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Edge-based Runtime Verification
for the Internet of Things

Christos Tsigkanos, Marcello M. Bersani, Pantelis A. Frangoudis, and Schahram Dustdar

Abstract—Complex distributed systems such as the ones induced by Internet of Things (IoT) deployments, are expected to operate in
compliance to their requirements. This can be checked by inspecting events flowing throughout the system, typically originating from
end-devices and reflecting arbitrary actions, changes in state or sensing. Such events typically reflect the behavior of the overall IoT
system – they may indicate executions which satisfy or violate its requirements. This paper presents a service-based software
architecture and technical framework supporting runtime verification for widely deployed, volatile IoT systems. At the lowest level,
systems we consider are comprised of resource-constrained devices connected over wide area networks generating events. In our
approach, monitors are deployed on edge components, receiving events originating from end-devices or other edge nodes. Temporal
logic properties expressing desired requirements are then evaluated on each edge monitor in a runtime fashion. The system exhibits
decentralization since evaluation occurs locally on edge nodes, and verdicts possibly affecting satisfaction of properties on other edge
nodes are propagated accordingly. This reduces dependence on cloud infrastructures for IoT data collection and centralized processing.
We illustrate how specification and runtime verification can be achieved in practice on a characteristic case study of smart parking. Finally,
we demonstrate the feasibility of our design over a testbed instantiation, whereupon we evaluate performance and capacity limits of
different hardware classes under monitoring workloads of varying intensity using state-of-the-art LPWAN technology.

✦

1 INTRODUCTION

Our life is increasingly dependent on the correct functioning
of complex distributed systems, which are expected to
operate in compliance to their requirements. Such is the
case within contemporary pervasive systems, as the ones
induced by Internet of Things (IoT) deployments, composed
of resource-constrained devices, edge and cloud services
alike. Software components within such distributed systems
typically produce events, in terms of which overall system
requirements describe intended behaviors. If a system’s
runtime operation is found to violate them, corrective actions
may need to be taken.

Runtime verification (RV) is a lightweight verification
technique based on observing information from a system
while in operation, and identifying if the observed behaviors
satisfy or violate certain properties. It has emerged as a prac-
tical application of formal verification, checking properties
upon a sequence of events arising from system execution,
thus scaling well in systems involving complex and high-
throughput events. It is particularly useful when exhaustive
design time verification is impractical or infeasible, or a
system’s formal model is difficult to construct. Monitors
are instead constructed from formal property specifications,
which detect if an incoming event sequence violates them in
an online manner.

Within an IoT setting, events typically originate from
low-end devices and flow throughout the system to software
components in charge of processing them. Such events may
reflect arbitrary actions, changes in state or, quite importantly,
be originating asynchronously from the external environment
recognized by software, commonly referred to as sensing.
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Events within an IoT system typically define a behavior of
the overall system – events may indicate system executions
which satisfy or violate its requirements. Supporting such
validation in practice however, is challenging. Firstly, the
sheer number of devices and their heterogeneity inherent
in IoT systems require dedicated software architectures –
typical cloud-based deployments are often not applicable.
Secondly, communication particularities of the IoT domain
need to be taken into account, since devices may be connected
through a plethora of networking technologies exhibiting dif-
ferent characteristics, such as low-power wide-area networks
(LPWAN). Finally, the volume and velocity of the events
generated in realistic IoT systems can saturate network links
and centralized processing schemes.

To address these difficulties, this paper presents a service-
based software architecture and technical framework sup-
porting runtime verification for decentralized edge-intensive
systems. Monitors are deployed on edge components, re-
ceiving events originating from end-devices and other edge
nodes. The properties expressing desired system require-
ments are evaluated on each edge monitor in a runtime
fashion. The system exhibits decentralization, since property
evaluation occurs locally on an edge node, while evaluation
verdicts possibly affecting satisfaction of other properties on
other edge nodes are propagated accordingly. We assume
that requirements to be satisfied by the system under design
are specified in terms of assertions in a temporal logic. We
subsequently leverage results on runtime verification [1], [2]
and devise a practical distributed systems architecture and
framework that can support evaluation of properties. Our
framework achieves decentralization in two dimensions: (i)
events are evaluated locally within the scope of an edge
node, avoiding central or cloud-based collection that can
incur cross-network overhead, and (ii) properties evaluated
in edge nodes that affect satisfaction of others are propagated
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throughout the hierarchically structured system.
Systems we consider are composed of i) (possibly

resource-constrained) edge computers placed near ii) sensing
end-devices, as well as potentially iii) cloud infrastructure.
We advocate decentralization, as the edge is a first-class entity
in our approach, responsible for evaluating properties on
events originating from IoT devices within its scope (such
as a local administrative domain or wireless network) but
bearing no dependencies besides events needed for checking
in other edge nodes or the cloud. Adopting the classification
of [3], our monitoring approach can be characterised as
follows. Firstly (i), we utilize state-based specification, in
the sense that previous values are used to compute some
current actions to be taken. Secondly (ii), we adopt a discrete
view on time, meaning that values of an output stream
depend on certain previous values of some other stream; this
is in contrast to sliding window approaches, which target
aggregation of events over a fixed period of real time. Finally
(iii), computation of a verdict may not depend on the arrival
times of input values, in an asynchronous manner: in the
widely deployed and volatile systems we target, sensing
devices may operate at different frequencies (e.g., due to
different energy cycles), and thus events received do not
necessarily arrive at synchronized rates [4].

Our framework utilizes Metric First-Order Temporal
Logic (MFOTL [2]), a formalism operating on traces of
events. Our motivations for choosing the formalism are (i) its
expressiveness, as MFOTL has seen applications on systems
ranging from financial to cyber-physical, and (ii) the fact that
it is well-defined and has well-studied theoretical semantics
and properties, both rendering practical adoption and tool
support easier. We contextify the framework advocated
within the wide domain of IoT monitoring, but stress
particularly runtime verification as its technical domain.

To provide concrete evidence of the applicability of the
proposed architecture and technical framework, we first
illustrate how runtime verification can be achieved in practice
on a case study of a spatially-distributed parking system
in a smart city. We then demonstrate the feasibility of our
design to operate in resource-constrained edge computing
environments over a testbed instatiation. Thereupon, we
evaluate performance and capacity limits of different hard-
ware classes, from small single-board computers (SBC) to
server-class data center hosts, under monitoring workloads
of varying intensity, for end-devices communicating using
state-of-the-art LPWAN technology [5].

The rest of the paper is structured as follows. After setting
the stage with a characteristic example, Sec. 2 describes
the design of a system architecture to support runtime
verification. Sec. 3 outlines property specification, and Sec. 4
describes the monitor as the basic architectural building block
in detail. Sec. 6 first provides an applicability assessment over
a smart city scenario, before presenting a testbed, whereupon
performance, capacity and latency of the proposed solution
are investigated. Related work is considered in Sec. 7, and
Sec. 8 concludes the article.

2 MONITORING ARCHITECTURE

Monitoring events from wide IoT deployments requires a
dedicated software architecture, capable of coping with large
volumes and velocities of events, as well as heterogeneous

devices for deployment, and able to accommodate the dif-
ferent particularities of networking technologies and overall
setting. To this end, this section first illustrates a characteristic
motivating scenario. Subsequently, design requirements for
a monitoring architecture are distilled, before presenting its
materialization.

