge,” in 2013 International Conference on Social Computing. IEEE,
2013, pp. 188–195.

[9] Y. Wu, S. Wang, C.-P. Bezemer, and K. Inoue, “How do developers uti-
lize source code from stack overflow?” Empirical Software Engineering,
pp. 1–37, 2018.

[10] D. Yang, P. Martins, V. Saini, and C. Lopes, “Stack overflow in github:
any snippets there?” in 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR). IEEE, 2017, pp. 280–290.

[11] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask and
answer questions on the web?: Nier track,” in 2011 33rd International
Conference on Software Engineering (ICSE). IEEE, 2011, pp. 804–807.

[12] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming q&a in stackoverflow,” in 2012
28th IEEE International Conference on Software Maintenance (ICSM).
IEEE, 2012, pp. 25–34.

[13] J. Yang, C. Hauff, A. Bozzon, and G.-J. Houben, “Asking the right
question in collaborative q&a systems,” in Proceedings of the 25th ACM
conference on Hypertext and social media. ACM, 2014, pp. 179–189.

[14] D. Yang, A. Hussain, and C. V. Lopes, “From query to usable code:
an analysis of stack overflow code snippets,” in Proceedings of the
13th International Conference on Mining Software Repositories. ACM,
2016, pp. 391–402.

[15] H. Zhang, S. Wang, T.-H. P. Chen, Y. Zou, and A. E. Hassan, “An em-
pirical study of obsolete answers on stack overflow,” IEEE Transactions
on Software Engineering, 2019.

[16] S. Wang, D. Lo, and L. Jiang, “An empirical study on developer
interactions in stackoverflow,” in Proceedings of the 28th Annual ACM
Symposium on Applied Computing. ACM, 2013, pp. 1019–1024.

[17] L. An, O. Mlouki, F. Khomh, and G. Antoniol, “Stack overflow: A code
laundering platform?” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 2017,
pp. 283–293.

[18] S. Baltes, R. Kiefer, and S. Diehl, “Attribution required: Stack overflow
code snippets in github projects,” in Proceedings of the 39th Interna-
tional Conference on Software Engineering Companion. IEEE Press,
2017, pp. 161–163.

[19] O. Docs, Random (Java Platform SE 8), 2018. [Online]. Available:
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html

[20] N. I. of Standards and T. (NIST), FIPS 140-2, Security Requirements
for Cryptographic Modules, 2002. [Online]. Available: https://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf

45

[21] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An
empirical study of cryptographic misuse in android applications,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, ser. CCS ’13. New York, NY, USA:
ACM, 2013, pp. 73–84. [Online]. Available: http://doi.acm.org/10.1145/
2508859.2516693

[22] D. Lazar, H. Chen, X. Wang, and N. Zeldovich, “Why does
cryptographic software fail?: A case study and open problems,” in
Proceedings of 5th Asia-Pacific Workshop on Systems, ser. APSys ’14.
New York, NY, USA: ACM, 2014, pp. 7:1–7:7. [Online]. Available:
http://doi.acm.org/10.1145/2637166.2637237

[23] S. University, MOSS: A System for Detecting Software Similarity, 2017.
[Online]. Available: https://theory.stanford.edu/∼aiken/moss/

[24] J. Landis and G. Koch, “The measurement of observer agreement for
categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977.

[25] StackExchange. (2019) All sites - stack exchange. [Online]. Available:
https://stackexchange.com/sites?view=list#users

[26] B. Schneier, Amateurs Produce Amateur Cryptography, 2015.
[Online]. Available: https://www.schneier.com/blog/archives/2015/05/
amateurs produc.html

[27] R. Balebako and L. Cranor, “Improving app privacy: Nudging app
developers to protect user privacy,” IEEE Security & Privacy, vol. 12,
no. 4, pp. 55–58, 2014.

[28] H. Mouratidis, P. Giorgini, and G. Manson, “When security meets
software engineering: a case of modelling secure information systems,”
Information Systems, vol. 30, no. 8, pp. 609–629, 2005.

