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Abstract—Monitoring is a core practice in any software system. Trends in microservices systems exacerbate the role of monitoring
and pose novel challenges to data sources being used for monitoring, such as event logs. Current deployments create a distinct log per
microservice; moreover, composing microservices by different vendors exacerbates format and semantic heterogeneity of logs.
Understanding and traversing the logs from different microservices demands for substantial cognitive work by human experts.
This paper proposes a novel approach to accompany microservices logs with black box tracing to help practitioners in making
informed decisions for troubleshooting. Our approach is based on the passive tracing of request-response messages of the
REpresentational State Transfer (REST) communication model. Differently from many existing tools for microservices, our tracing is
application transparent and non-intrusive. We present an implementation called MetroFunnel and conduct an assessment in the
context of two case studies: a Clearwater IP Multimedia Subsystem (IMS) setup consisting of Docker microservices and a Kubernetes
orchestrator deployment hosting tens of microservices. MetroFunnel allows making useful attributions in traversing the logs; more
important, it reduces the size of collected monitoring data at negligible performance overhead with respect to traditional logs.
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1 INTRODUCTION

MONITORING entails gathering a variety of data
sources that pertain the execution of a given system,

such as resource usage metrics, network statistics, traces and
logs: it is a core engineering practice in any software system
for assuring service continuity and downtime reduction [1].
Trends in microservices systems exacerbate the role of mon-
itoring. Microservices put forth reduced size, independency,
flexibility and modularity principles [2], which well cope with
ever-changing business environments. However, as real-
world applications are decomposed, they can easily reach
hundreds of microservices (e.g., the deployments of Netflix or
Hailo). This inherent complexity determines an increasing
difficulty in debugging, monitoring and forensics [3].

Recent work started to address monitoring challenges
in deploying Virtual Machines (VMs), which –similarly to
containers– can be used to host microservices. Given the
large availably of Cloud providers, Fadda et al. [4] propose a
multi-objective mixed integer linear optimization approach
to maximize the quality of monitoring, which is usually
neglected in favor of other characteristics, such as size and
availability of the VMs. While [4] addresses indirect mon-
itoring (i.e., the collection of metrics, such as CPU usage,
free memory and power consumption, that do not require active
participation by the software under-monitoring1), microser-
vices are posing even more challenges in the area of direct
monitoring, which rely on source code instrumentation –e.g.,
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1. Indirect monitoring capitalizes on non-intrusive operating system-
level probes or kernel modules to collect the metrics.

by means of calls to logging functions or tracing APIs– for
obtaining monitoring data at runtime.

Event logs are the primary source of data for direct
monitoring. Event logs are sequences of text lines –typically
stored in log files– reporting on the runtime behavior of a
computer system; the use of logs is known since the early
days of computers [5]. We claim that architectural advantages
brought by microservices clash with event logs practices.
For example, microservices systems (i) result from the com-
position of software developed by differently-skilled teams;
(ii) are distributed across heterogeneous platforms and tech-
nologies; (iii) are strongly dynamic, with microservices being
frequently added, updated or replicated for scalability and
fault tolerance. Current deployments create a distinct log
per microservice; moreover, centralization and collection of
event logs require an infrastructure available at each node
of the system.

In spite of the technical advances achieved by up-to-
date log management tools like Splunk [6] or Logstash
[7], practitioners face compelling challenges in maintaining
catalogues of regular expressions and keywords for parsing
and monitoring runtime logs. The composition of microser-
vices exacerbates format and semantic heterogeneity of logs
caused by the lack of standard coding practices across
developers and vendors. Even more important, understand-
ing and traversing the logs from different microservices
demands for substantial cognitive work by human experts
in forensics and troubleshooting.

