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Abstract—The evolution of cloud computing facilitates applications with varying demands to operate in a virtualized environment. For
instance, applications like the healthcare system, video streaming, Internet of Things (IoT) that are moving to the cloud, demand
responses within a particular time limit, i.e., deadline. However, the cloud computing system consumes a considerable amount of
electric energy while providing services to these type of applications, which in turn contribute to the high operational cost. Specifically, it
becomes cumbersome to offer services to deadline sensitive task while minimizing energy consumption. In this regard, efficient task
scheduling is an attractive way to cut down energy usage while ensuring satisfactory services for cloud users. In this paper, the task
scheduling problem is considered as a bi-objective minimization problem which includes minimization of energy consumption and
makespan. First, we proposed a novel learning automata-based scheduling framework for deadline sensitive tasks in the cloud.
Learning automata (LA) is an adaptive decision-making unit that helps the scheduler to select the best responses. Later, the LA-based
Scheduling (LAS) algorithm is introduced which exploits the heterogeneity of tasks and virtual machines (VMs) while ensuring the
timing requirements of the tasks. Extensive simulation is carried out to designate the effectiveness and applicability of LAS for deadline
sensitive task scheduling in the heterogeneous cloud environment.

Index Terms—Cloud computing, Deadline, Energy consumption, Makespan, Learning Automata (LA)
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1 INTRODUCTION

Cloud computing is a revolutionary paradigm, which uses
data centers to provide services over the Internet. Virtual-
ization is the key technology behind the cloud that creates
an illusion of infinite computing resources. Running ap-
plications on virtual cloud resources (or virtual machines)
contribute to the scalability and cost-efficiency feature of
the cloud. Further, cloud-based services like SaaS, PaaS,
and IaaS intend to extend support for a wide range of
applications. Noticeably many applications, e.g., healthcare
system, video streaming, IoT, the financial transaction sys-
tem employed in the virtualized cloud are with real-time
nature, in which the response to a request is a function of
both computational outcome and time instant at which it
is produced. As these applications need a timely response,
depending on their nature (whether emergent or not) the
cloud system decides whether to expand or shrink the
count on cloud resources. For instance, a task of a health-
care application demand guarantee of timeliness strictly
whereas application like video streaming can withstand
some relaxation in timing constraint. So, to procure the need
for such applications a cloud service provider must provide
a sufficient number of cloud resources that satisfy the timing
requirement. Meanwhile, the evergrowing demand of ap-
plications forces a Cloud Service provider (CSP) to deploy
more and more cloud resources. Inevitably, the massive
count of cloud resources in cloud data center consumes a
tremendous amount of energy [1], [2]. Further, the report
presented in [2], [3] also states that data centers consume 1.5
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% of global electric energy in the year 2010, which will be
doubled by 2020 if current trends continue.

The following facts can attribute the reasons for high
energy consumption in cloud data centers; (i) Some com-
puting resources are inevitably idle during different time
slots which indeed lowers resource utilization and raises
energy consumption. In [1], [2], [4] low utilization of com-
puting resources is affirmed as one of the crucial element
contributing to high energy consumption. Moreover, a study
presented in [1], [5] shows that average resource utilization
in a cloud system is not more than 30 %, but the energy
used by idle resources is at least 60-70 % of peak energy.
(ii) To meet the worst-case demand of users cloud resources
are over-provisioned. The significantly higher number of re-
sources reservation, in turn, increases the energy consump-
tion. Besides inefficient and improper resource scheduling
leads to the selection of VMs that will cause high energy
consumption while ensuring QoS demand (e.g., deadline) of
the applications. But, high energy consumption has a neg-
ative impact on the environment. Further, the high energy
consumption also affects the operational cost of the CSP, as
the rise in energy usage raises the electric cost. Reliability of
the system is also affected by high energy consumption. This
can be supported by Arrhenius life-stress model which says
that ”for every 10 oC increase in temperature, the failure
rate of electric devices rises by a factor of two” [1]. Hence,
it is hugely requisite to employ some means to lessen the
energy consumption of the cloud system and make it energy
efficient.

In this regard, scheduling plays a vital role in deadline
sensitive application. These applications need task comple-
tion within the deadline while efficiently utilizing cloud
resources [7], [8]. More specifically, the task scheduling
problem can be defined as follows; for a given set of VMs
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and tasks, we need to obtain the best mapping of tasks
to VMs such that the system performance metrics like
energy consumption, makespan, etc. can be optimized. But
the task scheduling problem becomes more challenging for
the multi-objective case, i.e., when more than one contrary
metrics need to be simultaneously optimized. For instance,
to minimize the cost and response time simultaneously, the
scheduler must make the best decision possible otherwise
reduction in response time may lead to a rise in cost or vice-
versa. Furthermore, deadline constraint of applications and
heterogeneity of cloud resources contribute to the complex-
ity of scheduling. In this context, we used learning automata
(LA) concept to solve bi-objective deadline sensitive task
scheduling problem in the heterogeneous cloud environ-
ment. LA is an adaptive decision-making unit that learns
from its action applied to a dynamic environment [9], [10],
[11], [12]. The reinforcement based learning scheme of LA
helps to get optimal action from a set of possible actions.
This feature of LA makes it a suitable candidate for finding
the best <task, VM > pair from a set of possible < task, VM
> set for a task in the dynamic cloud environment.

The major contributions of this paper are as follows:

• We introduced an LA-based scheduling framework
for deadline sensitive tasks in the cloud environment.

• The task scheduling problem is formulated as a
bi-objective minimization problem which includes
minimization of energy consumption and makespan.
Later, we presented LA-based Scheduling (LAS) al-
gorithm for finding the solution of the bi-objective
minimization problem.

• An extensive set of experiments were performed to
show the effectiveness of LAS over its peers. The
comparison is evaluated in terms of energy con-
sumption, makespan and success ratio.

The rest of the paper is organized as follows: Section 2
presents an overview of various works done by researchers,
precisely focusing on deadline sensitive task scheduling
and use of LA-based approach. Section 3 discusses the LA
concept. Section 4 presents the cloud system framework
which includes a VM and task model, energy model, LA
model, and scheduling model. In Section 5, LAS algorithm
is introduced based on the scheduling framework discussed
in Section 4. Section 6 discusses the performance evaluation
of the proposed approach with some existing approaches.
Finally, the paper is ended with concluding remarks in
Section 7.

