
1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3030947, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Enabling Fast Public Auditing and Data
Dynamics in Cloud Services

Changhee Hahn, Hyunsoo Kwon, Daeyeong Kim, and Junbeom Hur

Abstract—Public auditing enables efficient integrity checks of data assigned to cloud servers. In this paper, we revisit the public
auditing for encrypted data, in which a major concern is how to effectively support data dynamics, i.e., data modification, insertion, and
deletion. We first determine which factor in existing auditing schemes most limits data dynamics from a cost perspective. We then
propose a novel public auditing scheme that provides data dynamics that are orders of magnitude faster than previous methods. Our
novel auditing challenge-response protocol reduces the computation cost of the TPA significantly, thus increasing the verification speed
for the auditing results. Performance and security analysis demonstrates that the proposed scheme generates minimal computation
costs while guaranteeing data integrity and privacy against an untrusted cloud.

Index Terms—Public auditing, data dynamics, cloud computing.

F

1 INTRODUCTION

HOSTING data in the cloud minimizes maintenance
requirements, allowing users to easily access their

data on cloud servers [1]. However, cloud servers have full
control over outsourced data, which raises security concerns
about data integrity [2], [3]. The cloud, for example, might
have the financial incentive to discard rarely accessed data,
freeing up valuable storage space to, say, host other data-
centric applications [4]. Therefore, users need to confirm
periodically that their data is intact but this has become
increasingly onerous due to the ever-growing volume of
data being outsourced.

Public auditing addresses this issue by utilizing a third-
party auditor (TPA) to verify the correctness of the data
in the cloud on behalf of users [5], [6]. Public auditing
works by dividing a file into many blocks, with each block
associated with auditing metadata. It is especially useful in
terms of integrity checks because testing only a few blocks
is sufficient to verify file integrity.

As more cloud-backed services adopt dynamic file up-
dates [25], public auditing is required to support data
dynamics such as block-wise modification, insertion, and
deletion. Unfortunately, we have observed that previous
schemes support data dynamics at a non-trivial cost [12],
[13], [40]. Specifically, performing an operation on a single
block requires a significant volume of auditing metadata as-
sociated with other blocks to be updated, delaying integrity
checks for dynamic file updates. For example, suppose a
data owner uses online collaboration services to share a
source code with a group of users. As shown in Figure
1, the data owner splits the code into a fixed number of
lines and group them as a set, with each set associated
with a tag as auditing metadata. In this case, inserting even
a single line to a specific position of a set can affect the
subsequent sets, which incurs not only the re-computation
of tag associated with the set, but also re-computation of

• C. Hahn, H. Kwon, D. Kim, and J. Hur are with the Department of
Computer Science and Engineering, Korea University, Seoul, Korea.
E-mail: jbhur@korea.ac.kr

Document Auditing metadata
1st set

2nd set

8th set 𝑡𝑡𝑡𝑡𝑔𝑔8

Auditing metadata

Inserting a sentence
to the 2nd set

7th set 𝑡𝑡𝑡𝑡𝑔𝑔7

6th set
5th set

4th set
3rd set

𝑡𝑡𝑡𝑡𝑔𝑔6

𝑡𝑡𝑡𝑡𝑔𝑔5

𝑡𝑡𝑡𝑡𝑔𝑔4

𝑡𝑡𝑡𝑡𝑔𝑔3

𝑡𝑡𝑡𝑡𝑔𝑔2

𝑡𝑡𝑡𝑡𝑔𝑔1

𝑡𝑡𝑡𝑡𝑔𝑔8

𝑡𝑡𝑡𝑡𝑔𝑔7

𝑡𝑡𝑡𝑡𝑔𝑔6

𝑡𝑡𝑡𝑡𝑔𝑔5

𝑡𝑡𝑡𝑡𝑔𝑔4

𝑡𝑡𝑡𝑡𝑔𝑔3

𝑡𝑡𝑡𝑡𝑔𝑔2

𝑡𝑡𝑡𝑡𝑔𝑔1

Fig. 1: Illustration of data dynamics for collaborative code
editing. Tags in the blue boxes are newly computed after
inserting a new line to the second set.

all tags corresponding to the subsequent sets. As the shared
codes can be frequently updated, efficient data dynamics
for outsourced data must be taken into account for flexible
service provisioning.

It is also desirable for a TPA to rapidly complete the
verification and notify the user of the results. However,
according to our measurements, the TPA experiences a
delay of approximately 1.0 to 1.6 seconds when verifying
the integrity of a file [12], [13], [40]. This lag may not be
acceptable because auditing requests can be concentrated
within a specific time period. Typically a TPA is assigned
numerous files, so it would be highly advantageous if the
TPA-side computation cost with respect to verification can
be reduced.

In this paper, we revisit public auditing with data dy-
namics to investigate the factor in exiting auditing schemes
that most restricts data dynamics in terms of cost. We find
that auditing metadata mi of block bi in an n-block file
is tightly coupled with its index i. We observed that this
coupling is necessary to prevent cloud misbehavior. Specif-
ically, auditing a file involves (bi,mi) pairs in response
to a random selection of indices i as an auditing request.
The use of pairs that do not correspond to these indices
leads to verification failure. Unfortunately, this coupling is
inefficient in terms of data dynamics because an operation,

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:23:39 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3030947, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

TABLE 1: Summary of data dynamics for public auditing

Scheme Wang et al. [12] Liu et al. [13] Guo et al. [40] Proposed scheme

Dynamic operations
Modification O(logn) O(1) O(logn) O(1)

Insertion O(logn) O(n) O(logn) O(1)
Deletion O(logn) O(n) O(logn) O(1)

say an insertion, at the i-th position requires the replacement
of the previous auditing metadata (mi,mi+1, ...,mn) with
new metadata (m′i+1,m

′
i+2, ...,m

′
n+1).

To address this issue, we carefully decouple the auditing
metadata and index using a novel auditing side information
approach. Specifically, for each block bi, we generate au-
diting metadata and auditing side information (SI), both of
which are detached from the index but cryptographically
coupled to each other. The SI helps the TPA to detect
cloud misbehavior, such as submitting pairs that do not
correspond to the indices. At the same time, extremely rapid
data dynamics is possible because the auditing metadata
is no longer associated with the index. Our experiment
demonstrates that data dynamics required approximately
7 milliseconds in the proposed scheme, which is orders of
magnitude faster than 3 to 13 seconds required for previous
schemes [12], [13], [40]. We summarize the asymptotic costs
for data dynamics for an n-block file in Table 1.

Our novel auditing challenge-response protocol reduces
the computation cost to the TPA significantly. Specifically,
the TPA-side computation cost with respect to verification
is a constant number of pairings and exponentiations in a
cyclic group, while prior works require those operations
linearly with the number of challenged blocks. The pro-
posed scheme facilitates pre-computation capabilities such
that, after sending an auditing request to the cloud, the TPA
can pre-compute all exponentiation operations needed for
the subsequent phase. Note that these computations can be
performed in parallel with the cloud’s efforts to compute
the auditing response. According to our experiment, the
TPA can notify users of the auditing results within 4 mil-
liseconds, while previous schemes require 1.0 to 1.6 seconds
[12], [13], [40].

Lastly, the proposed scheme is compatible with any
symmetric-key encryption algorithm such that the blocks
are encrypted any encryption algorithm of the data owner’s
choice. Data confidentiality is preserved against the cloud
due to the CPA-secure property of the underlying encryp-
tion algorithm. We prove that the cloud cannot learn the
outsourced data during the auditing process, and the cloud
cannot forge a valid proof in response to the auditing
request from the TPA.

Contribution. Overall, our contributions in this paper
are as follows.
• We propose a novel public auditing scheme for en-

crypted data that supports extremely fast data dynam-
ics. Asymptotic analysis demonstrates that the pro-
posed scheme has O(1) complexity, while that of pre-
vious schemes ranges from O(log n) to O(n) [12], [13],
[40].

• Our novel auditing challenge-response protocol re-
duces the computation cost of the TPA significantly,
thus increasing the verification speed for the auditing

results.
• We analytically detail the performance of our con-

structions over prior work and experimentally confirm
that the proposed data dynamics method is orders of
magnitude faster than that of previous schemes.

• We formally define the security model under which we
rigorously prove security of the proposed scheme to
show that data integrity and privacy is preserved in the
presence of an untrusted cloud.