This paper proposes to accompany microservices’ logs
with black box tracing in order to help practitioners to
make informed decisions when traversing heterogeneous
logs for troubleshooting. Tracing accounts for various data,
such as source-destination of invocations, response codes
and runtime checks on timeout expirations. We present a
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specific approach to this goal, which builds on passive trac-
ing (also known as sniffing) of request-response messages
that underlie the REpresentational State Transfer (REST)
communication model to transparently build microservices
execution traces. We stem from general requirements in mi-
croservices systems and our field experience in log analysis
to pursue several novelties. Differently from many existing
tracing tools, such as [8], [9], [10] and [11], our approach
is application transparent, non-intrusive and it requires
no microservices modifications; moreover, it is resilient to
changes in the computing environment, such as addition and
deletion of microservices.

We present an implementation of our tracing approach
called MetroFunnel, which is available –both to practition-
ers and the research community– as a ready-to-use tool
on GitHub2. Our approach aims to increase the efficiency
of both of experts and modestly-skilled practitioners in
traversing builtin microservices’ logs by means of a sup-
plementary run-time tracing and checking mechanism.

The assessment of MetroFunnel is done in the context
of two case studes: a Clearwater IP Multimedia Subsystem
(IMS) setup consisting of Docker microservices [12] and
a Kubernetes orchestrator deployment managing tens of
microservices. In both cases, we investigate some practi-
cal scenarios to demonstrate that traces gathered with no
knowledge of the application design allow making useful
attributions on microservices by means of actionable evi-
dence. In both the case studies, we assess the performance
overhead and the log file size of MetroFunnel and compared
them with builtin logs, under increasing load conditions.
Results highlight that, in the worst case (our Clearwater
setup), MetroFunnel induces a 3.3% higher performance
overhead when compared to the collection of builtin logs,
which is reasonably negligible. Results also highlight that
the size of MetroFunnel’s trace is significantly smaller than
traditional logs. In the worst case (again, Clearwater setup),
the size reduction accounts for about 59%. Overall, results
suggest that a good strategy to reduce the overhead of the
on-line monitoring is to use MetroFunnel at runtime, for
tracing and early warning, while keeping builtin logs on
their respective nodes, to be accessed only when needed for
troubleshooting.

The paper is organized as follows. Section 2 presents re-
lated work in the area and positions the contribution of our
research. Section 3 provides a real-life example to motivate
our approach. Section 4 discusses the research statement,
requirements, goals and non-goals of our work. Section 5
discusses the design choices underlying MetroFunnel and
its implementation. Section 6 describes the case studies,
while our investigation of the considered practical scenarios
is provided in Section 7. Section 8 presents the overhead
assessment on both case studies. Section 9 discusses the
threats to validity, and Section 10 concludes the work.

2 RELATED WORK

Many solutions have emerged for monitoring microservices-
and containers-based systems. We divide them in the areas
of indirect and direct approaches, and we position our
research in the context of these areas.

2. https://github.com/dessertlab/MetroFunnel

2.1 Indirect monitoring
Indirect monitoring approaches typically aim to collect
OS- and network-level metrics. One trend has consisted
in porting to microservices consolidated tools that were
originally conceived for networked and Cloud systems. For
example, monitoring frameworks, such as the open-source
Nagios [13] and Ganglia [14], and the commercial Amazon
CloudWatch [15], are now used to collect and evaluate
metrics (e.g., CPU utilization, system load and free memory)
in clusters hosting microservices. It is worth noting that
these frameworks were not designed to collect fine-grain
monitoring data in the granularity of microservices; as such,
dedicated tools have now emerged for indirect monitoring
of microservices and containers.

CAdvisor [16] is an open source agent –implemented
as a monitoring container– that automatically discovers all
the containers running in a system. It collects, aggregates,
processes, and exports information about the containers,
such as resource usage and network statistics.