2 RELATED WORK

In this section, we present a review of existing studies on
(i) performance metric based task scheduling, (ii) use of the
LA-based approach.

2.1 Performance Metric based Task Scheduling
Scheduling plays a significant role in achieving high perfor-
mance for applications running in clouds. Usually, schedul-
ing algorithms are designed to optimize performance met-
rics like energy consumption, makespan, cost, etc. In this
study, we mainly focus on energy-aware scheduling algo-
rithms for deadline sensitive task in the cloud. Zhu et al. [1]

developed an Energy-Aware Scheduling Algorithm (EARH)
for the real-time independent task to optimize guarantee ra-
tio, energy consumption, and resource utilization. Chen et al.
[2] presented Energy-efficient Online Scheduling Algorithm
(EONS) with the aim of achieving energy efficiency and bet-
ter resource utilization for real-time workflows in the cloud
data center. Mishra et al. [4] presented metaheuristic based
service allocation framework to find the trade-off between
energy consumption and makespan. Gao et al. [5] proposed
”Guided Migrate and Pack” (GMaP) scheduling framework
based on VM migration to maximize energy efficiency while
reducing SLA violation due to deadline miss. Yassa et al. [6]
used Dynamic Voltage and Frequency Scaling (DVFS) and
Particle Swarm Optimization (PSO) techniques to optimize
makespan, cost, and energy for workflow scheduling. In
[17], a dynamic VM consolidation technique is used to
realize energy efficiency in the cloud data center without
committing SLA violations. To save energy, authors in [18]
presented EEVS scheduling algorithm of VMs. First, they
find the optimal performance-power ratio of Physical Ma-
chine (PM) and then assign VM to PM with the highest ratio.

Li et al. [19] proposed a failure aware energy efficient
scheduling algorithm for the cloud data center considering
computing and cooling energy, and the reliability of servers.
Xing et al. [20] utilized VM migration and resource fairness
concepts to optimize energy usage for IoT applications
in the cloud environment. A greedy scheduling algorithm
named Most Energy Efficient First (MESF) presented in [21]
saves energy by assigning a task to the most efficient server
based on energy profile. Li et al. [22] proposed an algorithm
named CEAS to reduce execution cost and energy consump-
tion of scientific workflows in the cloud. DVFS technique is
incorporated in the algorithm to conserve energy. koodziej
et al. [24] employed DVFS model and Genetic Algorithm
(GA) for solving energy-aware scheduling problem in com-
putational grid. In [25], authors have proposed HARMONY,
a heterogeneity aware resource management system to
decrease the total energy consumption and performance
penalty. Whereas in [29], the scheduler allocates a real-time
task to the processing node in a probabilistic way aiming
at decreasing the average energy per successful task. DVFS
technique is used in [33], [35] to find the tradeoff between
performance and energy efficiency. The work presented in
[37] minimizes energy consumption by turning off the most
effective processor from energy saving perspective.

Panda et al. [23] proposed scheduling techniques based
on min-max, and median max to reduce makespan while
improving average cloud utilization in a multi-cloud en-
vironment. Stavrinides et al. [26] used the Earliest Dead-
line First (EDF) and best fit theory to guarantee execution
of applications within deadline constraint while reducing
makespan and cost charged to the user. Cai et al. [27]
introduced a scheduling algorithm to minimize the resource
renting cost while meeting workflow deadline. A regression
model is used by researchers in [30] for provisioning cloud
resources to find the tradeoff between cost saving and QoS
requirement. Zhang et al. [28] used Bayes classifier to classify
task based on historical scheduling data. They proposed a
two-stage scheduling scheme whose performance is mea-
sured concerning makespan, waiting time and utilization
of VM. Sahoo et al. [32] proposed EDF based algorithm
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using best fit, worst fit and first fit concept to optimize
guarantee ratio, VM utilization, and throughput while guar-
anteeing deadline constraint. Chen et al. [8] considered the
uncertainty of task execution time and data transfer time
in their scheduling algorithm for workflows in the cloud.
Zhu et al. [7] developed a fault-tolerant task scheduling
using primary-backup concept for real-time workflows in
a virtualized cloud. Quang-Hung et al. [15] proposed a GA
based virtual machine allocation scheme to minimize the
total energy consumption of computing servers. From this
survey, it is concluded that in the last few years a sizable
amount of research has been conducted on task scheduling
.using various performance metrics.

2.2 Use of LA-based Approach

LA theory is appropriate for the environment which is
dynamic, complex, and there is a large number of uncer-
tainties like cloud environment, computer networks, etc.
Narendra et al. [9] presented a survey in the area of learning
automata. Their study mainly focused on norms and behav-
ior of learning automata, reinforcement/learning schemes,
the convergence of learning algorithm, the interaction of
several automata. Various applications of learning automata
are also discussed like parameter optimization and decision
making. Authors in [15] discussed how learning automata
behave with changing the number of actions. Misra et al. [10]
proposed an LA-based framework to improve the perfor-
mance of QoS-enabled cloud services concerning response
time and speed-up. Rezvanian et al. [11] used LA to find
the solution of the minimum vertex-covering problem in a
stochastic graph. Ranjbari et al. [12] proposed an algorithm
based on LA to detect the overloaded PM. The preven-
tion from PM overload reduces VM migration count and
helps consolidation of VMs, which indeed minimizes energy
consumption. In [13] authors have utilized LA theory to
develop a prediction model for cloud resource usage. An
LA-based ranking algorithm is introduced in [14], where a
learning automaton ranks the search documents based on
user feedback. Venkataramana et al. [16] proposed LA-based
task assignment architecture for a heterogeneous computing
system to achieve load balancing and minimum total execu-
tion time. Authors in [36] used LA concept to minimize the
energy consumption in a heterogeneous cloud environment.