The rest of this paper is as follows. We begin with a
discussion of related work in Section 2. In Section 3, we
provide a system description and outline the design goals.
Section 4 presents the construction of the proposed scheme
in detail, followed by security and performance analyses in
Section 5. We conclude the paper in Section 6.

2 RELATED WORK

In this section, we briefly review previous auditing studies,
focusing on public auditability, data confidentiality, and
data dynamics for outsourced data. In line with the pur-
pose of data outsourcing, public auditability is a desirable
property of pragmatic cloud environments, in which data
owners can be relieved from the burdensome task of data
management. The confidentiality of outsourced data is also
an important consideration given previous data breaches in
cloud storage [2], [3]. Unlike conventional online storage
services, outsourced data in cloud storage can be frequently
updated, as with Twitter [21]. Therefore, data dynamics for
outsourced data have to be taken into account for flexible
service provisioning. Unfortunately, previous techniques do
not satisfy the all three of these properties.

2.1 Limited Operations for Outsourced Data
Ateniese et al. [5] proposed Provable Data Possession (PDP),
in which a public verifier can check the correctness of a
user’s stored data in the cloud. PDP utilizes an RSA-based
Homomorphic Linear Authenticator (HLA) for outsourced
data. Because an HLA can be aggregated, it is possible
to compute an aggregated HLA that authenticates a lin-
ear combination of individual data blocks. Using sampling
strategies, the public verifier is able to audit the integrity
of the outsourced data without retrieving the entire data
set. However, this scheme does not consider dynamic oper-
ations for outsourced data. To support dynamic operations,
Ateniese et al. [6] designed an improved PDP scheme using
symmetric keys and a cryptographic hash function. How-
ever, this scheme only supports a limited number of veri-
fication challenge queries. In addition, it does not support
block insertion, though append-type insertion is possible.

Juels and Kaliski [7] defined another scheme called
Proofs of Retrievability (POR). The POR scheme incorpo-
rates special blocks called sentinels, which are randomly

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:23:39 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3030947, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

embedded into the data for detection purposes. However,
they restrict operations on the updated data. Although this
scheme ensures retrievability of a file using error-correcting
codes and spot-checking, it has a drawback in that the
number of challenge queries is fixed. To address these
issues, Shacham and Waters [8] proposed an improved POR
scheme based on a Boneh-Lynn-Shacham (BLS) signature
[24]. It overcomes the limitation of the POR scheme in
terms of the number of challenge queries and provides
proof of security. However, it only considers static data
files because the cloud cannot distinguish the relationship
between the data blocks and encrypted codewords. Liu et al.
[16] proposed a scheme based on regenerating code, which
enables a user to verify the integrity of random subsets of
outsourced data against corruption. However, this scheme
does not support dynamic data operations.

2.2 Supporting Data Dynamics

Various auditing schemes have been proposed to support
data dynamics. However, to the best of our knowledge,
none of these have been able to achieve data dynamics that
are as rapid as in our proposed scheme. In this subsection,
we discuss public auditing with data dynamics which selec-
tively preserves privacy against the TPA and/or the cloud.
We believe that there are no technical difficulties associated
with achieving data privacy in public auditing. It can be at-
tained by encrypting each block and generating the auditing
metadata corresponding to the ciphertext. Nevertheless, we
classify the existing auditing schemes in terms of privacy
for clarity. We start by describing public auditing that does
not consider privacy.

2.2.1 Auditing Without Privacy
Erway et al. [9] designed the Dynamic Provable Data Pos-
session (DPDP) scheme, a dynamic version of PDP, by
supporting the updating of stored data. It uses a rank-based
authenticated skip list to authenticate the tag information of
challenged or updated data blocks before the verification
procedure. Wang et al. [10] proposed a public auditing
scheme that combines an HLA with a Merkle Hash Tree
(MHT) to support dynamic data operations. However, in
this scheme, the MHT needs to be re-constructed once
the data has been updated. Zhu et al. [11] proposed a
dynamic auditing scheme for cloud data based on a frag-
ment structure, random sampling, and index hash tables.
Their scheme is similar to ours in the sense that it does
not involve the coupling of the auditing metadata and the
index. They view a file as a group of sectors, where a
set of sectors form a block on which auditing metadata is
generated. Unfortunately, if any data dynamics for a sector
occurs, every subsequent sector is affected. This can lead
to the replacement of previous auditing metadata with new
metadata, thereby resulting in inefficient data dynamics.

Another line of researches that aimed at reducing the
cost relating to data dynamics are batch update [40], index
switcher [19], and dynamic hash table [14], [20]. Specifically,
a batch update of data dynamics is to reduce the amount of
computation cost relating to dynamic data updates by per-
forming and verifying multiple update operations at once
[40]. Although it may avoid repetitive computations relating

to data dynamics, the update delay can be unacceptable
in time-critical applications. The index switcher approach
provides a way of switching the encoded indices between
block indices and tag indices [19], while dynamic hash table
based approaches aim to decouple the indices from tags [14],
[20]. However, all of these schemes incur a significant trade-
off: the TPA-side computation cost relating to verification
increases linearly with the number of challenged blocks.
Given c number of challenged blocks, the TPA computes
c pairings [14] or c exponentiations in a cyclic group [19],
[20]. By contrast, the proposed scheme only requires two
pairings and two exponentiations regardless of the number
of challenged blocks.

2.2.2 Auditing with Privacy
Juels et al. showed how POR can provide public auditing
while preserving data privacy against the TPA [7]. Specifi-
cally, a POR client can separate data encryption and verifi-
cation privileges, and delegate the verification capability to
the TPA for public verification. Wang et al. [12] proposed
a privacy-preserving public auditing scheme using random
masking to prevent data content from being disclosed to the
TPA. Similarly, Liu et al. [13] proposed a secure and efficient
public auditing scheme using a homomorphic hash function
and random masking. Shah et al.’s auditing scheme uses
standard encryption (e.g. AES), but their scheme requires
decryption in the cloud before any further computations can
be performed [15].

Ramaiah et al. [17] proposed a privacy-preserving public
auditing scheme, which encrypts each data block using
somewhat homomorphic encryption. Thus, both the cloud
and the TPA are not able to learn the content of a user’s
data while enabling integrity check of cloud data. However,
this scheme only offers limited data dynamics, such as block
modification and appending.

2.3 Resilience Against Malicious Entities
While many prior works relied on the trust assumption
that the TPA and the clients are honest, several subsequent
works attempted to relax such an assumption for allow-
ing the TPA and the clients to deviate from the protocol.
Armknecht et al. proposed outsourced POR (OPOR) [27],
in which a POR client outsources the auditing workload
to the untrusted TPA and verifies the TPA’s work. As the
security of the POR challenge-response protocol depends
on the properly sampled challenges (e.g., a set of random
values), a challenging problem is how to ensure the correct
challenge sampling (and sharing) between the untrusted
TPA and the client. OPOR addressed this issue by means
of blockchain networks: both the TPA and the client use the
public blockchain to extract (synchronized) seed values for
pseudo-randomness to sample the challenges. Zhang et al.
[28] also utilized the blockchain with a more relaxed trust
assumption, showing how to audit data in the presence of
multiple malicious clients.

2.4 Recent Studies and Limitations
Recent proposals aim to support additional functionalities
on top of public auditing. Wang et al. [18] proposed a verifi-
able encrypted outsourced database scheme based on Bloom

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:23:39 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3030947, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

filters. This scheme allows the user to ensure the correctness
of a search result by checking whether the search request
is part of the Bloom filters. However, this scheme does not
consider dynamic data operations. Some studies on public
auditing have focused on resilience to key leakage [32],
public auditing of shared data [35], and blockchain-based
auditing [34], [36], [37]. Although these schemes enhance
either security and/or scalability in terms of multiple users,
efficient data dynamics has not yet been achieved.

Erway et al. improved a dynamic PDP scheme in which
data dynamics is supported, but its communication and
computation complexities areO(log n), where n denotes the
number of blocks in a file [39]. Moreover, the data owner
should engage in verifying the integrity of the outsourced
data. Guo et al. addressed this by enabling the TPA to audit
the data on behalf of the data owner, in which the cost of
data dynamics remains O(log n) [40].