Elascale [17] is an approach for auto-scaling and mon-
itoring of Cloud software systems based on Docker [18]
microservices. Monitoring is performed through the ELKB
stack, i.e., Elasticsearch, Logstash, Kibana and Beats [19],
which allows collecting performance metrics, e.g., CPU,
memory and network usage, for each container. Elascale
supports only Docker technology; moreover, it does not
provide indications about runtime errors. Sieve [20] is
a platform to infer insights from monitored metrics in
microservices systems. Sieve analyzes the communication
between containers hosting the microservices, in order to
obtain a call graph and records of all the metrics exposed,
such as CPU and memory usage. Sieve leverages sysdig [10]
to obtain/analyze the communication between components,
which requires a kernel module to observe the system calls
used by microservices. ConMon is a distributed and auto-
mated monitoring solution for observing network metrics in
container environments [21]. ConMon requires monitoring
containers to be deployed inside the target system and needs
intervention on the virtual switch to forward packets to the
monitoring containers.

2.2 Direct monitoring
Many commercial tools for Application Performance Man-
agement (APM) allow monitoring microservices by means
of service instrumentation, such as Dynatrace [11], AppDy-
namics [22], CA [23] and New Relic [24].

A specific commercial APM solution for microservices
applications is Instana [8]. It leverages the span data model
[25], which is based on trace trees where each node represents
a service (named the span). Instana traces all the requests
generated by properly instrumented microservices. For each
request, the tool provides the total time of the trace and
the number of errors occurred during the trace. Errors are
captured when it is detected a logging call at ERROR sever-
ity or upon a bad response by a service. Instana requires
application instrumentation to trace the requests.

Among open-source solutions we can find Zipkin [9],
i.e., the distributed tracer for microservices by Twitter. It
is based on services instrumentation (supporting a variety
of programming languages) and on the span data model.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:29:02 UTC from IEEE Xplore.  Restrictions apply. 



1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2019.2940009, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

Zipkin uses collectors on the nodes of the target system to
trace and store data. Stored data are accessed by a query
service, which provides the completion time of services.
Zipkin requires service instrumentation.

Sysdig [10] is a container-native solution, which allows
collecting resource usage, network statistics, as well as cap-
turing system calls and tracing applications within contain-
ers, such as microservices. System calls from containers are
captured by means of a kernel module, while tracing is done
by instrumenting the applications. Instrumentation consists
in writing formatted text strings to /dev/null.converts the
strings into events that allow obtaining completion times
for the instrumented object. [26] presents a dashboard for
monitoring and managing microservices. The dashboard is
characterized by a Spring-based infrastructure that uses Dy-
natrace [11]. The infrastructure allows collecting both failure
rate and response time of each microservice; however, they
are collected by means of Dynatrace, which requires the
instrumentation of the service to be monitored.

A run-time verification approach for microservices-
based applications is presented in [27]. The approach is
built on the top of Conductor, i.e., the Netflix microservices
orchestrator [28]. It leverages the execution flow of the
target application provided by Conductor to generate Time
Basic Petri (TBP) nets. TBP nets are leveraged by a run-
time verification module based on the MahaRAJA tool [29],
which collects the execution trace of the target application
instrumented with Java annotations.

Netflix Hystrix [30] is a latency and fault tolerance Java
library designed to prevent cascading failures. It allows
near-realtime monitoring of services by means of source-
code instrumentation. Hystrix is able to measure successes,
failures and timeouts of calls; however, it requires each
call to external systems and dependencies of services to be
wrapped inside an HystrixCommand object, which generates
metrics on outcomes and latency.

2.3 Our contribution

Indirect approaches presented in Section 2.1 typically ag-
gregate resource usage statistics at container- or host-level: as
such, differently from our contribution, they cannot support
inferences in the granularity of microservices. Similar to our
contribution, the work discussed in Section 2.2 proposes
tracing approaches for microservices; however, services
under-monitoring are actively involved in the generation of
the traces by means of code instrumentation. Active tracing
is not application transparent and it needs for executing
additional code or running extra processes: this entails a
degree of intervention on the target system, which might be
not suited for microservices developed at different times, by
different teams and vendors.

Different from this literature, we contribute with a pas-
sive tracing approach that requires no microservices in-
strumentation. We achieve application transparency of indirect
approaches at the data granularity of active tracing.