From the above study, we can infer that VM migra-
tion and DVFS technique for energy saving have been
well studied separately by the researchers. Also, some re-
searchers used VM consolidation, nature-inspired approach,
and greedy approach for saving energy. The diversified
approaches and need of the energy-efficient system allows
one to explore different methods to achieve the desired
goal. Further, a considerable amount of work has been done
considering benefits of LA approach, but few of them deal
with energy-aware scheduling of independent deadline sen-
sitive tasks in the heterogeneous cloud environment. In this
context, we employed LA concept to design a scheduling
framework for deadline sensitive tasks in the heterogeneous
cloud environment. Authors in [16] also presented a task
scheduling framework, however, the main distinction be-
tween their work and ours is two-fold. First, the absence
of the virtualization concept in their work, whereas in our

work VM is the basic computation unit. Second, our work
takes deadline of the task into account while scheduling,
which was not considered in earlier work.

3 LEARNING AUTOMATA

A learning automaton act as an adaptive decision-making
unit that learns to pick the best action from a set of allowed
actions through repeated interaction with an uncertain en-
vironment [9] − [16], [36]. Besides, learning automaton can
cooperate to find the solution of many hard-to-solve prob-
lems like adaptive control, grid computing, combinatorial
optimization problem, etc. The actions are chosen based on
a probability distribution kept over the action set and served
as the input to the random environment. The environment
generates a reinforcement signal for each action. Based on
this signal value, the action probability vector is updated.
This process continues until the stopping criterion (i.e.,
maximum iteration count or probability value approach a
threshold limit) is reached. Fig. 1 shows the relationship
between environment and learning automata. Based on the
reinforcement signal, an environment can be classified into
P-model, Q-model, and S-model. In P-model environment,
reinforcement signal can take two binary values 0 and
1, where 0 indicates favorable response and 1 shows an
unfavorable response. On the other hand, Q-model allows
reinforcement signal to have a finite number of values in
the interval [0, 1]. In S-model environment, reinforcement
signal lies in the interval [0,1] as given in [12], [14]. LA can
be of two types: fixed structure and variable structure. In a
variable structure LA (VLA), the number of actions available
at each instant changes with time, which is constant for
fixed structure LA (FLA). Since, in the cloud the number of
requests for service changes over time, a VLA is appropriate
to represent it.

Environment

Learning 

Automata

a β

Fig. 1: Learning automata and Environment

A VLA can be defined by quadruple < P,α, β, L >,
where α is the action set, β is the set of inputs, P is the
action probability set, and L is the learning or reinforcement
algorithm. The learning algorithm is a recurrence relation
adopted to revise the action probability vector. It can be de-
scribed by a linear or non-linear or hybrid function. Let, r be
the number of actions that can be taken by a LA. The action
to be performed in the environment is denoted by α, where
α ≡ {α1, α2, ..., αr} and the reinforcement signal from the
environment is indicated by β, where β ≡ {β1, β2, ..., βr}.
At instant k, αi(k) ∈ α denotes action taken by LA and
pi(k) ∈ P is the probability value defined for action αi(k).
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The reward (φ) and penalty (ϕ) constants are used to ma-
nipulate action probabilities. The linear learning algorithm
used to update pi is as follows:

pj(k + 1) =

{
pj(k) + φ× (1− pj(k) j = i

(1− φ)× pj(k) ∀j, j 6= i
(1)

pj(k + 1) =

{
(1− ϕ)× pj(k) j = i
ϕ
r−1 + (1− ϕ)× pj(k) ∀j, j 6= i

(2)

If the selected action αi(k) is favorable to the environment,
then βi = 0 and it is rewarded using Equation 1. Equation
1 states that increase the probability of αi(k), whereas
decrease the probability of other actions for the subsequent
instant. Similarly, Equation 2 is used to penalize an action
if it is unfavorable to the environment. It states that, de-
crease the probability of selected action while increasing
the probability of other actions for the subsequent instant.
Based on the values of φ and ϕ learning algorithm can be
classified as follows: if φ = ϕ, then it is called linear reward
penalty (LR−P ) algorithm. When φ � ϕ it is reward-ε-
penalty (LRεP ), and if ϕ = 0, it is called reward-inaction
(LR−I ) algorithm. The primary goal of LA is to select the
optimal action from a set of possible actions, similar to it,
a task scheduling problem in cloud corresponds to pick the
best mapping of the task to VM from a possible mapping
set. Further, the reinforcement based learning scheme with
very little historical information adds the suitability of LA
for solving the task scheduling problem.

4 CLOUD SYSTEM FRAMEWORK

In this section, we will discuss the models and terminologies
used in this paper. The proposed scheduling framework
as shown in Fig. 2 is designed for deadline sensitive task
scheduling in the heterogeneous cloud environment. Vari-
ous components of the framework are a task and VM model,
energy model, LA model, and scheduling model. The cloud
scheduler uses models mentioned above for allocation of
tasks to different VMs. Various symbols used are listed in
Table 1.

Action Response
t1

v1 v2 vm

Scheduler

t2 tn

LA Model

LA Table

. . .

Cloud Environment

. . .

 User Task

Fig. 2: Scheduling Framework

4.1 VM Model

The virtualized cloud environment is characterized by VM
set V = {v1, v2, ..., vm} which provides computing in-
frastructure for processing user tasks (or requests). Each
element vj in V represents VM ID. The heterogeneous set
of VM is realized in terms of its computing capability or

TABLE 1: Symbols Used

Symbol Description
ti Task ID of ith task
vj VM ID of jth VM
spj Speed of vj
etcji Expected execution time of ti on vj
stji Start time of ti on vj
ftji Finish time of ti on vj
tcji Binary variable indicating whether

execution of ti on vj meet deadline
or not

ξaj Energy consumption of vj in active
state

ηlj Energy consumption of vj in idle
state

%j Total energy consumption of vj
τ Makespan
δ Aggregated energy consumption of

the cloud system
µj Total execution time of tasks assigned

to vj
Xj

i Binary variable indicating if ti is as-
signed to vj or not

Ai Automaton associated with ti
αi Action set of Ai

pi Action probability vector for αi

βi Reinforcement signal for αi

L Learning algorithm
αj
i Action denoting ti is assigned to VM

vj
pji (k) Probability value for αj

i at iteration k
φ Reward constant
ϕ Penalty constant
ω(k) Cost metric at iteration k

θmn Minimum value of pji
θmx Maximum value of pji

speed, spj , j = {1, 2, 3, ...,m}. The widely-used metric,
Million Instructions Per Second (MIPS) is used to measure
the computing capability of the VM [1], [7], [27], [33], [34],
[35].