2.1 Example IoT System
Consider the wide deployment of an environmental mon-
itoring system. Sensing infrastructure deployed in remote
and wide areas produces readings which are aggregated and
processed both locally and globally. Sensors themselves may
be heterogeneous, and may range from temperature and
humidity to gas and biochemical. Those may be connected
through low-power wide-area (LPWA) network technologies.
Within our example, they may be deployed throughout a
country-wide setting, performing sensing in remote forest
and mountain regions [6]. We consider sensors as IoT devices,
subject to small size, energy constraints and limited range –
in particular, we consider (i) temperature sensors, (ii) wind-
direction sensors and (iii) CO2 sensors. The objective of the
overall system is to provide monitoring infrastructure to
stakeholders in both local (e.g., region or municipality) and
global (e.g., country government) levels. Such monitoring
may be intended for declaring emergency situations due
to extreme weather-related events, such as forest fires, as
typically employed.1 The exemplary system should alert in
the following situations:
ER1 If CO2 and temperature sensors within a local area

report on average readings over thresholds of 400ppm
and 60◦C respectively, a fire may be taking place and this
must be reported to municipality emergency services.

ER2 Given a probable fire in a local area, if wind direction
is towards an adjacent area where no fire is reported,
the region’s authorities need to be contacted within 10
minutes from the alarm, as the fire may spread.

ER3 If more than 3 regions report fires in the last hour, the
country is in a state of emergency.

The system describes a characteristic case where decen-
tralized monitoring is required. Edge devices in relative
vicinity of IoT sensors typically serve as gateways, collecting
and processing readings and exchanging data with the
cloud. However, the volume, velocity and transmission
cost of the data produced renders transmission to a central
point (such as the cloud) impractical; one would seek to
decentralize monitoring processing as much as possible,
to avoid saturating communication channels, and only
propagate information critical to levels upwards, while
maintaining networking infrastructure cost minimal. Within
our exemplar setting this is evident – sensors in the order
of thousands may be deployed throughout remote forested
regions, communicating over some low-power wide-area
networking technology. Events coming from sensors should
be processed locally in edge nodes and gateways, and only
information resulting from the elaboration of sensors’ data
is propagated (e.g., when there is a fire alert). Finally, the
actual system structure depends on the specific deployment
considered (e.g., a country), meaning that the granularity of
distribution and actual requirement specification should be

1. For an example, see meteofrance.com.
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defined by the system designer, as nodes may be within local
administrative domains.
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Fig. 1. Edge-based Monitoring Architecture. IoT devices in the range
of local edge monitors emit events. Edge monitors are responsible for
runtime verification and are deployed in a hierarchical structure, where
verdicts of property evaluations are propagated.

2.2 Design Requirements
From a software engineering perspective, the distributed sys-
tems we target are made up of small form-factor IoT devices
performing sensing, which live within wide spatial domains,
and communicate over different networking technologies
which should be accommodated uniformly. Moreover, the
events they produce may be intermittent and concurrent,
while evaluation of higher-order properties based on the
sequences (i.e., traces) they induce should occur as timely as
possible. We distill the following design requirements:
DR1 Lightweight communication methods. Events produced

by devices typically involve a low payload per event.
This is due to the low-powered, scarcely online devices
that make up the system in its lower end. Furthermore,
communication may be unstable – events (and thus
datapoints) may arrive sparsely and intermittently.

DR2 Interoperability. Events propagation should adopt well-
defined, lightweight APIs to ensure compatibility with
heterogeneous devices talking over different commu-
nication technologies. Multiple devices may talk to a
single endpoint, while maintaining open connections
is atypical. This is because devices may wake up and
report sensor readings, and then sleep again. Moreover,
devices may move around, and be found in unknown
networks or administrative domains. Loose coupling
within the system is thus desired.

DR3 Non-blocking event propagation. Events may arrive at
unknown rates, since no assumptions can be made
about the device cycles – end-devices may decide to
produce events at any time. This is exacerbated by
LPWAN protocols typically employed in the IoT layer,
which impose strict fixed time on air restrictions (e.g.,
LoRa, SigFox). As such, processing and propagation of

events throughout the system should occur in a non-
blocking, asynchronous manner. Events – leveraging
loose coupling – should not block due to processing.

DR4 Scalability. Numerous sensing end-devices may con-
stitute the system, something that requires handling
increased throughput that may saturate single network
links. Moreover, IoT devices are typically in the range
of local edge gateways, themselves being resource-
constrained – typically single-board computers. Thus,
decentralization emerges as the way to dominate size,
volume, and communication costs.

In the following, we describe the design of a monitoring
architecture, tailored to satisfy the above requirements.

2.3 Edge-based Monitoring Architecture
IoT system architectures bridge the gap between the physical
and the virtual worlds, but entail multiple challenging factors.
Design of IoT architecture involves networking, communica-
tion, extensibility, scalability, and interoperability among het-
erogeneous devices [7]. These (end- or edge-) devices may be
heavily resource-constrained, e.g., in terms of computational
power and battery. As (possibly numerous) devices may span
wide spatial domains, and produce events in real-time, an
IoT architecture should be able to accommodate technology-
agnostic event-based communication between heterogeneous
devices in a decentralized manner. We contextualize our
problem within a layered IoT architecture illustrated in
Figure 1, consisting of:

• Sensing IoT layer, referring to devices responsible for
emitting events, which may be periodic or irregular.

• Monitoring edge layer, of which there may be multiple;
each delimits a set of edge nodes, receives events and
may propagate evaluation verdicts to nodes in other
layers. The set of devices immediately in range of
IoT devices is referred as L0 (layer 0), the next in the
hierarchy as L1, etc.

The architectural design described intends to accom-
modate the various networking technologies which may
be found within the IoT setting. Low-power IoT devices
typically employ low-power networking technologies. At
the monitoring layer, edge nodes may be connected through
high-throughput wired or wireless links, such as WLAN
or 4G/5G. The common denominator is that lightweight
services (in our case, services implementing monitoring func-
tionality) can be used to establish communication throughout
the architectural components. In fact, Service-Oriented Archi-
tectures (SOA) ensure interoperability among heterogeneous
devices [7] making up the system, and abstract functionality
as a set of well-defined services [8]. SOA has been widely
applied as a mainstream architecture, for example in the
context of Wireless Sensors Networks (WSNs) [9]. SOA ap-
plied to IoT provides extensibility, scalability, modularity and
interoperability among heterogeneous software components;
functionalities and capabilities are abstracted as a common
set of services.

Regarding infrastructure and the overall design process,
we contextify our approach after the system operator has
performed dimensioning and allocation of network resources.
Thus, we assume that the infrastructure is static and already
configured, with monitors in fixed physical locations con-
nected with links with known network properties.
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Back to our running example, events are emitted by the
temperature and CO2 sensors (Sensing layer), which transmit
heartbeats with readings, either periodically or upon certain
interrupts (corresponding to e.g., device power cycles). Those
events should trigger the evaluation of the properties in the
local area range in order to determine whether a fire property
holds. The event travels across some wireless link to a local
edge node (Monitoring layer), reaching the monitor in charge
of processing it. Processing the event may entail another
event produced by the edge node, forwarded as input to
another edge node (in a higher order Monitoring layer).

3 LOGIC-BASED SPECIFICATION

In this section, we introduce the logical language which is
used within our framework for formal specification of re-
quirements. The properties capturing those requirements are
allocated to edge monitors and are evaluated automatically,
based on the input events that each monitor receives. Logical
languages are useful to reason with facts that can be endowed
with a truth value and to learn new facts from known ones.
In our work, we adopt the classic interpretation of truth,
which is based on the Boolean two-valued set including
only true and false. Basic facts are elaborated at the bottom
level of the monitoring application, where IoT devices sense
the environment to extract basic information that manifests
through events occurring therein.

The adopted logical language is Metric First Order
Temporal Logic (MFOTL [2]) with aggregating modalities. We
select this language for several reasons. First, the language
offers syntactical elements, called temporal modalities, that
allow us to express temporal relationships between two (or
more) events. Moreover, the available modalities also support
metrics, that is, they can express timing constraints such as
“event A follows event B by exactly one time unit”. Secondly,
the language also includes first order quantifiers over a set
of elements, so it is possible to write constraints such as “for
any monitored area, if there is a fire, then notify the local
authority”. Finally, aggregating modalities are part of the
language, enabling “calculation” over sequences of events,
such as counting, averaging or summation of values found
within events. What follows is an informal presentation of
logic-based specification as used in the scope of this paper,
recalling definitions in [2].