With respect to the literature on passive tracing in dis-
tributed systems, it is worthy to mention [31] and [32]: this
research dates back early 2000 and resulted into Project 5
and WAP5, respectively. The former focuses on local-area
distributed systems and capitalizes on network traces; the

latter focuses on wide-area distributed systems and uses an
interposition library for process-level tracing. While we share
some technical similarities with this work due to passive
tracing, [31] and [32] do not address microservices.

To the best of our knowledge there are few contributions
on non-intrusive tracing of microservices. MONAD [33] is a
self-adaptive microservice infrastructure for heterogeneous
scientific workflows. It leverages the subscription model of
Advanced Message Queuing Protocol (AMQP), and collects
special Start/End messages that represent invocation/com-
pletion of workflows. The approach requires that microser-
vices communicate by means of AMQP; moreover, differ-
ently from our proposal, it provides monitoring data in the
granularity of workflows. The non-intrusive approach in [34]
records the calls between microservices and responses with
a modified version of the Zuul Netflix gateway [35]. We
observe that this approach depends on the functionalities
of the gateway and its availability in the target network.
For example, in a Docker environment, the correct oper-
ation of the approach would require an overlay network.
Differently from this work, our proposal does not rely on
any specific external tool. Gremlin [36] is a framework
for systematically testing the failure-handling capabilities
of microservices, with fault injection. With Gremlin, we
share the ”touch the network, not the app” principle, as the
framework is based on the key insight that failures can be
staged by observing the network interactions. However the
paper pursues the different objective of microservices test-
ing, that entails the use of traces in controlled and repeatable
environments. Furthermore, it does not explore the use of
traces to better analyze application logs, as we do. Hansel
[37] and Gretel [38] leverage non-intrusive network moni-
toring for root-cause analysis in OpenStack. Differently from
our work, both papers are tied on the monitored system,
namely OpenStack. Hansel analyzes network messages to
mine OpenStack’s unique identifiers and it leverages them
to construct execution trails of events. Gretel builds upon
the observation that OpenStack components interact using a
finite set of API interfaces. Authors then leverage OpenStack
integration tests to create fingerprints for all such APIs, to be
used to uncover problems at runtime, in case of deviations
from fingerprints.

These studies share with us a similar use of passive
tracing of REST messages, but, differently from them, we
discuss the implications of such use in the more general
context of monitoring and event log analysis in microser-
vices. Our final aim is to show that traces gathered with no
knowledge of the application design are helpful to gather
actionable evidence that then can be used by practitioners
to better traverse and analyze microservices’ builtin and
heterogeneous logs.

3 MOTIVATING EXAMPLE

We use a real-life example to motivate our work. The ex-
ample aims to illustrate (i) ancillary events available across
various logs in a microservice-based system and (ii) manual
forensics and guessings done by human experts in traversing
the logs. Data snippets are from a Clearwater IP Multime-
dia Subsystem (IMS) installation, which consists of Docker
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1 (6505550350 , 6505550359) Failed
2 Exception in quaff_cleanup_blk :
3 − Expected 401 |200 , got 504
4 (call ID fc05dd9e8527018fafff19e30b213af1 )
5 Leaked sip :6505550359@example .com , DELETE returned 502
6 Leaked sip :6505550350@example .com , DELETE returned 502
7 Basic Call − Unknown number (TCP ) at 2018−09−27 1 2 : 5 0 : 1 4
8 Endpoint on 34861 received :
9 SIP/2.0 504 Server Timeout

10 Via : SIP/2.0/TCP 1 7 2 . 1 7 . 0 . 2 : 3 4 8 6 1 ;rport=53976;
11 received= 1 0 . 0 . 3 0 . 8 8 ;branch=z9hG4bK1538052594 . 4184752
12 CSeq : 4 REGISTER
13 from 1 0 . 0 . 3 0 . 8 5 : 5 0 6 0 (TCP )

Fig. 1: Snippet from the client log.

microservices and will be used later on to assess our imple-
mentation. Clearwater provides voice, video and messaging
services. The end goal of this example is troubleshooting a
failure experienced by a Clearwater client while attempting
a voice telephone call.