As a hardware-aided solution, auditing metadata could
be securely computed on untrusted cloud servers using
trusted execution environments like Intel Software Guard
Extensions (SGX) [30]. In this approach, the computation
of auditing metadata can be securely performed with a
single machine in the cloud as long as the cloud server
is SGX-enabled. However, the workload remains the same
in terms of computation. Users would be reluctant to use
computationally intensive auditing because cloud computing
vendors typically charge for resource usage with pay-as-
you-go pricing [31]. Therefore, an important step toward
the more widespread use of auditing is to establish cost-
effective data dynamics.

3 SYSTEM DESCRIPTION AND GOALS

In this section, we describe the definition of public auditing
for encrypted data, followed by the goals of the proposed
scheme.

3.1 Public Auditing for Encrypted Data

Public auditing for encrypted data provides efficient in-
tegrity checking of the encrypted dataset outsourced to a
remote server. The system model of public auditing for
encrypted data involves three entities as follows:
• The user, who has a large volume of data to be stored

in the cloud and hopes to maintain data privacy and
integrity against the cloud.

• The cloud, which provides data storage services and
computing resources for the user’s data.

• The TPA, which checks the integrity of the data stored
in the cloud via a challenge-and-response protocol with
the cloud on behalf of the user.

By storing the data in the cloud, the user can be relieved of
the burden of storage and computation. He can also access
and update his stored data for various purposes. To reduce
computation costs and eliminate the requirement of the user
always being online, the user can employ the TPA while
hoping to protect the privacy and integrity of his outsourced
data.

The syntax of public auditing for encrypted data is as
follows:

Definition 1. Public auditing for encrypted data consists of six
algorithms:
• pp ←Setup(λ): It takes as input security parameter λ and

returns public parameter pp.
• (sk, pk) ←KeyGen(pp): It takes as input pp and returns

secret and public key pair (sk, pk).
• (σ, SI) ←SigGen(pk, sk,Enc(F)): It takes as input pk,
sk, and ciphertextEnc(F) of file F , whereEnc(·) is a CPA-
secure symmetric encryption algorithm (e.g., AES-GCM). It
returns tag σ and auditing side information SI .

• chal ←Challenge(pk, id, SI): It takes as input pk, identi-
fier id of a file to audit, and SI . It returns challenge message
chal.

• proof ←ProofGen(pk,Enc(F), σ, chal): It takes as in-
put pk,Enc(F), σ, and chal. It returns response message
proof .

• {True, False} ←ProofVrfy(pk, proof, id, SI): It takes
as input pk, proof, id, and SI . It returns verification result
True if auditing succeeds; it returns False otherwise.

Correctness. The correctness of public auditing for
encrypted data guarantees that the TPA always accepts
the proof submitted by an honest server. More formally,
for all pp ← Setup(λ), (sk, pk) ← KeyGen(pp), (σ, SI) ←
SigGen(pk, sk,Enc(F)), chal ← Challenge(pk, id, SI),
and proof ← ProofGen(pk,Enc(F), σ, chal), it
holds with overwhelming probability that True ←
ProofVrfy(pk, proof, id, SI).

Soundness. The soundness of public auditing for en-
crypted data guarantees that the server can convince the
TPA if and only if it stores the (encrypted) file intact. Stated
differently, the server cannot generate a valid proof without
storing the file intact. We discuss how to formally capture
the soundness property and prove it under a well-known
complexity problem in Section 4.2.4.

Threat Model. We consider two threat models with
regard to data integrity and privacy.
− Data integrity: In the cloud storage, a malicious hosting

service provider may discard data that has not been ac-
cessed or that is rarely accessed to save storage space. In
addition, the hosting service provider may tamper with
sensitive user data affected by Byzantine failures and
management errors in order to maintain its reputation.

− Data privacy: The cloud server may attempt to leak the
content of the stored data. It may also try to recover the
data during the auditing process.

The TPA is not necessarily trusted in terms of data privacy
but trustworthy in terms of data integrity. Considering the
threat models, we pursue the following security goals. First,
if a malicious cloud provider forges or discards user data, it
will not be able to produce a valid proof (i.e., the soundness
is preserved). Second, the cloud cannot uncover the user’s
data content during the auditing process.

3.2 Design Goals

The proposed public auditing scheme for encrypted data
should have the following properties:
− Public auditing: The TPA can periodically check the

integrity of the data on behalf of the user without
retrieving a copy of the entire data set.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:23:39 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3030947, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

− Storage correctness: The cloud can pass TPA verifica-
tion if and only if it keeps the data intact.

− Privacy preservation: During the auditing process, the
cloud server cannot obtain the user’s plain data.

− Support for data dynamics: The user is able to perform
block-level operations on the outsourced data, includ-
ing block modification, insertion, and deletion.

4 PROPOSED SCHEME

In this section, we present a public auditing scheme de-
signed to meet the aforementioned design goals. After
introducing the preliminaries, we provide an overview of
the proposed scheme. We then describe the construction of
our main scheme and outline how it works in supporting
dynamic operations.

4.1 Preliminaries
4.1.1 Bilinear Maps
Let GroupGen be a probabilistic polynomial time (PPT)
algorithm that uses the security parameter 1λ as input, and
outputs a description (p,G1,G2, g, e) of pairing groups. G1

and G2 are cyclic groups of prime order p, while g is the
generator of G1. The bilinear map e : G1×G1→ G2 must
satisfy the following properties:
• Bilinearity: e(ua, vb) = e(u, v)ab for all u, v ∈ G1 and a,
b ∈ Zp.

• Non-degeneracy: There are u, v ∈ G1 such that e(u, v)
6= 1.

• Computability: There is an efficient algorithm to com-
pute e(u, v) for any u, v ∈ G1.

4.1.2 Symmetric Encryption
Symmetric encryption SE uses the same secret key for
encryption and decryption, and guarantees confidentiality
for messages. In this paper, SE can be instantiated by any
CPA-secure symmetric encryption algorithm such as AES-
GCM. SE consists of the following algorithms:
• k ← SE.gen(K): This algorithm takes as input a key

space K from which it samples a secret key k uniformly
at random.

• ct← SE.enc(k,m): This algorithm takes as input k and
a message m, and returns a ciphertext ct.

• m← SE.dec(k, ct): This algorithm takes as input k and
ct, and returns m.

In what follows, we omit the secret key k in describing
SE.enc(k,m) such that SE.enc(m) for brevity.

4.1.3 Homomorphic Hash Function
A homomorphic hash function [22], [23] is a hash function
that satisfies two properties:
• Homomorphism: For any two messages m1, m2 and

scalars α1, α2, it holds that

H(α1m1 + α2m2) = H(m1)
α1 ·H(m2)

α2 .

• Collision Resistance: There is no probabilistic
polynomial-time (PPT) adversary capable of forging
(m1, m2, m3, α1, α2) to satisfy both

m3 6= α1m1 + α2m2,

H(m3) = H(m1)
α1 ·H(m2)

α2 .

4.2 Scheme Construction
4.2.1 Overview
As shown in Figure 2, the proposed scheme consists of the
three phases:
• Data upload: This phase is run mostly by the user. The

user generates public and secret parameters. He divides
a file into multiple data blocks before storing it in the
cloud. To ensure data confidentiality, the user needs to
encrypt the data blocks. To enable the TPA to audit
without exposing the key to it, the user computes au-
diting metadata that feature homomorphic hash prop-
erties. The user sends encrypted data blocks and the
corresponding auditing metadata to the cloud. He then
deletes the data blocks and the auditing metadata from
the local storage.

• Data update: In this phase, we assume that the user
downloaded some files of interest in advance. If he
finds that some blocks of a file need to be updated
(e.g., block modification, insertion, and deletion), he
encrypts the updated block and generates new auditing
metadata corresponding to the updated block1. Then,
he uploads this to the cloud.

• Data auditing: This phase is run interactively between
the user, the TPA, and the cloud. When the user wants
to check the integrity of the data stored in the cloud,
the user sends an auditing request to the TPA. Upon
receiving the auditing request from the user, the TPA
generates and sends a challenge message to the cloud
server. The cloud server derives proof from the stored
data and sends it back to the TPA. Finally, upon receiv-
ing proof from the cloud, the TPA verifies the correct-
ness of the proof. If the verification succeeds, it indicates
that the integrity of the file is intact; otherwise, the file is
compromised. We note that this phase can run without
the user: the TPA periodically audit data of its choice
by interacting with the cloud.