The occurrence of events naturally entails an order
(before/after) among them, and naturally associates every
event with a time position that specifies the ordering. A
finite sequence of elements in fact, inherently determines
a bijection between the set of elements and a subset of
the natural numbers. Every event can also be associated
with a timestamp which indicates the exact time instant
when the event occurs with respect to the origin of time,
commonly associated with 0. For instance, consider the
following simplified sequence showing events emitted when
an IoT sensor within our example setting may be initialized:

(boot, 4.5), (healthcheck, 5), (heartbeat, 7), (calibrate, 10.2),
(heartbeat, 11), (heartbeat, 14.3), (heartbeat, 18), (calibrate, 20)..

Temporal Modalities. Temporal modalities in MFOTL
are those of Linear Temporal Logic (LTL [10]), namely, “neXt”
(written X ) and “Until” (written U ). In the previous sequence,
event healthcheck follows boot. Hence, when boot occurs,
the fact “healthcheck holds next” is true. Based on this

knowledge, the following implication holds in the sequence,
boot ⇒ X (healthcheck). In fact, in every position where boot
does not hold, the implication is true because the antecedent
is violated; whereas in the first position, where boot does
hold, the formula X (healthcheck) is true, and so does the
implication. The Until modality expresses a duration, i.e., the
occurrence of an event until the occurrence of a different one.
In the example sequence, it is true that event heartbeat holds
“until” event calibrate, in every position. Formally, formula
(heartbeat U calibrate) holds in the third position and from
the fifth position afterwards. By definition, the same formula
is true also at the fourth and eight position, where only
calibrate holds.

Metric Modalities. MFOTL includes also metric modal-
ities, allowing reasoning with timestamped sequences of
events. Metric modalities are endowed with an interval of the
Reals that can be left closed/open (commonly indicated with
‘[’ / ‘(’) and right closed/open (commonly indicated with
‘]’ / ‘)’). For instance, formula boot ⇒ X(0,1)(healthcheck)
holds in (every position of) the sequence because event
healthcheck occurs exactly one position, and earlier than
one time unit, after boot. Formula (heartbeat U[1,6] calibrate)
is true at position 3, 6 and 7, because event calibrate occurs
3.2, 5.7 and 2 time units, respectively, after events heartbeat
occurring therein; but the same formula does not hold at
position 5 because event heartbeat is 9 time units earlier than
event calibrate at position 8.

MFOTL includes the past version of metrics next and
until, respectively “previous” (or Yesterday) indicated with
Y , and “Since”, indicated with S . By using standard equiv-
alences, until and since operators can be used to derive the
following modalities: “eventually” (Fφ) and “globally” (Gφ)
derive from until and mean, respectively, that formula φ
holds eventually/always in the future; and “once” (Oφ) and
“historically” (Hφ) derive from since and mean, respectively,
that formula φ held once/always in the past. The metric
variants are straightforward.

Aggregation Operators. MFOTL is further equipped
with aggregation operators that allow one to express proper-
ties on counting (C) occurrence of events, summation (S) and
averaging (A) of a certain numerical characteristic brought by
the events in the sequence. Recall the scenario in Sec. 2.1 and
consider the following sequence of measuring events called
“co2” and “temp,” which respectively indicate readings parts
per million (ppm) of Carbon Dioxide (CO2) and temperature
obtained by sensors deployed in the monitored forest area.
Events are of the form (timest , a, e, v), where timest is a
timestamp, a is the identifier of a monitored area, e is
either “co2” or “temp” and v is a numerical value for the
measurement. A possible sequence of events occurring in the
system can be the following trace (1):

(1.3, area1, co2, 370.6)
(2.8, area2, co2, 450.8)
(2.9, area2, temp, 40.6)
(3.2, area1, temp, 22.6)
(4.5, area2, co2, 790.2)
(4.9, area2, temp, 52.2)
(7.5, area1, co2, 390.6)
(8.2, area1, temp, 22.9)
(10.9, area2, temp, 90.8)
(11.2, area1, temp, 22.4)
(11.5, area2, co2, 15000) . . .

(1)
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The atomic MFOTL formulae that can be interpreted over
trace (1) are co2(a, v) and temp(a, v), being a and v free–
non quantified– variables. For instance, the interpretation
of co2(a, v) at position 2 is the pair (area2, 450.8), whereas
no interpretation can be given for co2 at position 3. The
evaluation of co2(area2, v) at position 2 is the value 450.8.

Using aggregation operators, we can incrementally build
MFOTL formulae capturing the requirements of the example
of Sec. 2.1 – formulae will be evaluated in event traces of
the form of trace (1). The following Formula (2), using the
aggregating operator A, determines the average value of
CO2, indicated with symbol av, in a given area area2 over
the last hour (av is actually a fresh non quantified variable).

[Av(O[0,3600][co2(area2, v))](av). (2)

The evaluation of the Formula (2) is carried out for every
element of trace (1), and the result of every evaluation is a
value av corresponding to the average of all the readings
of CO2 in the last hour for area2. The time window is
determined with respect to the timestamp specified in every
event. To compare the average with a threshold, Formula (2)
can be combined with a formula of the form av > T , where
T is a constant value. The resulting Formula (3) has therefore
a boolean value, and can be used to express whether the
detected CO2 level is exceeding a threshold T of 400ppm:

[Av(O[0,3600][co2(area2, v))](av) ∧ (av > 400) (3)

Finally, assume that formulae φCO2
(a, t) and φtemp(a, t)

express, respectively, that the average amount of CO2 and
temperature in area a over the last hour is greater than
threshold t. Given some thresholds for CO2 TCO2

= 400
ppm, and for temperature Ttemp = 60◦C, we can concretely
specify the requirement ER1 of Sec. 2.1, where fire(a) means
that the incidence of fire is notified to emergency services of
the considered area a. The universal quantifier expresses the
constraint for every area a.

ER1 : ∀a.(




φCO2(a, TCO2)
∧

φtemp(a, Ttemp)


 ⇒ fire(a)).

The requirement corresponding to the regional level can
be expressed on top of Formula ER1, given the outcome of
the evaluation defining event fire. Formula ER2 makes use
of event wind(a1, a2) that indicates the presence of wind
from a generic area a1 to area a2 if the two are adjacent.
Observe that the formula can be instantiated for every region
– as such, all the areas that are quantified by the universal
quantifier belong to the same region R, known a-priori (a
constant value in the formula).

ER2 : ∀a1.∀a2.




fire(a1)
∧

wind(a1, a2)
∧

¬fire(a2)


 ⇒ F(0,600)(fire region(R)).

Finally, the requirement describing the country-wide pred-
icate is captured by Formula ER3, where if more than 2
regions report fires in the last hour, a state of emergency is
declared.

ER3 : ∀r1.∀r2.




O(0,3600)fire region(r1)
∧

O(0,3600)fire region(r2)
∧

r1 �= r2


 ⇒ emergency.

4 MONITORING

Given a specification of requirements, in this section we dis-
cuss how a functional unit wrapping suitably a verification
tool for execution in an edge setting can be devised. Subse-
quently, we outline a reference implementation indicating
technological choices that may be used for its instantiation.

4.1 Monitoring Package
The basic building block of the decentralized monitoring
approach we advocate is the monitor – the functional unit that
receives events, verifies if they violate some stated property,
and if needed, propagates results to other monitors (i.e., in
higher layers of Fig. 1). This abstract functionality can be
exploited to design a grey box monitoring package, which
constitutes a single unit that must be deployed on edge nodes
in range of IoT devices. The monitoring package encapsulates
a runtime verification process, exposed through an API. This
grey box configuration can be easily replicated for multiple
types of logics and verification procedures, hence making
the monitor a flexible basic block for complex architectures.