Fig. 1 shows a snippet from the client log, which contains
various errors, i.e., (i) a timeout of the server –code 504–
occurred at 12:50:14, reported at lines 3, 7 and 9; (ii) two
502 responses triggered upon attempting the deletion of
the telephone accounts sip:6505550359@example.com
and sip:6505550350@example.com (lines 5-6). The most
interesting observation is that the log trivially indicates at
line 13 that the potential origin of the failure is the server
machine 10.0.30.85 (i.e., the IP address of the machine
that hosts Clearwater’s microservices in our testbed); how-
ever, no error message provides specific evidence or context
that might help practitioner to make informed decisions on
how to progress the inspection.

Regarding the timeout error, either an expert or a
modestly-skilled practitioner would now opt to look at the log
of the anchor microservice, i.e., bono in Clearwater IMS, serv-
ing as the fronted for the client’s connections. Consequently,
we manually scrutinized the log of bono: surprisingly, beside
normative messages (such as status of incoming requests
and recycling of TCP slots) we found no error messages that
revealed the cause of the timeout.

After having looked at the client and bono, we end up
with no evidence to move on with the inspection. A hypo-
thetical practitioner is now expected to guess the next steps
and formulating hypotheses. After having inspected the
architecture of Clearwater, we found out that a microservice
called sprout is closely related to bono and, indirectly, to the
client. We manually reviewed the log of sprout to search for
errors, which led to uncovering the following:

27−09−2018 1 2 : 4 9 : 5 4 UTC Error hssconnection .cpp : 1 3 1 : Failed
to get Authentication Vector for 6505550350@example .com

The timestamp of the message is compliant with the
occurrence of the timeout; moreover, the message con-
tains one of the above-mentioned telephone accounts
6505550350@example.com. Differently from bono, the
analysis of sprout is more fruitful; however, still we found
no clear indication on the cause of the Failed to get
Authentication Vector statement. Again, the practi-
tioner is forced to even more in-depth thinking to progress
the analysis. In this respect, it can be noted that the message
above is recorded by the source file hssconnection.cpp.
We went through the system’s documentation and inspected
the source code to discover that the hssconnection component

1 INFO [StorageServiceShutdownHook ] 2018−09−27 1 2 : 4 9 : 5 3 , 6 7 3
2 Gossiper .java : 1454 − Announcing shutdown
3 [ . . . ]
4 INFO [ACCEPT−/172 .18 .0 .4 ] 2018−09−27 1 2 : 4 9 : 5 5 , 6 8 7
5 MessagingService .java : 1020 − MessagingService has
6 terminated the accept ( ) thread
7 INFO [main ] 2018−09−27 1 2 : 4 9 : 5 7 , 3 8 6 CassandraDaemon .java :
8 155 − Hostname : 5a4e42449b0c
9 INFO [main ] 2018−09−27 1 2 : 4 9 : 5 7 , 4 2 3

10 YamlConfigurationLoader .java : 9 2 − Loading settings from
11 file :/etc/cassandra/
12 [ . . . ]
13 INFO [Thread−2] 2018−09−27 1 2 : 5 0 : 1 3 , 1 2 4
14 ThriftServer .java : 1 3 6 − Listening for thrift clients . . .

Fig. 2: Snippet from the log of cassandra.

of sprout is in charge of interacting with a further microser-
vice of Clearwater called homestead. It is worth noting that
this step would had been not so straight in lack of accurate
documentation or the source code.

We thus analyzed the log from homestead, which pointed
out the following error message:

27−09−2018 1 2 : 4 9 : 5 4 UTC Error cassandra_store .cpp : 5 4 1 :
Cassandra request failed : rc=3 , Exception : socket open ( )
error : Connection refused [ 1 ]

that provides a final indication of the error, i.e., a
Connection refused by cassandra, which is used to store
authentication credentials and profile information in Clear-
water. An extract of the log from cassandra shown in Fig. 2,
confirms that the microservice has been unavailable in close
time proximity to the timeout experienced by the client.