4.2.2 Our Scheme
The proposed scheme consists of the following algo-
rithms: Setup, KeyGen, SigGen, Challenge, ProofGen, and
ProofVrfy.

pp←Setup(λ): The user runs the setup algorithm, which
takes as input the security parameter λ. He runs GroupGen
to obtain (p,G1,G2, g, e). He also defines the descriptions
of a homomorphic hash function H : Zp → G1 and a hash
function F : {0, 1}∗ → Zp. Lastly, he sets and returns a
public parameter pp = (p,G1,G2, g, e,H,F).

(sk, pk)←KeyGen(pp): The user runs the key generation
algorithm, which takes as input pp. He chooses x ∈R Z∗p
and computes v = gx. He sets the public and secret key as
pk = (pp, v) and sk = x, respectively.

(σ, SI)←SigGen(pk, sk,SE.enc(F)): The user runs the sig-
nature generation algorithm, which takes as input pk, sk,
and SE.enc(F). Assume that the user encrypted the
file F using a symmetric secret key k ← SE.gen(K)

1. If the update corresponds to deletion, then the user deletes the
block and does nothing more.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:23:39 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3030947, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

User

TPA

Cloud server

1
Audit request

6
Audit response

1 Data generation

3 Proof generation

5 Proof verification

Block encryption

File split into blocks

Block update & encryption

1 Data update

Block selection

Proof generation

3 Data update

File compromised!

Integrity checked!

Data upload

Data auditing

Data update

3 Data storage

Fig. 2: Framework of the proposed scheme

in advance. Assume also that F was divided into n
blocks as F = {m1, . . . ,mn} such that SE.enc(F) =
(SE.enc(m1), ...,SE.enc(mn)). Let cti = F(SE.enc(mi)) for
i ∈ {1, ..., n}, and id ∈ Z∗p be the identity of file F . He
chooses two random coefficients (α, β) ∈R Zp and a random
variable s ∈R Zp. He defines a set of seeds {si}1≤i≤n from
Zp such that

s1 = αβs, s2 = α2β2s, ..., sn = αnβns.

Then, he computes the auditing side information SI =
{α, β, s,H(s1), ...,H(sn)}. For each i ∈ {1, . . . , n}, the user
computes the tag as

σi ← (H(id) ·H(cti + si))
x ∈ G1.

He then sets σ = (σ1, . . . , σn) and sends {SE.enc(F), σ} to
the cloud, and SI to the TPA. Finally, the user deletes the
plain data file F from local data storage.

chal←Challenge(pk, id, SI): The TPA runs the challenge
generation algorithm, which takes as input auditing request
from the user, as well as pk, id, and SI . To verify the
integrity of the outsourced file of identity id, the user
sends an auditing request to the TPA. Subsequently, the
TPA chooses a random subset I = {idx1, . . . , idxc} from
a set {1, ..., n}, where c � n. For each idxi ∈ I , the
TPA also chooses a random value νi ∈ Z∗p, and generates
chal = {(idxi, νi)}idxi∈I as a challenge message. Note that
chal specifies the positions of the blocks to be checked.
The TPA then sends chal to the cloud. After sending the
challenge message to the cloud, the TPA may compute∏idxc

i=idx1
H(id)νi and

∏idxc

i=idx1
H(si)

νi in advance. These
values will be used in the ProofVrfy phase. Note that
the computations of

∏idxc

i=idx1
H(id)νi and

∏idxc

i=idx1
H(si)

νi

only require two exponentiations in G1, respectively2. We
explain why in Section 4.2.5.

proof ←ProofGen(pk,SE.enc(F), σ, chal): The cloud
server runs the proof generation algorithm, which
takes as input pk,SE.enc(F), σ, and chal. The server
parses SE.enc(F) as (SE.enc(m1), ...,SE.enc(mn)). For
i ∈ {1, ..., n}, it computes cti = F(SE.enc(mi)). Then, it
computes

µ =
idxc∑
i=idx1

νicti, σ =
idxc∏
i=idx1

σνii ,

where µ and σ are the linear combination of the sampled
blocks in the challenge message chal and an aggregated
tag, respectively. The cloud then sends proof={σ, µ} to the
TPA.

{True, False} ←ProofVrfy(pk, proof, id, SI): The TPA
runs the proof verification algorithm, which takes as
input pk, proof, id, and SI . Upon receiving proof from
the cloud, the TPA computes A =

∏idxc

i=idx1
H(id)νi and

B =
∏idxc

i=idx1
H(si)

νi , unless otherwise computed. Then, it
checks the integrity of the outsourced data as follows:

e(σ, g)
?
= e(A ·H(µ) ·B, v).

The TPA returns True if the above equation holds, and
False otherwise. The user is notified of the auditing result
from the TPA.

2. Although multiplications in G1 and Zp are required, the computa-
tional cost of them is negligible, compared with that of exponentiations
in G1.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:23:39 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3030947, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

4.2.3 Correctness
Suppose for all pp ← Setup(λ), (sk, pk) ← KeyGen(pp),
(σ, SI) ← SigGen(pk, sk,SE.enc(F)), and chal ← Chal-
lenge(pk, id, SI), the server honestly generates proof ←
ProofGen(pk,SE.enc(F), σ, chal). Then, the TPA obtains
True ← ProofVrfy(pk, proof, id, SI) with overwhelming
probability. More precisely,

e(σ, g) = e

 idxc∏
i=idx1

σνii , g

= e

 idxc∏
i=idx1

(H(id) ·H(cti + si))
νi , gx

= e

 idxc∏
i=idx1

H(id)νi ·
idxc∏
i=idx1

H (cti + si)
νi , v

= e

A · idxc∏
i=idx1

H(νi(cti + si)), v

= e

A ·H
 idxc∑
i=idx1

νi(cti + si)

 , v

= e

A ·H
 idxc∑
i=idx1

νicti +
idxc∑
i=idx1

νisi

 , v

= e

A ·H
 idxc∑
i=idx1

νicti

 ·H
 idxc∑
i=idx1

νisi

 , v

= e

A ·H(µ) ·
idxc∏
i=idx1

H(νisi), v

= e

A ·H(µ) ·
idxc∏
i=idx1

H(si)
νi , v

= e (A ·H(µ) ·B, v) .

4.2.4 Soundness
We formally capture the soundness property using the fol-
lowing auditing game:
Auditing Game:
− Setup: The challenger C runs pp ←Setup(λ) and

(sk, pk) ←KeyGen(pp). C sends pk to the adversary
A and keeps sk secret.

− Query: A makes SigGen queries adaptively: it chooses
and splits a file F into n blocks of the same length,
i.e., F = {m1, ...,mn}. It sends F to C who,
upon receiving F , encrypts F using a CPA-secure
symmetric encryption algorithm, which results in
Enc(F) = (Enc(m1), ..., Enc(mn)). It runs (σ, SI) ←
SigGen(pk, sk,Enc(F)), where σ = (σ1, ..., σn) and
SI = (si1, ..., sin). Note that Enc(mi) corresponds to
(σi, sii), where i ∈ {1, ..., n}. C returns (Enc(F), σ) to
A.
A continues to query C for ciphertext and tag,
which correspond to file F ′ of its choice and obtains
(Enc(F ′), σ′). A stores all the encrypted files and the
corresponding tags in order.

− Challenge: C runs Challenge(pk, id, SI), where id is the
identifier of file F . C obtains a challenge message chal,
which contains a randomly chosen set of block indices
{idx1, ..., idxc} of F , where c� n and idxi ∈ {1, ..., n}
for i ∈ {1, ..., c}. C sends chal to A.

− Forge: A computes a response message proof for the
blocks of F , where each block corresponds to the block
index specified by chal. A returns proof .

− Audit: If ProofVrfy(pk, proof, id, SI) returns True,
then A wins the game; otherwise, A loses the game.

Definition 2. A public auditing scheme for encrypted data is
sound if the probability that any probabilistic polynomial time
adversary wins the Auditing Game on a set of file blocks is
negligible.