Figure 2 illustrates the key components of the monitor
package, as well as dataflows inherent in it. The monitor
is deployed on some edge node, which interacts with it
through a lightweight API, whereby all functionality is
exposed. Initially, a property to be monitored (φ) is registered
to the monitor, before the monitoring procedure (as the
monitor runtime) is initialized, utilizing an external runtime
verification tool. Afterwards, the monitor is ready to receive
and process events from IoT devices. IoT devices may submit
events through the API. Received events – recall that they
may be intermittent and typically arrive in unknown rates –
are kept in an in-memory cache. This design choice ensures
non-blocking communication (from the point of view of
the devices), as events are simply stored in the in-memory
queue and the API transaction is kept minimal. The monitor
runtime consumes events from the cache and submits
them for verification to the external runtime verification
procedure (“verifier” in Fig. 2). Processing an event may
trigger a change in the state of satisfaction of the monitored
property φ. If this occurs, the value of φ may need to be
propagated to other monitors living in other edge nodes,
through lightweight API methods. This way, any type of
complex analysis (including other external verification tools)
can be encapsulated, albeit using different event models and
property formats. We consider the selection of a particular
model checker, event format and property to be orthogonal
to our approach, as this would be defined per application
and type of reasoning required.

Finally, recall that the overall monitoring package of
Figure 2 can be adopted to compute different properties,
even for the same event flow produced by a single device –
e.g., for every sensing IoT device in the scenario of Section 2.1.
From a deployment perspective, monitoring functionality is
hosted at edge nodes and exposed as lightweight services.
This renders the overall monitoring architecture recursive, in
the sense that monitoring packages (of the same type) are
deployed at different hierarchy levels within the system –
every layer computes a specific class of properties that cannot
be determined by the lower layers only. More advanced
arrangements reminiscent of complex event processing may
thus be additionally investigated [11].
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4.2 Monitor Instantiation

The grey-box design of Figure 2 can be implemented in
different ways, depending on the demands of particular
applications. Our approach intends to support different
applications; those may require different types of properties,
different logics supporting reasoning, or system deployments
on diverse edge nodes. In the following, we outline a
reference implementation, solely indicating technological
choices that may be used to instantiate the monitor package.

API and network communication methods. Given DR1,
we advocate lightweight methods such as REST, which are
able to be implemented in a wide array of IoT devices or IoT
gateways (on one end), and also more resourceful edge nodes
(on the other end). A typical setup we highlight is composed
of end-devices communicating over some e.g., LPWAN to a
gateway. The network gateway collects events from various
devices over its radio interface, and encapsulates them in IP
packets. Event data are eventually delivered to monitors as
REST payloads.

Events cache. For compliance with DR3, events emitted
by devices should be essentially fire-and-forget – events
should propagate throughout the system without blocking –
barring network overhead. To this end, on the edge nodes, we
recommend data structures implementing in-memory key-
value stores where insertion operations are asymptotically
done in constant time (O(1)).

RV interfacing. Faithful to our grey-box approach, differ-
ent runtime verification tools and logics may be supported.
We especially point out that different conceptions of time
(and its reasoning) exist within literature, offering different as-
surances on property satisfaction with respect to an unknown
(in principle) event trace. For example, handling out-of-order
events (an event with an earlier timestamp arriving after
an event with a later timestamp) requires fundamentally
different notions of time (and report of φ verdict). We
distinguish two general categories; approaches that operate
upon windowing of event traces and ones which do not, such
as [12]. In the former case, a moving window is maintained,
where out-of-order events received can be rearranged before

submitting them to a verification procedure. In practice, this
occurs within the cache (Fig. 2). In the latter case, out-of-
order events are either discarded or treated (i.e., rewritten)
as just-in-time events. In both cases, the responsibility lies
within the monitor runtime software component, which is
responsible for presenting the external RV procedure (and
tool) with the appropriate event format.

Multi-tenancy. Since we adhere to SOA principles, we
can define arbitrary monitoring designs, where monitor
packages are deployed in various hosts – but also upon
the same host. Thus, multiple properties may be evaluated
on a single edge node. Moreover, since the monitoring
package is a service, it can be readily migrated (e.g., through
containerization), while the mode of interaction (e.g., a web
API) or API endpoint (e.g., through some localized proxying)
stays unchanged. A consequence of observing such SOA
principles is that decentralization emerges, also to the tightly
bound property specification and evaluation phases.

5 DEVICE CONNECTIVITY

In the following we discuss the networking context within
the Sensing/IoT layer of our architecture (see Fig. 1). The
IoT layer is integrated with end devices and is responsible
for emitting and delivering events to some L0 monitor.
Subsequently, we illustrate a concrete network pipeline.

5.1 Networking technology selection
We focus on wide area IoT services where key requirements
include long range and extended battery lifetime, and thus
very low power consumption. For this class of services,
LPWAN has emerged as the major connectivity solution
of choice. LPWAN protocols are designed to connect mas-
sive numbers of low-end battery-powered devices, such as
sensors attached to micro-controller units, for delay-tolerant
applications that require low throughput per device, such
as for environmental monitoring, smart agriculture and
smart city services. Multiple competing LPWAN technologies
exist [13]. At the moment, the market is largely dominated
by LoRaWAN and NB-IoT [14].

LoRaWAN operates on top of the proprietary LoRa
physical layer, and it is an open specification maintained by
the LoRa Alliance. The main components of the LoRaWAN
architecture are end devices, gateways, network servers and
application servers. On the other hand, NB-IoT is a cellular-
based alternative. It is standardized by the 3GPP and can
coexist with 4G LTE and 5G networks. End devices attach to
cellular base stations, have IP connectivity, and can directly
address remote IoT application components.

Technical details aside, which are beyond the scope of this
article and have been thoroughly treated in the literature [15],
[16], a key difference between the two technologies lies
in their mode of operation: LoRaWAN uses unlicensed
spectrum (ISM bands), while NB-IoT is a cellular technology,
subset of the LTE standard. Therefore, LoRaWAN makes it
possible for the IoT service provider to deploy and manage
full end-to-end private networks, while NB-IoT mandates a
subscription with a network operator. In this work, we have
selected LoRaWAN as the underlying device connectivity
scheme for the following reasons [5].

• More flexibility in the utilization of edge computing
resources: A private LoRaWAN network opens up a
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Fig. 3. Components, interfaces, and service invocation pipeline from device to monitor. Events generated at the end device level, and broadcast over
the LoRa physical layer, are received by LoRaWAN gateways and pushed through the LoRaWAN stack until they are consumed by a L0 monitor.

richer set of monitor deployment options. Most impor-
tantly, the service provider can select to deploy monitors
at the edge, either co-located with the LoRaWAN
gateway or at other on-premise edge hosts. On the
contrary, with NB-IoT and other cellular alternatives,
unless there is an operator-based edge cloud deployment
in place, as specified by the recent ETSI Multi-access
Edge Computing (MEC) standards [17], device data
have to go through the operator’s core network before
they are delivered to an L0 monitor. This limits edge
deployment options and cancels potential traffic savings
due to data aggregation at L0 monitors. ETSI MEC
is expected to significantly enhance IoT services [18],
[19], but, as of this writing, MEC technologies are still
maturing and commercial MEC offerings by operators
are practically inexistent.

• Reduced capital and operational expenses: Despite the
investment necessary for the installation and opera-
tion of LoRaWAN gateways, the operational expenses
associated with NB-IoT subscriptions may dominate
after only a short time of operation. Also, NB-IoT
end devices are slightly more expensive than their
LoRaWAN counterparts due to the increased protocol
complexity and the need for a SIM card per device.