Due to space limitations, the work done in investigating
the 502 responses obtained upon the deletion of the tele-
phone accounts is presented more briefly. Again, we hypoth-
esize a set of candidate microservices for deeper inspection
based on the system’s architecture, i.e., ellis, homer and
homestead-prov. While homer contains no error messages, ellis
reports several anomalies relating to the telephone accounts.
Examples of the most noticeable are shown hereinafter:

27−09−2018 1 2 : 4 9 : 5 4 . 6 1 8 UTC WARNING utils .py : 5 3 : Non−OK HTTP
response . HTTPResponse (code= 5 0 0 , . . . effective_url= ’http ://
homestead−prov :8889/public/sip%3A6505550359%40example .com/
error=HTTPError ( ’HTTP 5 0 0 : Internal Server Error ’ , ) )
27−09−2018 1 2 : 5 0 : 1 4 . 6 4 3 UTC WARNING utils .py : 5 3 : Non−OK HTTP
response . HTTPResponse (code= 5 9 9 , . . . effective_url= ’http ://
homestead−prov :8889/public/sip%3A6505550350%40example .com/
error=HTTPError ( ’HTTP 5 9 9 : Timeout ’ , ) )

where the accounts sip:6505550359@example.com and
sip:6505550350@example.com experience a 500 (Inter-
nal Server Error) and a 599 (Timeout) form homestead-prov.
A closer look into homestead-prov points out further issues
in interacting with cassandra, which further confirms the
finding of the investigation above.

4 RESEARCH STATEMENT AND GOALS

4.1 Discussion and statement

Traversing logs is not an easy task. It underlies substantial
cognitive work by humans in guessing the most reasonable
logs to scrutinize at first, hypothesizing step-by-step foren-
sics, finding pivots (e.g., timestamps, keywords and values)
to pinpoint and correlate relevant messages, and connecting
the dots for obtaining the big picture. Overall, this process
demands for fusing knowledge at different levels.
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Fig. 3: A fictitious microservice system.

We observe that it is hard to infer the context of a service
invocation from logs. For example, by context we mean
the invoked service and source-destination of the invoca-
tion. The context provides valuable hints on where to find
problems’ symptoms. The manual inspection in Section 3
encompassed 7 out of 15 log files available in our Clearwater
setup; however –after having manually checked all the logs–
we noticed that only 5 out of the 15 logs reported useful
information pertaining the errors. Only the a-priori knowl-
edge of the system and interactions among microservices
prevented us from digging into many useless logs. It is im-
portant to note that the knowledge of the system’s internals
might not be enough for efficiently traversing the logs. For
example, at some point in the motivating example we were
able to progress the analysis only by making hypothesis on
the source code file. Overall, these issues are exacerbated in
microservices systems.

Our research goal is to support practitioners in deal-
ing with event logs and their analysis in the context of
microservices systems. We present a black box approach to
this goal, based on passive tracing of the request-response
protocol between microservices. To this end, we model a
system as a set of nodes and edges, where nodes denote
microservices and edges represent single-hop architectural
connections between microservices. Fig. 3 shows a fictitious
three-tier microservice system, where API Gateway and Fron-
tend provide anchor points for various clients (e.g., browsers
or mobile devices). A potential execution path triggered
by a service required by a client is superimposed as thick
arrows: we aim to collect a trace for such paths, in order to
accompany traditional logs.

The availability of a supplementary tracing mechanism
can significantly increase the usefulness of logs and the
efficiency of both expert and modestly-skilled practitioners
in traversing the logs. We will demonstrate that traces
gathered at negligible overhead and by means of a tech-
nique that embeds no knowledge of the application design
allow making useful attributions on microservices requiring
deeper inspection in troubleshooting.