[29] E. M. Redmiles, S. Kross, and M. L. Mazurek, “How i learned to be
secure: a census-representative survey of security advice sources and
behavior,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2016, pp. 666–677.

[30] StackExchange. (2019) Privileges flag posts. [Online]. Available:
https://stackoverflow.com/help/privileges/flag-posts

[31] StackExchange. (2019) Why are some questions marked as duplicate.
[Online]. Available: https://stackoverflow.com/help/duplicates

[32] C. Treude and M. P. Robillard, “Augmenting api documentation with
insights from stack overflow,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). IEEE, 2016, pp. 392–
403.

[33] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live api documenta-
tion,” in Proceedings of the 36th International Conference on Software
Engineering. ACM, 2014, pp. 643–652.

[34] M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and K. A. Schneider,
“Mining duplicate questions in stack overflow,” in Proceedings of the
13th International Conference on Mining Software Repositories. ACM,
2016, pp. 402–412.

[35] W. E. Zhang, Q. Z. Sheng, J. H. Lau, and E. Abebe, “Detecting
duplicate posts in programming qa communities via latent semantics and
association rules,” in Proceedings of the 26th International Conference
on World Wide Web. International World Wide Web Conferences
Steering Committee, 2017, pp. 1221–1229.

[36] Y. Zhang, D. Lo, X. Xia, and J.-L. Sun, “Multi-factor duplicate question
detection in stack overflow,” Journal of Computer Science and Technol-
ogy, vol. 30, no. 5, pp. 981–997, 2015.

APPENDIX

THE SURVEY

1) I am age 18 or older, and I have read this consent form

and agree to participate in the survey.

� Yes� No

2) How many years of software development experience do

you have? numeric free response

3) How many years did you study computer science (or a

related discipline) in school? numeric free response

4) In the past year, have you been employed as a profes-

sional software developer?

� Yes� No

[If Yes for question 4]

How often do you engage in the following activities in

professional software development?

a) Writing test cases for your code?

Never - Rarely - Sometimes - Often - Always - N/A

b) Collaborate with others for writing code?

Never - Rarely - Sometimes - Often - Always - N/A

c) Engage in code reviews with others?

Never - Rarely - Sometimes - Often - Always - N/A

d) Refer to code snippets from online forums or

StackOverflow?

Never - Rarely - Sometimes - Often - Always - N/A

5) In the past year, have you contributed code to open source

software?

� Yes� No

[If Yes for question 5]

How often do you engage in the following activities in

open source software development?

a) Writing test cases for your code?

Never - Rarely - Sometimes - Often - Always - N/A

b) Collaborate with others for writing code?

Never - Rarely - Sometimes - Often - Always - N/A

c) Engage in code reviews with others?

Never - Rarely - Sometimes - Often - Always - N/A

d) Refer to code snippets from online forums or

StackOverflow?

Never - Rarely - Sometimes - Often - Always - N/A

6) In your own words, please explain how you evaluate the

quality of code from online code snippets. How do you

decide whether to accept or reject the code?

free response

7) Have you ever asked questions on online forums such as

StackOverflow or others?

� Yes� No� I don’t remember

8) Have you ever answered questions on online forums such

as StackOverflow or others?

� Yes� No� I don’t remember

9) Check all the statements that describe your background

in computer security?

� I have never take never taken any courses in computer

46

security� I have taken a course that did not focus on computer

security, but included computer security as a module� I have taken a basic course in computer security� I have taken an advanced course in computer security

10) How would you rate your background in computer secu-

rity?

� Not at all knowledgeable� Slightly knowledgeable� Somewhat knowledgeable� Very knowledgeable� Extremely knowledgeable

[Asked If Yes for question 5]

11) In your open source software development routine, how

often do you implement and handle tasks that relate to

computer security?

Never - Rarely - Sometimes - Often - Always - N/A

[Asked if participant does refer to online code snippets]

12) How often do you refer to code snippets relating

to computer security on online forums such as

StackOverflow or others?