We should note that NB-IoT comes with its own ad-
vantages. It relieves the service provider of the managerial
overhead of operating the network infrastructure and, con-
trary to LoRaWAN, it brings an IP connectivity endpoint
directly to the IoT device. These may make it more attractive
for some application scenarios and service providers. The
choice among connectivity technologies is left to the service
provider, noting that that our service design is networking
technology-agnostic. If the application requires it, alternative
network topologies and technologies can be supported. For
example, when the required device throughput is high, as
would be the case for multimedia-oriented IoT services, or if
ultra-reliable and low latency communication is mandated,
typical of vehicular IoT, standard 4G or 5G connectivity could
be more suitable.

5.2 LoRaWAN-based network pipeline
Figure 3 illustrates the pipeline that events have to go
through from an end device to a (first-level, L0) monitor over
LoRaWAN access. We follow the lifecycle of an event from its
generation. The end device is generally assumed to be highly
resource-constrained in the range of a microcontroller (MCU),
equipped with sensing and radio capabilities. End devices
periodically (due to sleep frequencies) or on-demand, and in
an asynchronous fashion, broadcast event data over the LoRa
physical layer. Gateways equipped with LoRa radio modules
(concentrators), receive data frames from devices in range.

Typical LoRaWAN concentrator chipsets provide a Serial
Peripheral Interface (SPI) for communication with the host
platform. Gateways decode frames received by end devices
and propagate them upwards to the network server via a
packet forwarder software module over an IP connection.

The network server implements Medium Access Control
(MAC) and the upper layers of the WAN stack. This includes
functionality such as downlink transmission scheduling and
device data rate configuration, but also frame deduplication
and security functions. Importantly, the network server
is responsible for routing uplink data to the subscribing
application servers. This takes place often via lightweight
protocols such as MQTT or gRPC. The application server can
be considered the uppermost layer of the LoRaWAN stack
and in typical implementations it is a lightweight service
offering basic customer server logic, i.e., application-layer
encryption and integration with the rest of the IoT application
components. Often, as is also the case for our service, an
integration layer is necessary to relay the data from the
application server to the IoT service component (i.e., the
monitor), including the necessary API translation. Events
are finally delivered over REST to the edge monitor, which
may in turn push evaluations to the upper L1 layer. Fig. 3
accurately reflects the network and service components, and
the protocols used in our testbed implementation (Sec. 6.2).

6 EVALUATION

To provide tool support for our decentralized monitoring
framework, we realized a prototypical monitoring package
adapting MONPOLY [2] (an offline verification tool), in order
to able to verify MFOTL properties in an online manner.
Thereupon, we evaluate our approach over a smart parking
scenario; the experimental setup and results obtained are
subsequently presented. We conclude with a discussion.
Our evaluation goals are two-fold; we seek to investigate
(i) applicability of the proposed solution, in terms that the
architecture, system and logic used are able to be used in
practice (Sec. 6.1), and (ii) performance in realistic settings
(Sec. 6.2). The former entails considering a real scenario.
The latter requires measurements of propagation of events
that include both processing (by edge monitors) but also
networking overhead, over various workloads.

6.1 Case Study: Parking availability in LA
Parking IoT devices within Los Angeles, USA are equipped
with sensors, and produce readings when a car enters or
leaves the corresponding parking spot [20]. We consider
LA to be divided into spatial regions, representing dis-
tricts, such as “FashionDistrict”, or “KoreaTown”, which are
grouped within larger partitions of the city, such as “EastLA”,
“DownTownLA”, etc. We proceed to model the LA parking
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Fig. 4. Monitoring scenario over Los Angeles; events are emitted through
LoRa from IoT devices to local edge nodes (in grey). Those in turn
propagate property evaluations to a city-wide node (top). The box denotes
the architecture-critical levels L0 and L1 considered for evaluation.

setting as a monitoring scenario where the objective is to
monitor parking availability at runtime. We incrementally
build complex properties capturing requirements that a city
operator is typically interested in, namely:
(utilization) The number of occupied parking spots in a

district is less/more than the average occupied places
within some specified time.

(user-QoS) The average time to find a parking spot in an dis-
trict is less/more than some specified time, representing
some quality-of-service (QoS) desired for the end user.

(self-balancing) Within city partitions, an under-occupied
district adjacent to an over-occupied district tends to
become equally- or over-occupied in the next future.

(universality) Previous requirements should hold for the
whole city, across its districts and partitions.

Notice that not only those requirements are non-trivial,
but they also predicate about districts, groups of districts
(i.e., city partitions) as well as the whole city, rendering the
overall monitoring scenario rather challenging.

We consider each district to be within the range of an
edge node, to which events from IoT parking sensors may
be emitted at any time. Figure 4 illustrates various edge
nodes over a map of LA. We assume that parking events
are emitted over some LPWAN channel and, following the
dataset available [20], are modeled as tuples of the form
(timest , a, parkid , carid) where a) timest is a natural number
that represents a time instant, b) action a ∈ {in, out}
represents the act of entering or leaving a parking spot,
c) parkid uniquely identifies a parking spot, and d) carid
is an identifier of a car. A tuple (timest , a, parkid , carid)
signifies that at time timest , car carid entered, or left, the
parking spot identified with parkid .

Specification strategy. The strategy for capturing the
scenario requirements is as follows. Firstly, the evaluation
of non-trivial properties demands for the definition of sub-

properties that are expressed with respect to simpler facts
and basic events, thus allowing for compositionality and ab-
straction – a designer may re-use elementary sub-properties
to specify higher-order ones. Secondly, sub-properties are
monitored in nodes lower in the edge hierarchy, making
evaluation results available to nodes in upper levels. The
following basic relations are essential to express such com-
plex properties; the corresponding formulae make use of
the constant value ns, that indicates the absence of spots
in the parking area (a car c entered a parking area with no
available spots–in(c,ns)– and left it shortly after–out(c,ns)).
We write φn to refer to the formula identified by number n.

Formula (4) expresses the ternary relation Park between
cars, parking spots and timestamps (variables c, p and t
are non quantified). Intuitively, Park indicates that a car
has currently been occupying a parking spot since the time
instant specified by the timestamp, i.e., the car has not left
the spot since the moment it parked. In particular, a tuple
(carid , parkid , timest) belongs to Park if the car identified
with carid occupied the parking spot numbered with parkid
(in which case parkid is not ns) at time instant timest , and
the car has not left the parking spot since that moment, when
the car took the spot. In Formula (4), predicate ts is satisfied
by all the valid timestamps, hence the evaluation of ts on a
tuple (timest , a, parkid , carid) is timest .

((¬out(c, p) S (in(c, p) ∧ ts(t))) ∧ ¬(p = ns) (4)

Subsequently, Formula (5) expresses the unary relation
Occupied on parking spots (only variable p is not quanti-
fied). Intuitively, Occupied indicates that a parking spot is
currently not available, i.e., it has not been released since the
last time a car took it. In particular, a parking spot identifier
parkid belongs to Occupied if the parking spot numbered
with parkid (in which case parkid is not ns) was occupied
(hence, there exists a car that took the spot) and there is no
car that has left the parking spot since that moment, when
the spot was occupied.

(¬∃c.out(c, p) S ∃c.in(c, p)) ∧ ¬(p = ns) (5)

District properties. By using the previous predicates Park
and Occupied, we can define the formulae that L0 edge
nodes installed in districts evaluate. Formulae (6) and (7)
express two different properties: the first is a counting
property referring to the parking spots in an area, whereas the
second is a timing property involving the average duration
of parking. Formula (6) holds when the number of occupied
parking spots in a region is ∼ than the average occupied
places throughout the last T time units, with ∼∈ {<,>}.

∃a∃.c



[Ax(O[0,T ][CpOccupied(p)](x))](a)

∧
[CpOccupied(p)](c) ∧ (a ∼ c)


 (6)

Finally, Formula (7) holds when the average parking time,
throughout the last T time units, is ∼ than the constant Tavg.

∃a.