4.2 Requirements

We aim to avoid the need to deploy a specific tracing/log-
ging infrastructure; more important, our approach does not
require any direct support from the microservices level. In
consequence, vendors are not expected to spend efforts in
supporting a certain methodology. We treat microservices

as black boxes in order to pursue a ready-to-use implementa-
tion. Microservices systems are very flexible and dynamic;
as such, a tracing technique should be responsive to changes
of the computing environment by providing the following
capabilities:

• uncover new services as they become available, i.e.,
tracing interactions from newly-added microservices
with no human intervention;

• application-transparency, i.e., tracing should progress
without any instrumentation of the source code of
the microservices;

• zero configuration (zeroconf), i.e., tracing should not
rely on heavy configurations, , e.g., the list of ser-
vices under-monitoring or their physical location,
and should not incorporate the knowledge of the
application design.

Towards these requirements, passive tracing –that re-
quires no microservices modifications– is aimed to make our
approach generally applicable; in fact, a tool that requires
architecture-specific knowledge, or microservices modifica-
tions, is much less likely to be used.

The requirements above define what makes our ap-
proach potentially applicable to a wide range of systems.
Another key requirement is to make the approach useful
to practitioners in efficiently traversing the logs. Based on
our field experience in log analysis, we list some of the
context data that a tracing technique should collect for
supporting troubleshooting. For example, there should be
a clear indication of invoked services, accompanied by the
methods used for the invocations; moreover, the trace should
account for source and destination IP addresses/ports, which
allow to pinpoint the nodes hosting microservices, and to
discriminate among microservices hosted by the same node
or replicas of the same service. Such an information allows
practitioners to deal with limited knowledge of the system
behavior and deployment. Moreover, the trace should sup-
port practitioners by providing evidence about problems
occurred in the target system. This is achieved by collecting
response codes and completion time of service requests, to
allow faster diagnosis and to narrow the scope of the log
analysis.

4.3 Non-goals of our research
We point out some non-goals of our research. The approach
proposed in this paper:

• Is not an error detector. We make inferences based on
the request-response protocol. Although data collected
by our trace –e.g., HTTP response codes, server
timeouts and service completion times– cover many
error types that might occur in practice, we are not
proposing a one-fits-all error detector.

• Does not aim to measure microservices’ performance. Our
trace includes an approximation of the time taken
by invocations to complete. Although –under some
assumptions- this information is reasonably accurate,
we can pinpoint abnormal services durations out-
right, rather than providing precise measurements.

• Is not meant to replace traditional event logs. Log
messages are necessary to debug runtime prob-
lems. However, as shown by the motivating example
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above, troubleshooting is hard and underlies sub-
stantial cognitive work by humans: our goal is to
make it easier and faster, not to automate it.

• Is not a log management tool. There are plenty of tools
for managing and collecting logs; thus, this paper
is not the proposal for one more tool. Rather, we
generate a lightweight execution trace that accom-
panies microservices logs. The trace is a sequence of
structured records, which makes it straightforward
to fit into up-to-date log management frameworks,
such as we did in this study.

5 PROPOSED APPROACH

We present the design space that has been set for instantiat-
ing our approach, the format of the trace and the monitoring
algorithms for inferring high-level insights on microservices
from network packets.

5.1 Design space
The REpresentational State Transfer (REST)ful style is the
most used for APIs development according to inferences
that can be made with the data available at Programmable
Web [39].The style is centered on the concept of resource on
which create, read, update and delete operations (also known
as CRUD operations) can be performed; network-accessible
resources are addressed by means of Uniform Resource
Locators (URL). In spite of the long-standing debate on the
maturity of REST over SOAP for enterprises, as early as 2010
REST accounted for around 75% in terms of distribution of
API protocols and styles [40]. Consequently, we focus here
on REST due to its wide adoption over other styles for
the communication, such as asynchronous communication
mechanisms based on queues and topics.