To show that the server can convince the TPA if and
only if it stores the (encrypted) file intact, we resort to the
Decisional Diffie-Hellman (DDH) assumption [26], which
posits as follows: Given the following set of elements
(g, ga, gb, z) ∈ G4

1, where z is either gab or a random value
R, algorithm B, who returns 0 if z = gab and 1 otherwise,
has advantage ε in solving DDH in G1 if∣∣∣Pr[B(y, z = gab) = 0]− Pr [B (y, z = R) = 1]

∣∣∣ ≤ ε,
where y =

(
g, ga, gb

)
∈ G3

1, and the probability is over the
random choice of generator g in G1, the random choice of
a, b ∈ Zp, and the random bits used by B.

In Section 5.1, we prove the following theorem:

Theorem 1. Under the DDH assumption, the proposed scheme
guarantees soundness in the random oracle model.

4.2.5 Pre-computable Verification

In the proposed scheme, the computationally extensive op-
erations in the verification algorithm are the two pairings
and two exponentiations in G1, where the computations
of
∏idxc

i=idx1
H(id)νi and

∏idxc

i=idx1
H(si)

νi correspond to the
latter and are pre-computable. Specifically, these operations
are independent of proof , so the TPA can initiate the verifi-
cation phase beforehand. This reduces the verification time.
We will discuss the actual cost in Section 5.2.

To see why computing
∏idxc

i=idx1
H(id)νi and∏idxc

i=idx1
H(si)

νi require only two exponentiations, we
show how the TPA computes those values. First, to
compute

∏idxc

i=idx1
H(id)νi , the TPA computes

∑idxc

i=idx1
νi

and then computes H(id)
∑idxc

i=idx1
νi , which satisfies the

following equation:

H(id)
∑idxc

i=idx1
νi = H(id)νidx1 ·H(id)νidx2 · · ·H(id)νidxc

=
idxc∏
i=idx1

H(id)νi .

Next, to compute
∏idxc

i=idx1
H(si)

νi , the TPA com-
putes

∑idxc

i=idx1
(νiα

(i)β(i)). Then, the TPA computes

H(s)
∑idxc

i=idx1
(νiα

(i)β(i)), where α(i) and β(i) refer to

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:23:39 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3030947, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

the coefficients of s in si, respectively. Let L be
H(s)

∑idxc
i=idx1

(νi·α(i)·β(i)). Then, we have

L = H(s)νidx1
α(idx1)β(idx1)

· · ·H(s)νidxcα
(idxc)β(idxc)

= H(α(idx1)β(idx1)s)νidx1 · · ·H(α(idxc)β(idxc)s)νidxc

= H(sidx1
)νidx1 · · ·H(sidxc

)νidxc

=
idxc∏
i=idx1

H(si)
νi .

4.3 Data Dynamics

The user may want to update his data dynamically when
using the cloud storage system. We demonstrate how the
proposed scheme supports data dynamics including block-
level modification, insertion, and deletion. Figure 3 illus-
trates the process of dynamic updates in the proposed
scheme and previous schemes such as [12], [13], [17], [40].
The computational complexity in terms of the modification
of a block is similar for the proposed and previous schemes.
However, when we insert or delete a block, the complexity
of the previous schemes are O(n) [13], [17] and O(log n)
[12], [40], while that of the proposed scheme is O(1). This
is because the auditing metadata of the previous schemes
are tightly coupled with the indices. Thus, whenever the
position of a block is moved, say from the i-th to the j-
th index, the current metadata, which corresponds to i,
should be generated again to correspond to j. However,
the proposed scheme addresses this issue by decoupling
indices from auditing metadata, while still enabling block-
wise auditing via the auditing side information, which the
TPA exploits to correctly audit data even when the blocks
are updated.

4.3.1 Block Modification

When the user wants to modify a specific block of index i
in the cloud, he first downloads the encrypted data block
SE.enc(mi) and corresponding tag σi from the cloud. The
user then computes a new seed value s′i = α · si for
the pseudorandom generator. He decrypts SE.enc(mi) and
modifies block mi to m′i, encrypts m′i such that SE.enc(m′i),
and generates a tag σ′i that corresponds to SE.enc(m′i).
Lastly, the user sends the index i, the new tag σ′i, and
the modified data block SE.enc(m′i) to the cloud, and the
auditing side information H(s′i) to the TPA. Upon receiving
these, the cloud and the TPA replace the previous ones with
the newly received ones.

4.3.2 Block Insertion

When the user inserts new blockm between the j-th and j+
1-th blocks, he sets a new seed s′j+1 = β · sj and encrypts m
such that SE.enc(m). He then computes a tag σ and auditing
side information H(s′j+1). The index information j + 1, σ,
and SE.enc(m) are sent to the cloud, and (j+1, H(s′j+1)) to
the TPA. Upon receiving these, the cloud inserts them into
the (j + 1)-th position. All subsequent blocks are moved
accordingly. After the cloud updates the index table, the TPA
confirms the update.

Modification Insertion Deletion

Re-used
Newly computed

Block

Auditing metadata (previous tree-based schemes)
Auditing metadata (proposed scheme)
Auditing metadata (previous schemes)

Fig. 3: Block-level dynamic updates

4.3.3 Block Deletion
Block deletion is the opposite of block insertion. When
the user wants to delete the i-th block of a file in the
cloud, he requests an update. The TPA updates its auditing
side information by removing H(si). The cloud deletes the
corresponding block and the tag. All subsequent blocks are
moved accordingly. After the cloud updates the index table,
the TPA confirms the update.

5 SECURITY AND PERFORMANCE ANALYSIS

5.1 Security Analysis
In this section, we analyze the security of the proposed
scheme with regard to data privacy and integrity.

In terms of data privacy, any attempt to leak data in
the proposed scheme is reduced to breaking the underlying
encryption algorithm SE as we use SE to encrypt the data.
Since SE is CPA-secure and the user (who holds the sym-
metric secret key) never decrypts the ciphertexts outside his
local storage throughout the protocol, it is immediate that
the data privacy is preserved against the cloud server.

In terms of data integrity, we prove Theorem 1 as fol-
lows.

Proof. Throughout the proof, we reduce the security of the
proposed scheme to the security of the DDH problem.
Specifically, we assume that adversary A wins the Auditing
Game with non-negligible probability. Then, we show how
another adversary B uses A to solve the DDH problem
without relying on the bilinear map. This approach is similar
to the trapdoor DDH problem [33]: a DDH problem is
solvable by means of a trapdoor (e.g., bilinear pairings)
but, without it, the problem remains hard. In our proof, we

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:23:39 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3030947, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

show how a simulator tackles such a claim by solving the
DDH problem without relying on any trapdoor. We model
both hash functions H and F as random oracles such that
the oracles OH and OF are in charge of responding oracle
queries for H and F , respectively.
B interacts with A as follows:

Setup: B takes in a DDH challenge tuple (g, ga, gb, z) ∈ G4
1 of

prime order p, as well as the description of (G2, e), where e :
G1×G1→ G2. B sets the public key pk = (p,G1,G2, g, e, v),
where v = z, indicating that B implicitly sets sk by setting
gsk = z. B chooses a symmetric secret key k ← SE.gen(K)
and sends pk to A. Lastly, we put a restriction on the output
of OH : we program the table of H such that H(1) = g.

Query: A makes SigGen queries adaptively: A selects
a file F = {m1, ...,mn} with identifier id and sends
(F, id) to B. Then, B encrypts F using k and generates
σ. It sends (SE.enc(F), σ) back to A, where SE.enc(F) =
(SE.enc(m1), ...,SE.enc(mn)). A continues to query B for
the ciphertexts SE.enc(F ′) and tags σ′ on files F ′ and
identifiers id′ of its choice. A’s queries are restricted such
that A cannot make SigGen queries for two different files
using the same identifier.

More precisely, B responds to A’s queries as follows:

− If A makes a query for (F, id) that has not
been made, then B computes SE.enc(F) =
(SE.enc(m1), ...,SE.enc(mn)). For i ∈ {1, ..., n}, B
makes oracle queries for SE.enc(mi) to OF , which
responds as follows:

(i) If B makes a query for SE.enc(mi) that has not been
made, then OF responds with cti = F(SE.enc(mi))
and records the tuple (SE.enc(F), cti).

(ii) If B made a query for the same tuple (SE.enc(F), cti)
previously, then OF retrieves the recorded value cti.