[Ad(O[0,T ](∃t∃t�∃c∃p




out(c, p) ∧ ts(t�)

∧
Y(Park(c, p, t))

∧
(d = t� − t)



)](a)

∧
(a ∼ Tavg)




(7)
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City Partition Properties. Not only requirements over
single districts exist; in fact, requirements may predicate
about availability of parking in multiple districts across a
city partition – monitoring nodes deployed in partitions
constitute L1 edge nodes. In the following, we take advantage
of the specification of previous Formulae (6) and (7), whose
evaluations are emitted by nodes at layer L0. Let Φ∼

(6)(z)
and Φ∼

(7)(z) be two predicates respectively associated with
Formula (6) and Formula (7), z be a free variable indicating
the district in LA to which the formula refers, and ∼ be
a relation in {<,>} defining the order relation expressed
by the formula. The intuitive meaning of Φ∼

(6)(z) is that the
area z is over/under-occupied with respect to the average
number of occupied spots; the meaning of Φ∼

(7)(z) is that the
area z is over/under -occupied with respect to the average
parking time. At the edge layer L1, every node receives the
evaluation value (either true or false, determined at layer
L0) of both Φ∼

(6)(z) and Φ∼
(7)(z), for a given relation ∼ and for

every district that is associated with the node.
Formulae (8) and (9) hold when the districts that are

monitored by an edge node show a self-balancing trend with
respect to the number of occupied places. In particular, this
signifies that an under-occupied district z that is adjacent to
an over-occupied district z� tends to become equally/over
-occupied in the next future, within T secs, where T is a
constant value. To keep description simple, we assume a
specific geography of the areas in the city. This is with no
loss of generality, as a more complex layout can always
be addressed, provided that more complex formulae are
considered. The assumption is that all the districts that are
associated with a specific partition of the city (e.g., EastLA)
are pairwise adjacent, and the flow of cars among them is
relevant (i.e., cars can go from one to another).

Formula (8) refers to the EastLA zone (a similar one
can be expressed for the others). We use the constants
fd, kt and fd2 to identify, respectively, the areas called
FashionDistrict, KoreaTown and FashionDistrict2, and write
Φ≥

(6)(z) as a shorthand for Φ>
(6)(z)∨Φ=

(6)(z). The formula is an
implication, whose antecedent holds for every time position
of the event sequence emitted by node at layer L0. Intuitively,
the formula is true when the following two facts hold: if
both FashionDistrict and KoreaTown are over occupied then
FashionDistrict2 will be over occupied in the next future; and
if FashionDistrict2 is over occupied then FashionDistrict or
KoreaTown will be over occupied too in the next future.

∀i.tp(i) ⇒




Φ>
(6)(fd) ∧ Φ>

(6)(kt) ⇒ F[0,T ]Φ
≥
(6)(fd2)

∧
Φ>

(6)(fd2) ⇒ F[0,T ](Φ
≥
(6)(kt) ∨ Φ≥

(6)(fd))


 (8)

Next Formula (9) refers to all the areas in a partition
of the city, indicated with set A(p) where p is a partition;
e.g., A(EastLA) is the set including KoreaTown and the two
FashionDistricts. In particular, the formula holds when the
parking time, for every area belonging to a partition, shows
the same order relation ∼∈ {<,=, >} with respect to the
average parking time evaluated in that area. Formula (9) is
parametric with respect to p and relation ∼; and similarly to
Formula (8), it is an implication, where the antecedent holds
in every time position of the event log. The consequent is
a conjunction, true if all the areas in A(p) are over/under

-occupied with respect to the average parking time.

∀i.tp(i) ⇒


 �

z∈A(p)

Φ∼
(7)(z)


 (9)

City-wide properties. Finally, at the top “LosAngeles”
global node level associated with the entire city, the formulae
are expressed in terms of predicates coming from the
underlying edge layer (L1 in Fig. 4). The predicates are
Φ8(p) and Φ9(p), where p is a free variable indicating a
partition of LA. Let P be the set of partitions WestLA, EastLA,
DownTownLA:

∀i.tp(i) ⇒
��

p∈P

Φ8(p)

�
, and ∀i.tp(i) ⇒

��

p∈P

Φ9(p)

�
(10)

6.2 Testbed experiments
In this section, we present a set of experiments aiming (i)
to demonstrate the feasibility of our design and implemen-
tation to operate in resource-constrained edge computing
environments, (ii) to evaluate the performance and capacity
limits of different hardware classes, from small single-
board computers (SBC) to server-class data center hosts
under monitoring workloads of varying intensity, and under
different deployment strategies. We specifically focus on the
lower end of the architecture of Fig. 4, where the critical
interplay between resource-constrained end-devices and L0
runtime verification occurs over LPWAN.

6.2.1 Event processing throughput
We first focus on the capacity of a monitor in terms of the
rate at which it is processing incoming monitoring events.
We deploy our monitor package on three different hardware
architectures, namely Raspberry Pi (RPi) Zero (1GHz single-
core ARMv11 CPU, 512 MB RAM), RPi 3 Model B (Quad Core
1.2GHz Broadcom BCM2837 CPU, 1 GB RAM) and virtual
machines running on server-class x86 hosts in a small-scale
data center. We configure the monitor to verify the Occupied
property (Formula (5)) and submit parking events to the
monitor over its HTTP API endpoint.

In this experiment we are interested in evaluating the
performance bounds of each candidate technology to host a
monitor, and we thus focus on a single monitor in isolation. In
order for our results not to be affected by the CPU resources
necessary by the load generator, we generate events from
a separate host connected with the monitor over a high-
capacity network link where minimal other traffic is present.
This way we also ensure that we are not hitting network-
related bottlenecks. For the lower end RPi Zero, featuring
only a Wi-Fi interface, its lower computational capabilities
ensure that our results are CPU- and not network-bound.
RPi 3 is connected with the load generation host over 1 Gbps
Ethernet, while in our experiments over x86-based servers,
events were emitted to the monitor VM from another VM
co-located in the same data center host.

Figure 5 presents the achieved event processing through-
put of a single monitor hosted on different edge node
types under increasing event workloads. Beyond a specific
workload level, up to which event processing throughput
increases in a linear fashion, the monitor reaches saturation.
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Fig. 5. Event processing throughput for different candidate edge host
technologies under increasing workload.

We notice that an RPi 3 can keep up with a workload
of up to approximately 45 events per second. While this
performance may sound modest, we should note that in the
IoT use cases we target, where end devices emit events over
LPWAN infrequently (e.g., once per tens of minutes), this
workload may translate to thousands of IoT devices. When
the monitor is deployed inside a Cloud VM, we observe a
significant performance increase, where a 4-CPU VM can
handle workloads of up to 330 requests/s.

6.2.2 End-to-end latency
We now turn our attention to the latency perceived end-to-
end, from emission (IoT device) to the (resulting) verification
of a higher-level property. For this purpose, we set up an
edge computing testbed that features all our technologies
of interest, including a full LPWA network architecture and
low-end SBC nodes hosting our monitor package and LPWA
network service components.

Testbed setup. We have deployed a fully functional
end-to-end LoRaWAN testbed with one end device and
one gateway. Our end device is a Libelium WaspMote,
featuring a Microchip RN2483 LoRa radio module on top of
an ATmega1281 MCU. The host communicates with the radio
module via UART, and a high-level software interface (e.g., to
configure the radio, transmit and receive packets) is provided
by the open-source Libelium libraries. At the gateway end
we attached a Dragino PG1301 LoRaWAN concentrator with
a Semtech SX1301 baseband unit and SX1257 RF front-end on
a RPi 3. We used the ChirpStack2 network server stack, which
is an open source implementation of a LoRaWAN gateway
bridge (for collecting data from multiple gateways), network
server and application server. Fig. 3 presents the pipeline that
data have to go through from an end device to a (first-level)
monitor. Note that an invocation chain of a similar depth also
characterizes other LoRaWAN implementations, such as The
Things Stack3. We assume a two-level hierarchy of properties
(L0 and L1) and define end-to-end latency as the time it takes
from the moment an event is generated at an IoT device
until the verification of the L1 property, as a result of the
event, has taken place. Note that every event in the IoT layer

2. chirpstack.io 3. thethingsstack.io

corresponds to a change in L0 determined by the verification
of the respective property. We measure end-to-end latency
for a single event source (IoT device) in the presence of
increasing workloads. Contrary to our throughput experi-
ments, where we only considered the performance of the
monitoring package in isolation, here we aim to also capture
the overheads associated with all the networking and service-
based verification components in the end-to-end path, such
as the LoRaWAN stack. Therefore, we inject workloads in
the form of LoRaWAN frames sent directly to the LoRaWAN
server (i.e., bypassing the LoRaWAN gateway, but using the
rest of the stack) using a LoRaWAN simulator4 which we
have appropriately extended.