4.2 Task Model

Let, T = {t1, t2, ..., tn} is the set of independent tasks that
arrive dynamically. Each element ti, i = {1, 2, ..., n} in T
represents task ID. A task ti submitted by a user (Useri) is
modeled by following parameters; ti = {ai, szi, dli}, where
ai, szi and dli are the arrival time, task size (in terms of
Million Instruction (MI)), and deadline of task ti respec-
tively. The heterogeneity of task and VMs are modeled as
the estimate of the expected execution time for each task on
each VM, which is known before the execution. Let etcji be
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the expected execution time of ti on VM vj . It is computed
as:

etcji =
szi
spj

(3)

etcji is contained within a n ×m expected time to compute
(ETC) matrix, where n is the number of tasks, and m is
the number of VMs. One row of ETC matrix contains the
estimated execution time of a task on each VM [4]. We
assume that a new task is affixed to the end of previously
allocated tasks on a VM. Let stji and ftji are the start and
finish time of task ti on VM vj respectively. The start time
stji can be computed as below:

stji = max{ftjp, ai} (4)

Equation 4 says that a new task ti can start its execution
on vj , either after the completion of the previously assigned
task tp on it or just after the arrival, whichever is earlier.
Finish time of a task on a particular VM is calculated by
adding start time and expected execution time on that VM.
It is calculated as follows:

ftji = stji + etcji (5)

The finish time is employed to ascertain whether the task’s
timing constraint (dli) can be guaranteed or not. Let, binary
variable tcji indicate whether a task ti executing on vj met
its timing constraint or not. If ti met the constraint then tcji
takes value ”1” and is ”0” otherwise. Mathematically, it is
shown as:

tcji =

{
0 if ftji > dli
1 if ftji ≤ dli

(6)

4.3 Energy Model

The energy consumed in the cloud system is mostly from
the execution environment, cooling system, and power con-
ditioning [1], [4]. The execution environment consists of VM
and is the basis of our energy model. Generally, energy
consumption of a VM depends on it’s state. A VM can be
in an active or idle state. We assume that a VM is said to
be active when it is executing a task otherwise it is idle.
Usually, energy consumed by a VM in idle state is 60-70%
of the active state [1], [4], [5]. Let, ξaj and ηlj denotes
the energy consumption of VM vj in the active and idle
state respectively. Total energy consumption (%j) of VM vj
is estimated considering both active and idle state energy
usage. It’s calculation is shown in Equation 7.

%j = (ξaj + ηlj )× spj (7)

Total execution time (µj) of all the tasks assigned to vj is
calculated as follows:

µj =
n∑
i=1

Xj
i × etc

j
i (8)

where binary variable Xj
i = 1, if ti is assigned to vj . If ti

is not assigned to vj then Xj
i = 0. Makespan (τ ) is defined

as the maximum execution time among all the VMs. It is
computed as:

τ =Max(µj) (9)

The active and idle state energy consumption of vj is com-
puted as follows:

ξaj = µj × σj (10)

ηlj = (τ − µj)× 0.6× σj (11)

where σj = 10−8 × (spj)
2 Joules/MI [4], [29], [31]. The

aggregate energy consumption (δ) of the cloud system is
evaluated as:

δ =
m∑
j=1

%j (12)

4.4 LA Model
In this work, LA is used to generate a scheduling decision
that will optimize the specified objectives. We assume that
there are n number of tasks and m number of VMs in the
cloud system, whose values may vary over the time. The
proposed VLA model is presented in Fig. 3. Each incoming
task is associated with an automaton, and a set of VMs
realizes the random environment. The VLA is represented
by a sextuple < ti, Ai, αi, pi, βi, L >, where ti indicates ith

task, Ai is the learning automaton associated with ti, αi
is the action set of Ai, pi is the action probability vector
corresponding to αi, βi is the reinforcement signal from
the environment for action αi and L is the learning algo-
rithm. The action set of an automaton is represented by the
probable set of VM assignment possible for execution of a
task. Hence, αi = {αji |1 ≤ j ≤ m} is the action set of Ai,
where α1

i means task ti is assigned to VM v1, α2
i means ti

is assigned to v2 and so on. The action probability vector

Learning 
Algorithm (L)

. . .

a1 a2 an

b1 bnb2

Assignment (ζ)

A1
AnA2

LA Model Actions

Responses

t1 t2 tn

. . .
 User Task

v1 v2 vm

. . .Cloud
 Environment

LA Table

Scheduler

Fig. 3: Proposed VLA Model

pi = {pji |α
j
i ∈ αi}, where p1i is the probability value of

action α1
i , p2i is the probability of action α2

i and so on. At any
instant, action with highest probability is chosen. The ex-
pression for pi can be rewritten as pi = max{p1i , p2i , ..., pmi }.
Hence, αi = {αji |p

j
i = max(pi)}. The reinforcement signal

βi can have binary values 0 and 1. Let ω(k) represents our
bi-objective minimization equation at iteration k.

The learning algorithm is defined as follows: If ω(k) ≤
ω(k − 1), then check whether action αi taken by automaton
Ai meet the deadline constraint or not. If condition holds
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then set βi = 0, otherwise set βi = 1. This process avoids the
possibility of misinterpretation of favorable output response
from the environment as the favorable input to a particular
automaton. The reward and penalty calculation defined in
Equation 1 and Equation 2 are rewritten as:

pji (k + 1) =

{
pji (k) + φ× (1− pji (k)) j = i

(1− φ)× pji (k) ∀j, j 6= i
(13)

pji (k + 1) =

{
1− ϕ× pji (k) j = i
ϕ
r−1 + (1− ϕ)× pji (k) ∀j, j 6= i

(14)

If the reinforcement signal βi = 0, action taken by Ai is
rewarded using Equation 13 and if βi = 1, action of Ai is
penalized using Equation 14. The outcome of the scheduling
decision at each iteration is stored in LA table. The LA table
consists of fields, task ID (ti), VM ID (vj), αi and pi. We
assume that pji shows the goodness value of a VM. Since,
the goodness value is an indication of the performance of
the VM, a higher number for it is preferable. The proposed
LA model optimizes the specified objectives based on a
given T . Hence, the scheduling framework is adaptive to
the changing cloud environment.