Next, for all i ∈ {1, ..., n}, B sets si = αiβis, where
α, β are randomly chosen coefficients and s is a random
variable. B makes oracle queries for id and cti + si to
OH , which responds as follows:

(i) If Bmakes a query for id and cti+si that has not been
made, thenOH responds with H(id) and H(cti+si),
and records the tuple (id, cti+si, H(id), H(cti+si)).

(ii) If B made a query for the same tuple (id, cti +
si, H(id), H(cti + si)) previously, then OH retrieves
the recorded values H(id) and H(cti + si).

Note that, due to the homomorphic property of H , the
following equation holds:

H(id) ·H(cti + si) = H(id) ·H(cti) ·H(si)

= H(1 · id) ·H(1 · cti) ·H(1 · si)
= H(1)id ·H(1)cti ·H(1)si

= H(1)id+cti+si .

Since OH ’s output in response to query “1” is g, we
have

H(id) ·H(cti + si) = gid · gcti · gsi

= gid+cti+si .

B sets σi = zid+cti+si and returns SE.enc(F) and
σ = (σ1, ..., σn). If z = gab = gsk, then B simulates
σi correctly. Finally, B records the following tuple

tup = (F,SE.enc(F), id, {ct1, ..., ctn}, H(id),

{H(ct1 + s1), ...,H(ctn + sn)}, σ).

− If A made a query for the same (F, id) previously,
then B retrieves the recorded tuple tup and returns
SE.enc(F) and σ.

Challenge: B generates the challenge message chal =
{(idxi, νi)}idxi∈I , where I = {idx1, . . . , idxc}, idxi are the
indices of the blocks of file F of identity id, and νi ∈R Z∗p.
B sends chal to A.

Forge: A generates a proof {σ, µ} for the blocks
(midx1

, ...,midxc
) of file F of identity id, determined by I .

Then, it returns {σ, µ} to B, and B checks the validity of
{σ, µ}. Since we assume that A wins the Auditing Game
with non-negligible probability ε, {σ, µ} is a valid proof
with the same probability. If ProofVrfy(pk, {σ, µ}, id, SI)
returns True, then B returns 0, indicating that z = gab;
otherwise B returns 1.

The proof further proceeds as follows. If z = gab, then B
has simulated pk and A’s SigGen queries correctly. As A’s
view in the simulation is identical to its view in the Auditing
Game, B’s probability to solve the DDH challenge tuple
is reduced to A’s probability to win the Auditing Game.
Therefore, we have

Pr[B(g, ga, gb, z = gab) = 0] =
1

2
+ ε.

If z is a random group element, then B has not simulated
pk and A’s SigGen queries correctly. As A’s view in the
simulation is different from its view in the Auditing Game,
B cannot exploit A’s advantage, meaning that B’s probabil-
ity to determine if z is a random element is no better than
flipping a coin. Therefore, we have

Pr[B(g, ga, gb, z = R) = 1] =
1

2
,

where R is a random element in G1. This concludes the
proof.

5.2 Performance Analysis

For our comparative analysis, we carefully chose the three
proposals [12], [13], [40] as baseline schemes. Specifically,
we selected Wang et al.’s [12] and Liu et al.’s [13] schemes
which are seen as seminal works in terms of the public
auditing of outsourced data. We additionally chose Guo
et al.’s scheme [40], which we believe is the most relevant
state-of-the-art proposal. We use these three schemes as a
baseline to illustrate how efficiency can be improved while
achieving the same level of security. We start by presenting a
complexity analysis of the computation and communication
costs. After that, we compare the actual performance of our
scheme with the previous schemes in experiments.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:23:39 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3030947, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 2: Computation costs

Wang et al. [12] Liu et al. [13]. Guo et al. [40] Proposed scheme

KeyGen 2 Exp 1 Exp (c+ 1) Exp 1 Exp

SigGen n (Hash+Mult+ 2 Exp) n (2 Hash+Mult+ Exp) 2n Exp n (3 Hash+ Exp)

c MultExp

1 Hash+ c Add 1 Hash+ c Add c Exp

ProofGen +(c+ 1) Mult+ +c Mult+ 1 Exp +2c Mult c (Mult+Hash+ Exp)

1 Exp+ c MultExp +c MultExp

(c+ 1) (Hash+Mult) (c+ 1) (Hash+Mult) (c+ 2) Exp (2c+ 1) Hash+

ProofVrfy +(c+ 2) Exp +(c+ 1) Exp +2 pair 2 Exp+ 2 Mult+

+2 Pair c Mult 2Pair

TABLE 3: Communication costs

Wang et al. [12] Liu et al. [13] Guo et al. [40] Proposed scheme
TPA↔ Cloud c · (|s|+ |p|+ |id|) + 2|p| c · (|s|+ |p|+ |id|) + 2|p| c · (3 · |p|+ |g|) c · (|s|+ |p|) + |g|+ |p|

5.2.1 Computation Costs

The computation costs for the four schemes are summarized
in Table 2. Let Hash be the hash operation, Add be the
additive operation in group Zp, Mult be the multiplicative
operation in group Zp, Exp be the exponential operation
in group G1, Mod be the mod operation in group Zp,
MultExp be the multiplication sequence for the exponential
operation in group G1, and Pair be the pairing opera-
tion. We omit non-dominant operations such as running a
symmetric-key encryption algorithm. Suppose there are c
random blocks specified in chal during the auditing process.
Under this setting, we provide a calculation of the computa-
tion costs for four algorithms: KeyGen SigGen, ProofGen,
Challenge, and ProofVrfy.

In the KeyGen algorithm, only Guo et al.’s scheme
shows linear complexity with respect to c in the key genera-
tion phase, while the other schemes require a constant num-
ber of operations. In the SigGen algorithm, the proposed
scheme has a higher computation complexity than Wang
et al.’s [12] and Liu et al.’s [13] schemes. This is because
our scheme uses a symmetric-key encryption algorithm to
ensure data confidentiality, which incurs additional hash
operations. Lastly, Guo et al.’s scheme exhibits the worst
computation complexity, but this is compensated for by
achievingO(log n) update costs. In the ProofGen algorithm,
the computation cost of the proposed scheme is lower
than [12], [13], [40]. For the ProofVrfy algorithm, all of the
schemes show similar performance except for [12].

5.2.2 Communication Costs

Table 3 shows a comparison of the communication costs
for the four schemes. The size of the challenge message
chal={(idxi, νi)}idxi∈I is c · (|s| + |p|) bits, where c is the
number of selected blocks, |s| is the size of each index in
{idx1, . . . , idxc}, and |p| is the size of an element of Zp. Let
|g| be the size of an element of G1. The size of proof is
|p|+ |g| bits.

In [12], [13], the cloud uses a random mask to guarantee
data privacy against the TPA, where the size of random

mask R is |p|. Owing to the use of side information, the
communication cost between the cloud or the TPA is c · |p|.
Guo et al.’s scheme transfers elements in G during the
auditing phase, where these values correspond to the tags
[40], while the proposed scheme does the same except that
the tags are aggregated into a single value.

5.2.3 Simulation
We measured the computation time for four algorithms:
KeyGen, SigGen, ProofGen, and ProofVrfy. Because the
computation costs for the challenge algorithm are the same
for all schemes, we excluded this from the comparison. The
experiment was conducted using C in Linux Ubuntu 3.19.0-
15-generic OS 64-bit (Workstation 11.0 virtual machine, 1 GB
of RAM) with an Intel Core i5 processor running at 2.3 GHz
with 8 GB of RAM. We utilized the Pairing Based Cryp-
tography (PBC) library (version 0.5.14 [29]) to implement
the pairing operation in our scheme. The experiment was
performed on five randomly generated files, where each file
consists of n ∈ {300, 600, 900, 1200, 1500} blocks. The size
of each block was set at 20 bytes, and the seed length l(λ)
was set at half of the size of the block. For proof generation
and verification, the performance depends on c, the number
of challenged blocks. Note that 300∼460 challenged blocks
are sufficient for successful verification with a probability of
95∼99%, irrespective of the number of blocks a file consists
of [5]. In our experiment, we set c = 300.