The parking events whose latency we track are generated
periodically and infrequently (every 30s) on a measurement
host; they are timestamped and are sent to the end device
over a serial connection. Our code running on the end device
MCU encodes the messages in a concise wire format and
transmits them over the LoRaWAN link. The L0 monitor
is deployed according to the scenarios described in the
following paragraph. The L1 monitor is deployed on the host
where the IoT device events are generated, where the final
timestamp is recorded after the processing of the event by
the monitor has completed. Timestamping event generation
and processing completion on the same host avoids time
synchronization issues.

Deployment scenarios and latency performance. In
order to explore the capabilities of different candidate
technologies to support our design at the edge, we compare
three different scenarios, each demonstrating a different
configuration and trade-off between deployment cost and
performance.

• All-in-one: all components, from the LoRaWAN stack
up to the monitor, are deployed on a single small form-
factor device. Our reference device is an RPi 3 Model B.

• SBC cluster: we assume the availability of a cluster of
small SBCs as in [21], allowing for different components
of our architecture to be deployed on dedicated SBC
nodes. In particular, in the experiments presented, the
full LoRaWAN stack is co-located with the LoRaWAN
gateway running on a RPi 3; the frames received are then
pushed to a monitor executed on an identical device.

• Edge DC: This deployment scenario assumes a
lightweight LoRaWAN gateway running on a single-
board edge compute device, while the LoRaWAN stack
and our monitor are deployed in separate virtual ma-
chines instantiated at an edge cloud data center. The
latter may be managed by the network operator, by
cloud providers, or may be within a city’s administrative
realm. This scenario is in line with recent works [22],
[23] that study the interplay between LoRaWAN and
edge clouds, and represents an edge-centric approach
to the typical (cloud-centric) deployment strategy of
LoRaWAN applications.

Figure 6 presents a latency comparison across the three
scenarios. Each point is the mean of the end-to-end latency
values of 100 event transmissions presented with 95%
confidence intervals. In the “All-in-one” and “SBC cluster”
experiments, load was injected from a host connected to the

4. github.com/brocaar/chirpstack-simulator
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Fig. 6. Mean end-to-end latency (over 95% confidence intervals) as a
function of event workload for different deployment scenarios.

same LAN over Ethernet. In the “Edge DC scenario,” the
LoRaWAN stack and the monitor are deployed in separate
identical VMs, each with 4 CPUs and 8 GB RAM running on
the same data center host, the latter with a capacity of 128
CPUs. A third VM with 2 CPUs on the same host was used
for load generation.

Our results indicate that even an all-in-one deployment,
which is the least costly, is capable of supporting workloads
of up to 15 events/s with end-to-end latencies in the order
of 1 s or less. A factor contributing to latency (something
significant in lightly loaded settings) is the UART-based com-
munication between the end-device MCU and the LoRaWAN
radio. We carried out optimizations in Libelium’s libraries
and reduced this latency component to approximately 200 ms.
While prior experiments (Fig. 5) showed that a monitor
deployed at a RPi 3 device could sustain workloads of about
45 events/s, when we put the LoRaWAN stack in the picture
this capacity drops: deploying this stack on SBC comes with
unacceptable latencies of hundreds of seconds when load
exceeds 30 events/s, even when the LoRaWAN stack is
deployed on a dedicated RPi 3. On the contrary, as the “Edge
DC” curve indicates, deploying the components on edge
cloud VMs makes latencies in the order of seconds to appear
only for workloads exceeding 200 events/s.

6.3 Discussion & Limitations

As illustrated in the case study and experimental evalu-
ation, the service-based architecture supporting runtime
verification can be achieved in practice, fulfilling design
requirements of adoption of lightweight communication
methods, interoperability with a variety of devices, non-
blocking event propagation and scalability (Sec. 2) in a real-
world technological setting.

Modelling and specification of a complex, realistic case
study as the one presented showed the applicability of our
approach and the success of the design choice of adopting
MFOTL as the target logical language. However, from our
experience and considering the perspective of practitioners
aiming to use our approach, property specification pat-
terns, domain specific languages, and incremental property
specification facilities would go a long way in supporting

specification – a typical concern raised with application of
formal methods in general systems settings.

Regarding distributed systems underpinnings of our
approach, we note that (i) different conceptions of time
(and its reasoning thereof) may be further adopted, and
facilities to deal with (ii) out-of-order and (iii) loss of events
critical to property satisfaction can be integrated. There
is vast research on such topics and as such a plethora of
options to employ in our grey-box design. We excluded
data repair and complex event processing techniques in
order to reduce complexity and load, instead focusing on
architectural, feasibility and design aspects. Naturally, those
design choices are coupled with the verification approach
used, including the logical language and accompanying
model checker. We note however that the primitives to
integrate those to our framework (i.e., Fig. 2) are available
and can be reused, namely a cache for incoming events
(useful e.g., for a moving window rearranging out-of-order
events due to radio collisions) and model checker interface.
We identify investigating verification design choices, problem
domains and logics as a major avenue of future work.

We demonstrated the feasibility of our design and
implementation to operate in a resource-constrained edge
setting. By evaluating performance and capacity limits of
different hardware classes (from SBC to server-class hosts),
we showed that the edge can be concretized in various
hardware backends, with different latencies incurred. The
obtained results are useful from a dimensioning perspective:
they allow the application provider to plan the amount of
computational resources (CPUs, SBC nodes) that should be
allocated per monitor, based on the expected event workload,
and scale them elastically to match workload variations in
case that is desired by the use case or deployment scenario
– monitors can be deployed in containers or VMs in edge
clouds. Furthermore, we illustrated an end-to-end system
integrating LPWAN and the effects this incurs on latency.

We note that the events we consider permeating a
deployed system are uncorrelated and may come from
heterogeneous sources, a difference from traditional stream
processing approaches which assume homogeneous streams
with possibly complex data structures. We view our work
as complementary to those; we focus on architectural as-
pects, where monitors are deployed within an IoT system
with particular characteristics. The systems we target are
highly volatile, as devices may roam, appear or disappear
and events emitted may be intermittent. Thus, we focus
on opportunistic evaluation of properties within the IoT
architecture, targetting large-scale and widely deployed
systems. Moreover, our choice of lightweight communication
protocols reflects the variety and modes of communication
used to emit events to an edge node serving as the endpoint.
We identify employing advanced strategies [11] defining how
processing load may be distributed and how edge nodes
interact as another promising avenue of future work.

Finally and regarding the overall design process, the pro-
posed architecture can be instantiated in a variety of settings
where monitoring is desired. Different IoT domains and sys-
tem operators however may require different instantiations
or configurations of the architecture proposed – a smart city
application would have vastly different prerequisites from
e.g., critical infrastructure monitoring. To this end, usage
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and domain models, along with appropriate integration of
domain-specifics should be further investigated.

7 RELATED WORK

We presented an architecture and technical framework for
verification of temporal properties within IoT systems. Con-
sequently, we classify related work into two major categories.
First, we discuss relevant approaches tackling complex event
processing and recent works operating upon data streams.
Subsequently, we present an overview of the state of the art
in runtime verification as applied in IoT contexts.