4.5 Scheduling Model
The primary goal of the scheduler is to map a task set to
a VM set such that the specified objectives (in this case
minimization of energy consumption and makespan) can
be achieved. A scheduling process is triggered at each time
interval, and all the tasks arrived until that time gets sched-
uled. The scheduler first invokes LA model to generate the
best scheduling decision possible through the reinforcement
learning process. LA model is executed for a fixed number
of iteration and outcome of each iteration is stored in LA
table. In each iteration, the scheduler selects a VM based on
its goodness value. The scheduler uses the outcome of LA
model after the final iteration for actual execution on the
cloud system. The novel feature of the proposed scheduling
framework is that:

• A reinforcement based learning process is used to se-
lect an appropriate VM for a task. The reinforcement
scheme penalizes the bad selection and rewards the
good selection. Further, it can be tuned to improve
the performance of the system.

• The history information about the responses from
the environment is modeled in the action probability
matrix.

• The automaton decides without performing any
highly time-consuming calculations, which makes it
suitable for the real-time system.

• Since, the task scheduling decision is made consid-
ering the models of the application’s task and the
VM of the cloud system; the scheduling framework
is well suited for the dynamic cloud environment.

5 LAS SCHEDULING TECHNIQUE

In this section, we first manifest the steps of the proposed
scheduling technique and then present LA-based schedul-
ing (LAS) algorithm. The steps taken for the proposed
approach are as follows:

• Initialization: In the beginning, a task can be assigned
to any of the available VMs in set V . So, the initial
probability of every action αji in αi for automaton
Ai is set to 1

m . Mathematically, it is represented as:
pji (0) =

1
m , for i = {1, 2, ..., n} and j = {1, 2, ...,m}.

Let, ζ is an assignment vector of size 1 × n. The
assignment vector represents the action chosen by
each automaton at a particular iteration. The initial
value of ω set to INF , i.e., ω(0) = INF .

• Construction of Matrices: Each row of ETC ma-
trix imitates the action set of automaton Ai, i =
{1, 2, ..., n}. For instance, row 1 shows the set of ac-
tions (i.e., αj1, j = {1, 2, ...,m}) possible for automa-
ton A1. Let, the action probability of each automaton
formed a n ×m matrix, namely P . Each element of
the matrix corresponds to pji .

Algorithm 1 : Pseudo code of MatrixGeneration()

1: for each task ti in T do
2: for each VM vj in V do
3: Calculate etcji using Equation 3;
4: Set pji =

1
m ;

5: end for
6: end for

In the first iteration, assignment vector ζ is formed
by randomly picking an element from each row of
the ETC matrix as all the actions are equiprobable.
In subsequent iterations, for each row in P , an el-
ement having the highest value is marked. Then ζ
is constructed by picking the corresponding entry in
ETC . Pseudo code to generate ETC and P matrices
is shown in Algorithm 1.

• Calculation of Cost Metric (ω): The elements of the

Algorithm 2 : Pseudo code of CostMetricCalculation()

1: for each (ti, vj) pair in the system do
2: Calculate start time stji by Equation 4 and pick etcji

from ETC matrix;
3: Compute ftji of each task ti on VM vj using Equa-

tion 5;
4: if ftji ≤ dli then
5: Set tcji = 1;
6: Calculate %j and τ using Equations 7, 8, 9, 10, 11;
7: Calculate δ using Equation 12;
8: Obtain ω using Equation 15;
9: else

10: Set tcji = 0;
11: end if
12: end for

proposed bi-objective minimization problem have
distinct measurement units. So, to eliminate the com-
putational problem caused by this, each element
is normalized. Let τmax be the maximum allow-
able makespan, and δmax be the maximum possible
energy consumption of the system. Then the bi-
objective minimization problem can be represented
as:

ω =
δ

δmax
× x+

τ

τmax
× y (15)
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where x, and y are weight constant associated with δ
and τ respectively.
Detailed computation of cost metric is shown in
Algorithm 2. The algorithm first calculates the start
time and execution time of task ti on VM vj (see line
2). If ti’s deadline can be met on vj , then set tcji = 1
and estimate cost metric (see lines 6-8). If tcji = 0,
i.e., there is no VM vj which can execute ti within
deadline, then add a new VM.

• Updation of Action Probabilities: Due to the hetero-
geneity of task and VM, the action performed by
automaton can be rewarded sometimes, while, other
times, the very same action will be penalized. An
action taken by Ai is either rewarded or penalized
based on the learning algorithm L. The probabil-
ity updating formula is presented in Equations 13
and 14. Let θmn indicate minimum value and θmx
indicate maximum value for action probability, i.e.,
pji . If pji ≤ θmn, the action αji is deactivated for
the task ti. If pji = θmx, all the actions except
αji are deactivated and ti is assigned to vj . This
process avoids unnecessary computation and helps
faster computation. The deactivated actions are not
considered for scheduling decision. Pseudocode for
probability updation is shown in Algorithm 3.

Algorithm 3 : Pseudo code of ProbUpdation()

1: for each task ti in T do
2: for each VM vj in V do
3: if pji ≤ θmn then
4: Deactivate αji ;
5: end if
6: if pji == θmx then
7: Assign ti to vj ;
8: end if
9: end for

10: end for

• Calculation of Constants: The weight constants x and
y are assigned different values based on the impor-
tance of each metrics. Still, the law of probability
measure must be satisfied, i.e.,

∑
(x + y) = 1. Here,

we set x, y = 0.5, as equal importance is given to
both the metrics. The reward (φ) and penalty (ϕ) pa-
rameters are given the same value, as we considered
a reward-penalty learning algorithm.

• Stopping Criteria: The learning process stops when
the number of iteration k exceeds maximum itera-
tion count kmax or pi of all automaton reaches its
threshold value, whichever is earlier.