Never - Rarely - Sometimes - Often - Always - N/A

[Asked if participant does refer to online code snippets
relating to computer security]

13) When you refer to code from online sources in your

open source development, how do you evaluate the

security aspects of the code?

free response

[Asked if participant has asked questions on stack over-
flow before]

14) Have you ever asked questions relating to computer se-

curity on online forums such as StackOverflow or others?

� Yes� No� I don’t remember

[Asked if participant has answered questions on stack
overflow before]

15) Have you ever answered questions relating to computer

security on online forums such as StackOverflow or

others?

� Yes� No� I don’t remember

16) Have you previously used any software verification or

static analysis tools (e.g. FindBugs, Pylint)?

� Yes� No

� I don’t remember� I don’t know what these are

These questions are specific to your project listed on

Github [link to the project]

17) What platform was the project designed on? Please also

list all the tools and software you used.

free response
18) How many other people excluding you worked on the

project?

� I worked on the project myself� 1 - 5 people� 6 - 10 people� 11 - 15 people� > 15 people

19) Did you seek help from online forums when working on

this project?

� Yes� No� I don’t remember

20) Did you seek help from other collaborators when working

on this project?

� Yes� No� I don’t remember

21) Did you have a deadline for completing this project?

� I had no deadline to complete this project� I had a self-imposed deadline to complete this project� Someone else imposed a deadline to complete this

project

[Asked if participant had a deadline]

22) How difficult was it for you to meet the aforementioned

deadline for this project?

� Not at all difficult� Slightly difficult� Somewhat difficult� Very difficult� Extremely difficult

[Asked if participant had a deadline]

23) How pressured did you feel to complete the project by

by the deadline?

� Not at all pressured� Slightly pressured� Somewhat pressured� Very pressured� Extremely pressured

47

24) In which year were you born?

numeric free response
25) What is the highest level of education that you have

completed?

� 12th grade or less� Graduated high school or equivalent� Some college, no degree� Associate degree� Bachelor’s degree� Post-graduate degree

26) What is your primary occupation?

free response

27) What is your gender?

� Make� Female� Other

28) Would you like to participate in a 20-30 mins follow-up

interview about your project? If you are selected, you will

be compensated with a $15 Amazon Gift Card for your

time.

� Yes� No

[if yes to question 28]

29) Are you comfortable holding an online interview in the

English language?

� Yes� No

[if yes to question 28]

30) If not, which language would you feel most comfortable

with? Please note we cannot guarantee that we will find

a translator for the language you specify.

free response

[if yes to question 28]

31) Please enter your preferred email address, chat handle,

or other ways to contact you in the box below. We will

only use your contact details to set up the interview and

will not contact you for any other reason.

free response

THE INTERVIEW PROTOCOL:

1) What is the goal of the project? What is its purpose? Who

was it designed for? Was it supposed to work with end

users or other entities?

2) Did you work by yourself on this code? Were you part

of a team working on a broader project or was this a solo

effort?

3) Did you use any help from online forums or other

collaborators to write this code?

4) Did you have a tight deadline while implementing this

project?

5) Did you get any monetary compensation while writing

this project?

6) What is the functionality of this code snippet in

your code? How important is the code to the overall

functioning of the project?

The interviewer will explain to the interviewee the
vulnerability of this code snippet and then ask the
following:

7) Has anyone commented about security aspects of this

code snippet before?

8) Do you think the vulnerability we pointed out is impor-

tant? Why/why not?

9) How/why do you think this security problem occurred?

• If you used online forums, did you consider security

aspects when deciding to use the code?

10) How would you go about fixing this piece of code?

11) Given your existing knowledge, what (if any) measures

would you consider next time you are implementing

a security or cryptography task to avoid this kind of

problem?

12) What would help you easily integrate security-related

code into your tasks correctly and efficiently?

13) What would get in the way of integrating security-related

code correctly?

14) Is there anything else we didn’t discuss that’s important

for considering the risks and consequences of online

security code usage?

15) Any other comments or information you would like to

tell us?

48