7.1 Complex event processing & Data Streams

The Complex Event Processing (CEP) community has long
focused on tracking and analyzing streams of information
and deriving meaningful conclusions [24] – successful appli-
cations include stock market trading systems, databases, in-
ternet operations, and fraud detection. A variety of languages
can be used; from formal languages with strong guarantees,
to more expressive programming languages allowing for
richer verdicts or operations upon data streams. Naturally,
there exists a trade-off between language expressiveness
and guarantees it provides on the constructed monitors
(see [3] for an extensive discussion). We adopt MFOTL as
particularly fitting to our problem domain – metric properties
with aggregates are typical within IoT applications, while
retaining the benefits of a concisely defined language.

Stream processing typically focuses on cloud applications,
extending the original database foundations with advanced
features such as fault tolerance, adaptive query processing,
or extended operator expressiveness, while striving for
scalability and robustness (see [25] for a comprehensive
overview). However, our context is not big data or horizontal
scalability, and our volatile domain hampers robustness.
Advanced techniques from stream processing systems like
shedding (i.e., dropping events to cope with the load [26])
or elasticity [27] can be integrated within our framework.
We assumed a hierarchical organization of edge nodes;
multiple event sinks within non-hierarchical systems [28]
can achieve highly decentralized systems and compositional
applications. Moreover, we ignored management of out-
of-order events [29] and their effect [30], rendering our
approach opportunistic. Furthermore, hyperproperties relat-
ing multiple computation traces with each other have been
theoretically investigated; in such properties, it is necessary
to store previously seen traces, and to relate new traces to
the traces seen so far. Properties of monitoring specifications
such as reflexivity, symmetry, and transitivity can be used
to reduce the number of comparisons and achieve more
scalable monitoring with lower memory demands [31]. We
identify integration of such further techniques as avenues
of possible future work. Advanced approaches can target
scalability by performing slicing upon the event stream, by
identifying substreams that can be independently monitored,
or by exploiting hash-based partitioning techniques from
databases research [32]. We note that our opportunistic,
lightweight method of dealing with events excludes data
repair techniques [33] in order to reduce complexity and
load. More advanced arrangements within complex event
processing may be further investigated [11].

7.2 Runtime verification for the IoT

Runtime verification has recently been attracting attention in
the context of the IoT. Inçki and Ari [34] focus on verifying
the correctness of message exchanges in IoT systems where
devices communicate over lightweight application-layer
protocols such as CoAP. The authors propose a domain-
specific event calculus for the specification of the network in-
teractions in such a system drawing from Message Sequence
Charts, and use CEP techniques for runtime verification.
Notably, in another work by the same authors, this approach
is applied for failure detection in a smart parking system [35].
Lee et al. [36] propose mechanisms to improve the efficiency
of model checking at runtime, casting their work to an IoT
context. Their approach applies to systems modeled as Finite
State Machines and state reachability properties are verified;
temporal semantics are not directly supported. Leotta et
al. [37] propose a RV system applied to an eHealth use
case which builds on the formalism of trace expressions,
a more expressive form of LTL. The work focuses on IoT
software quality assurance, aiming at facilitating the software
development and testing phases by detecting bugs.

Tsigkanos et al. turn their attention to spatio-temporal
properties of IoT systems, focusing on use cases such as
location-based smart city applications. Relying on device
trajectories, they infer models of spatially distributed sys-
tems [38], and apply spatio-temporal model checking at
runtime to verify that QoS and other goals of such systems
are met [39]. To deal with the computational requirements
of model maintenance and reasoning at runtime, the au-
thors propose their materialization as a set of cloud-based
microservices [40]. In a similar context, Ma et al. [41] study a
wealth of smart city requirements and propose SaSTL, a new
spatio-temporal logic with increased expressiveness and the
capability for spatially-parallelized runtime monitoring.

In a work that bears similarities with ours and with
Industrial IoT (IIoT) as the application domain, Grochowski
et al. [42] devise an external monitoring architecture whose
purpose is to verify the safety and liveness of IIoT produc-
tion processes. Metric Temporal Logic is used to express
properties (runtime requirements) over execution traces of
the monitored system. While the proposed design appears
to be suitable for execution at edge and cloud computing
environments, composing arbitrary complex IoT monitoring
service hierarchies spanning the compute continuum, as
well as connectivity aspects, are not treated in depth. Lesi
et al. [43] also target IIoT scenarios, where they distribute
automation/control functions of reconfigurable manufactur-
ing systems across multiple local controllers. They use a
variant of Stochastic Petri Nets for system modeling; models
are verified at runtime for safety and liveness on real-time
process and network measurements. To reduce response
times, RV takes place at an edge host in the facility. Akili
and Lorenz [44] address the RV problem in the context of
collaborative embedded systems, where they equip each
component (embedded system, e.g., a member of a robot
fleet) with its own monitor. As in our case, the authors
deal with distributed RV, where monitors collaboratively
verify properties by exchanging messages. At the same
time, components exchange messages to collaborate towards
achieving global and group-wise goals. This behavior is
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modeled using Agent UML sequence diagrams, and monitors
aim to verify its correctness via distributed RV. The authors
tackle critical challenges such as real-time constraints and
reliable message passing. The distribution of tasks and
monitoring at different hierarchy levels shares our spirit
of decentralization and our aim to offer different monitoring
granularities and abstraction levels per layer. However, the
design and implementation aspects of a distributed, service-
based monitoring architecture based on RV, and the mapping
of its components to the edge/fog/cloud continuum, which
are at the core of our work, are not given consideration.

Overall, a common theme in many of the aforementioned
works is the use of RV to attest the correct functioning of the
IoT software, or of the underlying communication protocols
and infrastructure. While our approach also supports such
cases, our focus is on applying RV as a monitoring facility
in the application domain. Furthermore, our work can be
considered complementary to those that study different RV
techniques and languages for IoT systems: with our grey-
box design, we can support different logics and verification
tools with minimal impact on the service architecture itself.
Various approaches and RV tools exist in the literature [45],
[46], [47]; as we show in Sec. 4, in order to support them,
it would suffice to replace the MFOTL verification engine
and provide the appropriate application model. Finally, and
most importantly, none of the aforementioned works in the
IoT domain address architectural and networking aspects in
depth, and in particular deployment and operation across
the device-to-cloud continuum.

8 CONCLUSION AND FUTURE WORK

Within an IoT setting, events typically originate from end-
devices and flow throughout the system; since events define
some behavior, they may indicate satisfaction or violation
of requirements. Supporting such verification in practice
within IoT is challenging, where heterogeneity, lightweight
communication and decentralization are key domain charac-
teristics. We presented an architecture and technical frame-
work supporting runtime verification where monitors are
deployed on edge components, evaluating temporal prop-
erties. The monitoring architecture fulfills necessary design
requirements appropriate for the IoT/edge setting, adopting
lightweight communication methods, device interoperability
and scalability. The architecture can be instantiated in a
variety of settings; we further demonstrated the feasibility
of our design and implementation to operate in a resource-
constrained edge setting by evaluating performance and
capacity limits of different hardware classes, and latencies
that different designs entail.

In future work, we plan to address core distributed
systems underpinnings in order to support domains where
out-of-order and loss of events are critical. Moreover, investi-
gation of other logics and verification tools will render the
approach more widely applicable. Regarding deployment,
we assumed that the edge topology is static. However,
monitors on edge nodes may need to be scaled or migrated to
comply with other constraints like energy, latency or moving
IoT devices, introducing dynamicity. A promising avenue of
future work can benefit from techniques developed within
stream operator placement [11], [48], but accounting for
the particularities of verification and the edge/fog domain.

Finally, since event frequency, type, volume and velocity
are factors that influence variation points in the runtime
verification architecture, they warrant further study.
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