The overall working of the proposed algorithm as shown
in Algorithm 4 is as follows: first, the ETC and probability
matrix P is generated for a given set of VMs and tasks.
Then, for each iteration, assignment vector ζ is generated by
previously mentioned methods. For each assignment, cost
metric is calculated using Algorithm 2. If the cost metric at
iteration k is better than the value at iteration k − 1, then
check whether task execution is completed within deadline
constraint or not. The reinforcement signal for task’s meet-
ing deadline constraint is set to ”0,” i.e., βi = 0, whereas

Algorithm 4 : Pseudo code of LA-based Scheduling (LAS)

1: Set k = 1;
2: Generate ET matrix and probability matrix P using
MatrixGeneration();

3: while k ≤ kmax do
4: if k == 1 then
5: Find assignment vector ζ by random selection;
6: else
7: Find assignment vector ζ by choosing actions

with highest probabilities in P ;
8: end if
9: Calculate cost metric using
CostMetricCalculation();

10: if ω(k) ≤ ω(k − 1) then
11: for each (ti, vj) pair in the system do
12: if tcji == 1 then
13: Set βi = 0;
14: else
15: Set βi = 1;
16: end if
17: end for
18: end if
19: for each task ti in the system do
20: if βi == 0 then
21: Reward the action taken byAi using Equation

13;
22: else if βi == 1 then
23: Penalize the action chosen by Ai using Equa-

tion 14;
24: end if
25: end for
26: Update P using ProbUpdation();
27: Increment k;
28: end while

for other tasks βi = 1. Based on the reinforcement signal,
an automaton is either rewarded or penalized. This process
continues until the stopping criterion is not satisfied.

Theorem 1. The time complexity of LAS algorithm is
O(nm).

Proof: The time complexity of generating ETC and P
matrix is O(nm) (Algorithm 1). Generation of assignment
vector is O(nm). In Algorithm 2, calculation of task’s start
time and finish time, and picking an element from ETC
matrix is O(nm). Checking if a task meet it’s deadline
or not takes O(nm) time. In Algorithm 4, the complex-
ity of reward and penalty calculation is O(n) and for
setting reinforcement signal value the time complexity is
O(nm). In Algorithm 3 the time complexity of probability
updation is O(nm). For other lines, the time complexity
is O(1). Hence, the time complexity of LAS algorithm is
O(nm)+kmax(O(nm)+O(nm)+O(nm)+O(n)+O(nm)+
O(nm)) = O(nm).

The proposed scheduling scheme is explained with an
example. Let, there are 5 tasks (n=5) and 3 VMs (m=3) in
the cloud system. An automaton Ai, i = {1, 2, 3, 4, 5} can
choose three actions αji , j = {1, 2, 3}. We set kmax = 3.

• Iteration 1: Initial configuration of matrices P and
ζ are shown in Fig.4a. We assume the action set
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Task 
\VM

v1 v2 v3

t1 0.33 0.33 0.33

t2 0.33 0.33 0.33

t3 0.33 0.33 0.33

t4 0.33 0.33 0.33

t5 0.33 0.33 0.33

1 2 3 4 5

v2 v3 v1 v2 v2
P = z  =

(a) Matrices at iteration 1

Task 
\VM

v1 v2 v3

t1 0.30 0.40 0.30

t2 0.30 0.30 0.40

t3 0.30 0.35 0.35

t4 0.30 0.40 0.30

t5 0.35 0.30 0.30

1 2 3 4 5

v2 v3 v1 v2 v2
P =

z  =

(b) Matrices at iteration 2

Task 
\VM

v1 v2 v3

t1 0.27 0.46 0.27

t2 0.27 0.27 0.46

t3 0.27 0.415 0.315

t4 0.27 0.46 0.27

t5 0.315 0.32 0.365

1 2 3 4 5

v2 v3 v2 v2 v3
P = z  =

(c) Matrices at iteration 3

Task 
\VM

v1 v2 v3

t1 0.243 0.514 0.243

t2 0.243 0.243 0.514

t3 0.243 0.4735 0.2835

t4 0.243 0.514 0.243

t5 0.2835 0.288 0.4285

1 2 3 4 5

v2 v3 v2 v2 v3
P = z  =

(d) Final Scheduling Decision

Fig. 4: An Example for LAS

α = {α2
1, α

3
2, α

1
3, α

2
4, α

2
5}. Let, actions α2

1, α3
2, and α2

4

meet the deadline constraint of respective tasks. But,
actions α1

3 and α2
5 fail to do so. Let, the calculated

cost metric value, ω(1) = 20. As ω(1) ≤ ω(0), the
reinforcement signal for each action is {β1 = 0, β2 =
0, β3 = 1, β4 = 0, β5 = 1}. The actions α2

1, α3
2, and

α2
4 are rewarded. The action probability of A1 with
φ = ϕ = 0.1, is calculated as follows:
p11(2) = (1− φ)× p11(1) = 0.9× 0.33 = 0.297 ' 0.3

p21(2) = 0.33 + .1× 0.67 = 0.397 ' 0.4

p31(2) = (1− φ)× p31(1) = 0.3
(16)

Similarly, probability value for A2 and A4 are com-
puted. The action probability of A3 is updated as
follows:
p13(2) = (1− ϕ)× p13(1) = 0.9× 0.33 = 0.297 ' 0.3

p23(2) =
0.1
2 + .9× p23(1) = 0.347 ' 0.35

p33(2) = 0.35
(17)

Likewise, probability of A5 is computed. The up-
dated values are shown in Fig. 4b.

• Iteration 2: We assume the action set α =
{α2

1, α
3
2, α

2
3, α

2
4, α

1
5}. Let, actions α2

1, α3
2, α2

3 and α2
4

meet the deadline constraint of respective tasks. But,
action α1

5 fail to do so. Let, the calculated cost metric
value, ω(2) = 18. As ω(2) ≤ ω(1), the reinforcement
signal for each action is {β1 = 0, β2 = 0, β3 =

0, β4 = 0, β5 = 1}. The actions having reinforcement
signal value ”0” are rewarded whereas actions with
value ”1” are penalized. The action with reward is
updated as follows:

p11(3) = (1− φ)× p11(2) = 0.27

p21(3) = 0.4 + .1× 0.6 = 0.46

p31(3) = 0.27

(18)

Similarly, probability value for A2, A3 and A4 are
computed. The action probability of A3 is updated
as follows:

p15(3) = 0.9× 0.35 = 0.315

p25(3) =
0.1
2 + .9× p23(2) = 0.32

p35(3) =
0.1
2 + .9× 0.35 = 0.365

(19)

The updated values are shown in Fig. 4c.
• Iteration 3: Let actions α = {α2

1, α
3
2, α

2
3, α

2
4, α

3
5} meet

both cost metric and deadline constraint. The rein-
forcement signal for each action is ”0”, i.e., {β1 =
0, β2 = 0, β3 = 0, β4 = 0, β5 = 0}. The updated P
matrix is shown in Fig. 4d. Hence, the final schedul-
ing decision is ζ = {α2

1, α
3
2, α

2
3, α

2
4, α

3
5}.