Figure 4 demonstrates the time costs for public auditing
for the four schemes. Figure 4(a) shows the computation
time for the KeyGen algorithm. As we showed in the the-
oretical analysis, Wang et al.’s [12], Liu et al.’s [13] and our
schemes exhibit similar performance. Guo et al.’s scheme
shows the worst performance because its computation com-
plexity with respect to key generation depends on c [40].
Figure 4(b) presents the computation time for the SigGen
algorithm. The proposed scheme is much faster than [40],
and shows similar performance to [12], [13]. Figure 4(c)
shows the computation time for the ProofGen algorithm.
In this phase, the proposed scheme does not use random
masking, so it is slightly faster than [12], [13] by about 0.18

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:23:39 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3030947, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

300 600 900 1200 1500

The number of blocks

0

2

4

6

8

10

12

14

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
) Wang et al. [12]

Liu et al. [13]

Guo et al. [40]

Ours

(a) Key generation

300 600 900 1200 1500

The number of blocks

0

5

10

15

20

25

30

35

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Wang et al. [12]

Liu et al. [13]

Guo et al. [40]

Ours

(b) Tag generation

300 600 900 1200 1500

The number of blocks

0.25

0.3

0.35

0.4

0.45

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
) Wang et al. [12]

Liu et al. [13]

Guo et al. [40]

Ours

(c) Proof generation

300 600 900 1200 1500

The number of blocks

0

0.5

1

1.5

2

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Wang et al. [12]

Liu et al. [13]

Guo et al. [40]

Ours

(d) Proof verification

Fig. 4: Computation costs of public auditing in the various schemes

0 20 40 60 80 100

Time (days)

0

0.5

1

1.5

2

2.5

3

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t
(b

y
te

s
)

106

Wang et al. [12]

Liu et al. [13]

Guo et al. [40]

Ours

Fig. 5: Communication costs for data dynamics in the vari-
ous schemes

seconds. Moreover, the performance of the proposed scheme
surpasses that of [40].

Figure 4(d) displays the computation time for the

ProofVrfy algorithm. Ours exhibits the best performance
while [13] and [40] show similar performance. The perfor-
mance of [12] is the worst due to its greater number of
exponential computations. Note that the proposed scheme
requires approximately 4 ms on average, which is much
faster than others. If we use pre-computation, then the proof
verification time is reduced to 2 ms on average. The down-
side of pre-computation is the storage overhead required for
each file. Specifically, the TPA is required to keep two pre-
computed values, each of which is a 128-byte element in
G1. This cost, however, is acceptable. For example, when
simultaneously auditing numerous files, say one million,
only 256 MB is required, which is tolerable for modern
server systems.

Next, we measure the communication costs of the audit-
ing schemes when supporting data dynamics. We consider
an online cloud server connected to the Internet. It has been
shown that file transfer can be accurately modeled as a Pois-
son process [38]. Because the number of file transfers follows
a Poisson distribution with rate λ, we present the simulation
results for this probabilistic behavior distribution.

Figure 5 presents the accumulated communication costs
when a user requests data updates from the public auditing

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:23:39 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3030947, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

300 600 900 1200 1500

The number of blocks

0

0.5

1

1.5

2

2.5

3

3.5

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Wang et al. [12]

Liu et al. [13]

Guo et al. [40]

Ours

(a) Modification

300 600 900 1200 1500

The number of blocks

0

2

4

6

8

10

12

14

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Wang et al. [12]

Liu et al. [13]

Guo et al. [40]

Ours

(b) Insertion

300 600 900 1200 1500

The number of blocks

0

2

4

6

8

10

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Wang et al. [12]

Liu et al. [13]

Guo et al. [40]

Ours

(c) Deletion

Fig. 6: Computation cost of dynamic update

schemes over 100 days. In this simulation, we assume that
a user transfers a request for dynamic operations on a file
approximately three times a day (λ = 3). The number of
blocks per file can vary in real-world systems, so we assume
that every file consists of an arbitrary number of blocks,
ranging from 100 to 90,000. The communication costs, which
are measured in bytes, include all of the data relating to

auditing, such as newly generated tags and auditing side
information. In Figure 5, the proposed scheme shows the
best performance because all of the other schemes, for
the update of a single i-th block, should transfer newly
generated tags corresponding to the j-th blocks (j ≥ i).

Figure 6 depicts the computation costs with respect to
dynamic updates. To assess the performance of each scheme
in the worst case scenario, we assume that the first block
of an n-block file is updated (i.e., modification, insertion,
and deletion). In the proposed scheme, modification and
insertion (Figure 6(a) and 6(b)) has constant computation
costs (0.007 seconds on average to compute a modified (or
newly inserted) tag) irrespective of the number of blocks.
For deletion, it does not incur any cost with respect to tag
generation. In contrast, modification, insertion, and deletion
incur logarithmic costs in [13], [40]. This is because all of
the remaining tags corresponding to the i-th blocks (i ≥ 2)
in a tree structure need to be recomputed. Similarly, when
insertion or deletion at the first block occurs, Liu et al.’s
scheme needs to compute n − 1 tags, corresponding to the
remaining blocks [17].

6 CONCLUSION

In this paper, we propose a public auditing scheme for
encrypted data that supports extremely fast data dynamics.
The proposed scheme supports data dynamics at a constant
cost irrespective of the number of blocks. Our auditing
challenge-response protocol requires a constant number of
pairings and exponentiations, which significantly increases
the verification speed for the auditing results. The proposed
scheme ensures data confidentiality and integrity against
the cloud server. During the auditing process, the TPA can
verify the correctness of the proof without decrypting it
and without key exposure, due to the homomorphic hash
function. Security and performance analysis shows that the
proposed scheme requires minimal extra computation while
guaranteeing data privacy and integrity.

ACKNOWLEDGMENTS

This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (No.2019-0-
00533, Research on CPU vulnerability detection and valida-
tion). This research was supported by the MSIT(Ministry
of Science and ICT), Korea, under the ICT Creative
Consilience program(IITP-2020-0-01819) supervised by the
IITP(Institute for Information & communications Technol-
ogy Planning & Evaluation).

REFERENCES

[1] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Kon-
winski, A., ... & Zaharia, M. (2010). A view of cloud computing.
Communications of the ACM, 53(4), 50-58.

[2] Ren, K., Wang, C., & Wang, Q. (2012). Security challenges for the
public cloud. IEEE Internet Computing, 16(1), 69-73.

[3] Song, D., Shi, E., Fischer, I., & Shankar, U. (2012). Cloud data
protection for the masses. Computer, 45(1), 39-45.

[4] Wei, L., Zhu, H., Cao, Z., Dong, X., Jia, W., Chen, Y., & Vasilakos,
A. V. (2014). Security and privacy for storage and computation in
cloud computing. Information sciences, 258, 371-386.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:23:39 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3030947, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[5] Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Pe-
terson, Z., & Song, D. (2007, October). Provable data possession at
untrusted stores. In Proceedings of the 14th ACM conference on
Computer and communications security (pp. 598-609).

[6] Ateniese, G., Di Pietro, R., Mancini, L. V., & Tsudik, G. (2008,
September). Scalable and efficient provable data possession. In
Proceedings of the 4th international conference on Security and
privacy in communication netowrks (pp. 1-10).

[7] Juels, A., & Kaliski Jr, B. S. (2007, October). PORs: Proofs of retriev-
ability for large files. In Proceedings of the 14th ACM conference
on Computer and communications security (pp. 584-597).

[8] Shacham, H., & Waters, B. (2008, December). Compact proofs of
retrievability. In International conference on the theory and applica-
tion of cryptology and information security (pp. 90-107). Springer,
Berlin, Heidelberg.

[9] Erway, C. C., Küpçü, A., Papamanthou, C., & Tamassia, R. (2015).
Dynamic provable data possession. ACM Transactions on Informa-
tion and System Security (TISSEC), 17(4), 1-29.

[10] Wang, Q., Wang, C., Ren, K., Lou, W., & Li, J. (2010). Enabling
public auditability and data dynamics for storage security in cloud
computing. IEEE transactions on parallel and distributed systems,
22(5), 847-859.

[11] Zhu, Y., Wang, H., Hu, Z., Ahn, G. J., Hu, H., & Yau, S. S.
(2011, March). Dynamic audit services for integrity verification of
outsourced storages in clouds. In Proceedings of the 2011 ACM
Symposium on Applied Computing (pp. 1550-1557).