Lemma 1: To preserve the law of probability measure, the
sum of probabilities of actions possible by an automaton Ai
is one. Mathematically, it is expressed as:

m∑
j=1

pji = 1 (20)

where m is the number of actions possible by Ai.
Proof: Let, A1 is the automaton for task t1 and can

choose five actions α1
1, α

2
1, α

3
1, α

4
1, α

5
1 with probabilities

p11, p
2
1, p

3
1, p

4
1, p

5
1 respectively. α1

1 means task t1 is assigned to
VM v1, α2

1 means task t1 is assigned to VM v2 and so on. p11
is the probability of choosing action α1

1, p21 is the probability
of choosing action α2

1 and so on. Let, task t1 is assigned
to VM v1 and based on response from the environment
this action is either rewarded or penalized. If the action is
rewarded, then the action probability is updated according
to Equations 21, and 22.

p11(k + 1) = p11(k) + φ× (1− p11(k)) (21)

p2,3,4,51 (k + 1) = (1− φ)× p2,3,4,51 (k) (22)

p2,3,4,51 is used instead of individual probability
p21, p

3
1, p

4
1, p

5
1. Similarly, Equations 23, and 24 are used

to update action probability for penalty.

p11(k + 1) = p11(k)− ϕ× (1− p11(k)) (23)

p2,3,4,51 (k + 1) = (1− ϕ)× p2,3,4,51 (k) + (
ϕ

4
) (24)

By reframing Equation 21, we get,

p11(k + 1) = (1− φ)× p11(k) + φ (25)

By putting different k values in Equation 25, we get,
k = 1, p11(2) = (1− φ)× p11(1) + φ

k = 2, p11(3) = (1− φ)× p11(2) + φ

k = 3, p11(4) = (1− φ)× p11(3) + φ

(26)
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By solving Equation 26 with substitution method, we get,

p11(4) = (1−φ)3× p11(1)+φ× [1+ (1−φ)+ (1−φ)2] (27)

Generalizing Equation 27, we get,

p11(k + 1) = (1− φ)k+1 × p11(0) + φ× [1 + (1− φ) + ...+ (1− φ)k]

= (1− φ)k+1 × p11(0) + φ×

[
1− (1− φ)k

1− (1− φ)

]
(28)

For large value of k, (1 − φ)k+1 and (1 − φ)k tends to
zero. So, we can rewrite Equation 28 as:

p11(k + 1) = φ×
[

1

1− (1− φ)

]
= 1 (29)

Now, putting different k values in Equation 22, we get,
k = 1, p2,3,4,51 (2) = (1− φ)× p2,3,4,51 (1)

k = 2, p2,3,4,51 (3) = (1− φ)× p2,3,4,51 (2)

k = 3, p2,3,4,51 (4) = (1− φ)× p2,3,4,51 (3)

(30)

By solving Equation 30 with substitution method, we get,

p2,3,4,51 (4) = (1− φ)3 × p2,3,4,51 (1) (31)

Generalizing Equation 31, we get,

p2,3,4,51 (k + 1) = (1− φ)k+1 × p2,3,4,51 (1) = 0 (32)

For large value of k, (1 − φ)k+1 tends to 0. Sum of all
probabilities is:

5∑
j=1

pj1 = p11(k + 1) + p2,3,4,51 (k + 1) = 1 + 0 = 1 (33)

Similarly, we can prove for penalty equations.

6 PERFORMANCE EVALUATION

To show the effectiveness of LAS, we compare it with the
following algorithms, Greedy-R and Greedy-P [1], EEVS
[18], Dynamic Task Scheduling (DTS) [28] and Random.
All the algorithms are modified to suit the heterogenous
tasks and VMs here. The algorithms for comparisons are
summarized as follows:

Greedy-R [1]: It allocates tasks with the quickest execu-
tion time first to the highest speed available VM so that task
deadline constraint is met.

Greedy-P [1]: It allocates tasks with the quickest execu-
tion time first to the slowest speed available VM.

EEVS [18]: An optimal frequency for VM is obtained to
minimize the energy consumption. Based on the optimal
frequency a performance-power ratio is calculated, then PM
with the highest ratio is used to process VM.

DTS [28]: First, the tasks are classified based on historical
scheduling information. VM of various types is accordingly
created. Then, matching of the task with VM is performed
dynamically, which is a time-consuming process.

Random: It assigns task randomly amongst available
VMs under the deadline constraint.

The metrics used to evaluate the performance of the
algorithm include the success ratio, makespan, and total
energy consumption. The success ratio is defined as the ratio
between the number of tasks meet their deadline and the
total number of tasks.

6.1 Simulation Settings
The detailed settings and parameters for simulation are
given as follows:

• Each VM is modeled to have computing capacity in
the range [3000-6000] MIPS.

• A task generator is developed to quantify real-time
task arrival to the cloud system. Task arrival is
modeled using the Poisson distribution where the
inter-arrival time is exponentially distributed. The
task’s deadline is set as: dli = ai + baseD, where
baseD is in uniform distribution U(5, 10). Task size
is set in the range [1000-10000] MI. MIPS and MI are
assumed based on the study found in [39] and [38]
respectively.

• Each experiment is repeated 20 times, and averaging
is done to avoid the influence of uncertainty factors
on the experimental outcomes.

• The reward and penalty constant is set to φ = ϕ =
0.1.

Fig. 5a shows the variation of cost metric value using
LAS over the number of iterations. The experiment is carried
out with task count=1000 and varying VM count between
[40-100] in the step of 20. It can be seen from Fig. 5a that,
after 500 iterations there is minimal variation in the cost
metric value. This indicates automata is starting to converge
to a solution. Also, we performed experiments with different
values of reward and penalty constant. The experiment is
carried out with task count=1000, number of iteration=500,
number of VM=40 and 60 respectively. From Fig. 5b and Fig.
5c we can infer that the cost metric value goes up with a rise
in task count. The nature of the graph is similar for different
values of φ and ϕ. Thus, we set the φ and ϕ value to 0.1.

6.2 Performance based on the task count
Here, we display a group of experimental outcomes to
perceive the performance comparison of algorithms based
on task count. We performed experiments by setting VM
count to 40, 60, 80 and 100. We vary the task count in the
range [200-1000] in the interval of 200. In this paper, we
exhibit the experimental results with VM=40 and VM=60 in
Fig. 6 and Fig. 7 respectively. It can be perceived from Fig.
6a and Fig. 7a that the makespan of algorithms increases
with the rise in task count. This is because, as there is an
addition to tasks the completion time of tasks will also grow
with fixed VM count. Moreover, we can see that LAS has
minimum makespan as compared to others and the trend is
similar for all the task count.

From Fig. 6b and Fig. 7b, it can be concluded that LAS
has better energy conservation as compared to others and
the trend becomes apparent with the rise in task count. This
experimental outcome indicates that LA theory helps in the
efficient utilization of VMs which helps to save more energy.

Fig. 6c and Fig. 7c demonstrates that for all algorithms
there is negligible change in the success ratio regardless
of task count. The increase in the number of VMs causes
slight variations in the success ratio. This is because an
efficient task scheduling can lead to executing as many real-
time tasks as possible within the deadline. Besides, it can
be found that LAS has a higher success ratio than other
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Fig. 5: Cost Metric variation
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Fig. 6: Number of VM=40 with variation in task count
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Fig. 7: Number of VM=60 with variation in task count

algorithms. This can be attributed that LAS employs LA op-
timization policy that helps to improve task’s schedulability.

6.3 Performance based on Deadline Variation

Here, we present a set of experiments to show the impact of
task deadline on the performance of different algorithms.
The number of VMs is set in the range [40-100] in the
interval of 20, and task count is fixed to 1000. In this
paper, we display the experimental results with VM=40 and
VM=60 in Fig. 8 and Fig. 9. Parameter baseD varied from
100 to 300 with the step of 50.

From Fig. 8a and Fig. 9a it can be inferred that with
the rise in baseD, the makespan of the algorithms increases
correspondingly. This is because, with the addition of long
deadline, tasks will get more time to complete their execu-
tion within the deadline. Ultimately, it will add up to the

makespan. Besides, it can be seen that LAS outperforms
other algorithms.

Fig. 8b and 9b show that as the baseD widens, the
total energy consumption by the algorithms grows corre-
spondingly. This outcome indicates that due to the rise in
deadline, a more significant number of tasks get the chance
to complete their execution before the deadline. Thus, there
is an increase in energy consumption. Additionally, LAS
consumes less energy as compared to other algorithms. This
is because of the use of LA theory, which helps in efficient
resource utilization.

Fig. 8c and 9c exhibits that the increase in baseD im-
proves the success ratio of the algorithms. This can be justi-
fied by the fact that, the prolonged deadlines give tasks extra
time to finish their execution within time constraints. Also,
Fig. 8c and Fig. 9c shows that LAS has higher success ratio
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Fig. 8: Number of VM=40 with variation in baseD
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Fig. 9: Number of VM=60 with variation in baseD
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Fig. 10: Performance with respect to arrival rate

as compared to its counterparts. LA theory implemented
in LAS cause a significant number of tasks to finish their
execution before the deadline and hence improves success
ratio.

6.4 Performance based on Arrival Rate
Fig. 10 demonstrates the performance of the six algorithms
concerning arrival rate. We set the arrival rate as 0.3 (low),
0.5 (moderate) and 0.9 (high). Task count is set to 200, and
the number of VMs is 40. Fig. 10a shows that makespan of
the system increases with an increase in task arrival rate.
As the arrival rate rises the number of tasks executed in
the system increases which contributes to the makespan
of the system. However, LAS has minimum makespan as
compared to other algorithms. Fig. 10b shows the impact of
task arrival rate on energy consumption. From the figure,
we can infer that high task arrival rate causes high energy

consumption. Besides, LAS exhibits better result compared
to other algorithms. The reason can be explained like that
in Fig. 8b. Fig. 10c shows the effect of the task arrival
rate on the success ratio. LAS algorithm performs better as
compared to other algorithms, which can be justified as that
in Fig. 8c.

An unpaired t-test is conducted with the following null
hypothesis: the success ratio is 75 % for all the algorithms.
The t-test is applied to 200 tasks with the number of VMs
40 (Experiment-1) and 60 (Experiment-2). For Experiment-
1, the calculated mean value= 79.583, and standard devia-
tion=9.972 and N=6. For Experiment-2, the calculated mean
value= 79.250, and standard deviation=10.953 and N=6.
The calculated value of t is 0.0551 and degree of freedom
(df )=10. Tabulated value of t at 10 df is 2.23 at 5 % level
of significance (Value of t6(0.05) for 10 df in two-tailed
Table). Since the calculated t value is less than 2.23 the null
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hypothesis may be accepted at 5 % level of significance.

7 CONCLUSIONS

Energy conservation in the cloud system has significant
interest among researchers. It becomes challenging for a
cloud system to save energy along with timing constraint of
deadline sensitive task. In this paper, we investigated a bi-
objective scheduling problem for deadline sensitive tasks in
the heterogeneous cloud environment. The scheduling ob-
jectives are to minimize energy consumption and makespan
simultaneously. To realize the objectives, we employed LA
theory, which works on the principle of reinforcement learn-
ing. First, we proposed an LA-based scheduling framework
and then presented a scheduling algorithm, LAS, for dead-
line sensitive task in the cloud. The proposed scheduling
technique is better explained with a suitable example. The
experimental outcomes implied that LAS significantly per-
forms better compared to some existing algorithms. In the
future, we plan to implement the Pareto-optimality concept
to solve the bi-objective scheduling problem.
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