[12] Wang, C., Chow, S. S., Wang, Q., Ren, K., & Lou, W. (2011).
Privacy-preserving public auditing for secure cloud storage. IEEE
transactions on computers, 62(2), 362-375.

[13] Liu, H., Zhang, P., & Liu, J. (2013). Public data integrity verification
for secure cloud storage. Journal of networks, 8(2), 373.

[14] Shen, J., Shen, J., Chen, X., Huang, X., & Susilo, W. (2017). An
efficient public auditing protocol with novel dynamic structure
for cloud data. IEEE Transactions on Information Forensics and
Security, 12(10), 2402-2415.

[15] Shah, M. A., Swaminathan, R., & Baker, M. (2008). Privacy-
Preserving Audit and Extraction of Digital Contents. IACR Cryptol.
ePrint Arch., 2008, 186.

[16] Liu, J., Huang, K., Rong, H., Wang, H., & Xian, M. (2015). Privacy-
preserving public auditing for regenerating-code-based cloud stor-
age. IEEE transactions on information forensics and security, 10(7),
1513-1528.

[17] Ramaiah, Y. G., & Kumari, G. V. (2013, July). Complete privacy
preserving auditing for data integrity in cloud computing. In 2013
12th IEEE International Conference on Trust, Security and Privacy
in Computing and Communications (pp. 1559-1566). IEEE.

[18] Wang, J., Chen, X., Huang, X., You, I., & Xiang, Y. (2015). Veri-
fiable auditing for outsourced database in cloud computing. IEEE
transactions on computers, 64(11), 3293-3303.

[19] Jin, H., Jiang, H., & Zhou, K. (2016). Dynamic and public auditing
with fair arbitration for cloud data. IEEE Transactions on cloud
computing, 6(3), 680-693.

[20] Tian, H., Chen, Y., Chang, C. C., Jiang, H., Huang, Y., Chen, Y., &
Liu, J. (2015). Dynamic-hash-table based public auditing for secure
cloud storage. IEEE Transactions on Services Computing, 10(5), 701-
714.

[21] Naone, E. (2010). What Twitter learns from all those tweets.
Technology Review, 28.

[22] Krohn, M. N., Freedman, M. J., & Mazieres, D. (2004, May). On-
the-fly verification of rateless erasure codes for efficient content
distribution. In IEEE Symposium on Security and Privacy, 2004.
Proceedings. 2004 (pp. 226-240). IEEE.

[23] Gennaro, R., Katz, J., Krawczyk, H., & Rabin, T. (2010, May).
Secure network coding over the integers. In International Work-
shop on Public Key Cryptography (pp. 142-160). Springer, Berlin,
Heidelberg.

[24] Boneh, D., Lynn, B., & Shacham, H. (2001, December). Short
signatures from the Weil pairing. In International conference on
the theory and application of cryptology and information security
(pp. 514-532). Springer, Berlin, Heidelberg.

[25] Xia, H., Lu, T., Shao, B., Ding, X., & Gu, N. (2014, May). Her-
mes: On collaboration across heterogeneous collaborative editing
services in the cloud. In Proceedings of the 2014 IEEE 18th Inter-
national Conference on Computer Supported Cooperative Work in
Design (CSCWD) (pp. 655–660). IEEE.

[26] Bao, F., Deng, R. H., & Zhu, H. (2003, October). Variations of
diffie-hellman problem. In International conference on information

and communications security (pp. 301-312). Springer, Berlin, Hei-
delberg.

[27] Armknecht, F., Bohli, J. M., Karame, G. O., Liu, Z., & Reuter,
C. A. (2014, November). Outsourced proofs of retrievability. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security (pp. 831-843).

[28] Zhang, Y., Xu, C., Cheng, N., Li, H., Yang, H., & Shen, X. (2019).
Chronos +: An Accurate Blockchain-Based Time-Stamping Scheme
for Cloud Storage. IEEE Transactions on Services Computing, 13(2),
216-229.

[29] Lynn, B. (2006). The pairing-based cryptography library. Internet:
crypto. stanford. edu/pbc/[Mar. 27, 2013].

[30] McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C. V., Shafi,
H., Shanbhogue, V., & Savagaonkar, U. R. (2013). Innovative in-
structions and software model for isolated execution. Hasp@ isca,
10(1).

[31] Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
... & Stoica, I. (2009). Above the clouds: A berkeley view of cloud
computing. Dept. Electrical Eng. and Comput. Sciences, University
of California, Berkeley, Rep. UCB/EECS, 28(13), 2009.

[32] Zhang, X., Wang, H., & Xu, C. (2019). Identity-based key-exposure
resilient cloud storage public auditing scheme from lattices. Infor-
mation Sciences, 472, 223-234.

[33] Dent, A. W. & Galbraith, S. D. (2006, July). Hidden pairings
and trapdoor DDH groups. In International Algorithmic Number
Theory Symposium (pp. 436-451). Springer, Berlin, Heidelberg.

[34] Fan, K., Bao, Z., Liu, M., Vasilakos, A. V., & Shi, W. (2020). Dredas:
Decentralized, reliable and efficient remote outsourced data audit-
ing scheme with blockchain smart contract for industrial IoT. Future
Generation Computer Systems, 110, 665-674.

[35] Rabaninejad, R., Ahmadian, M., Asaar, M. R., & reza Aref, M.
(2019). A lightweight auditing service for shared data with secure
user revocation in cloud storage. IEEE Transactions on Services
Computing.

[36] Zhang, Y., Xu, C., Lin, X., & Shen, X. S. (2019). Blockchain-based
public integrity verification for cloud storage against procrastinat-
ing auditors. IEEE Transactions on Cloud Computing.

[37] Wang, H., Wang, Q., & He, D. (2019). Blockchain-Based Private
Provable Data Possession. IEEE Transactions on Dependable and
Secure Computing.

[38] Carofiglio, G., Gallo, M., Muscariello, L., & Perino, D. (2011,
September). Modeling data transfer in content-centric networking.
In Proceedings of the 23rd international teletraffic congress (pp.
111–118). International Teletraffic Congress.

[39] Erway, C. C., Küpçü, A., Papamanthou, C., & Tamassia, R. (2015).
Dynamic provable data possession. ACM Transactions on Informa-
tion and System Security (TISSEC), 17(4), 15.

[40] Guo, W., Zhang, H., Qin, S., Gao, F., Jin, Z., Li, W., & Wen, Q.
(2019). Outsourced dynamic provable data possession with batch
update for secure cloud storage. Future Generation Computer
Systems, 95, 309-322.

Changhee Hahn received B.S. and M.S. de-
grees from Chung-Ang University, Seoul, South
Korea, in 2014 and 2016, respectively, both in
Computer Science. He received the Ph.D. de-
gree in 2020 in the Department of Computer Sci-
ence and Engineering, College of Informatics,
Korea University, Korea. His research interests
include information security and cloud comput-
ing security.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:23:39 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3030947, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Hyunsoo Kwon received a B.S. degree from
Chung-Ang University, Seoul, Korea, in 2014
and a M.S. degree from Korea University, Seoul,
South Korea, in 2016, both in Computer Science.
He is currently pursuing a Ph.D. degree in the
Department of Computer Science and Engineer-
ing, College of Informatics, Korea University, Ko-
rea. His research interests include information
security, network security, and cloud security.

Daeyeong Kim received a B.S. in Computer Sci-
ence and Engineering from Dae-jeon University,
Daejeon, Korea, in 2014. He is currently pursu-
ing an M.S. degree in the Department of Com-
puter Science and Engineering, College of In-
formatics, Korea University, Korea. His research
interests include information security and cloud
security.

Junbeom Hur received a B.S. degree from Ko-
rea University, Seoul, South Korea, in 2001, and
M.S. and Ph.D. degrees from KAIST in 2005
and 2009, respectively, all in Computer Science.
He was with the University of Illinois at Urbana-
Champaign as a postdoctoral researcher from
2009 to 2011. He was with the School of Com-
puter Science and Engineering at the Chung-
Ang University, South Korea as an Assistant
Professor from 2011 to 2015. He is currently
an Associate Professor with the Department of

Computer Science and Engineering at Korea University, South Korea.
His research interests include information security, cloud computing
security, mobile security, and applied cryptography.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:23:39 UTC from IEEE Xplore. Restrictions apply.