The REST architectural style is very often implemented
via HTTP. The different types of HTTP requests, i.e., POST,
GET, PUT and DELETE, perfectly match CRUD operations.
Example are shown in the following:
GET /test/users/1 (read user 1)
GET /test/users (read all users )
POST /test/users/2 (create user 2)
PUT /test/users/3 (update user 3)
DELETE /test/users/4 (delete user 4)

where a test application manages the resource user and
allows consumers to create, update, read and delete users
data, such as explained for each URL.

Microservices communicate with other microservices
and client applications through HTTP requests-responses
of above types, which we monitor by passively tracing the
network packets3. Passive tracing, i.e., the interception of
packets passing through a network, requires no changes to
the target software; as such, it is application-transparent.

A network packet requires some processing to be useful
for inferring high-level information on microservices, such
as described in Section 5.3; moreover, our initial target are
LAN-based systems: in other cases, packet sniffing can be
done at each participant host and traces are merged later
on. In this paper we do not focus on these technical aspects
because they do not pose novel challenges and have been
addressed by previous work, such as [31], [41].

3. At this stage of our work we are not addressing HTTP over SSL.

Fig. 4: MetroFunnel’s main loop.

5.2 Format of the trace
A trace is a sequence of records that account for the outcome
of microservices’ invocations, such as timeout expirations,
response codes and completion times. The format of the
record is:

Timestamp , Method , URL , Src_IP , Src_Port , Dest_IP ,
Dest_Port , Response_Code , Completion_Time , Info

Fields are briefly defined in the following, while Section 5.3
describes the algorithms that generate the records during
the progression of the sniffing.

Each record is marked with the Timestamp, i.e., the time
of the creation of the record, which is followed by Method
(e.g., GET and PUT), and URL of the request. According
to the requirements drafted in Section 4.2, we accompany
the record with source and destination IPs-ports of the mi-
croservices involved in the interaction, i.e., Src IP-Src Port
and Dest IP-Dest Port.

The record also contains diagnostic fields that pertain to
the invocation. Response code is the HTTP response code,
while Completion time represents the time –measured in
milliseconds (ms)– between the service request and the
corresponding response. Finally, Info is a label about the
termination of the invocation; it assumes one of three values:

• Request-Response: both the HTTP request and re-
sponse packets are captured for a given invocation
within a reasonable timeframe. It is noteworthy that a
record marked as Request-Response does not necessar-
ily indicate that the invocation was correct, because
–although the response is received– Response code
might be an erroneous HTTP code.

• Request-TIMEOUT: an HTTP request packet is cap-
tured at network level; however, no response is ob-
served for that request within a reasonable timeframe.

• NO REQUEST-Response: an HTTP response packet is
captured at network level much more later than the
corresponding request.

The following record shows a GET request for the resource
/test/users/1, with source 172.18.0.10, 57170 and
destination 172.18.0.6, 8888:
27−09−2018 0 9 : 4 2 : 1 5 UTC , GET , /test/users/1 , 1 7 2 . 1 8 . 0 . 1 0 ,
57170 , 1 7 2 . 1 8 . 0 . 6 , 8888 , 200 , 2 . 3 1 , Request−Response

both the request and response are captured for the in-
vocation (i.e., Request-Response); moreover, the invocation
is correctly accomplished with response code 200 within
2.31ms.

5.3 Tracing algorithms
We describe the algorithms that allow inferring a high-level
trace from network packets. Fig. 4 provides an overview of
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the tracing approach, which consists of two threads: capture
packets and timeout checker.

Capture packets continuously accepts new incoming
network packets. For each packet, the algorithm run by
capture packets checks whether it contains an HTTP header,
beforehand: if not, the packet is discarded. In case of an
HTTP packet, the algorithm proceeds by extracting low-
level fields, such as source-destination IP addresses (IP
header) and source-destination TCP ports (TCP header). The
HTTP header is also scanned to verify if the packet denotes
a request or response. This is done by accessing the first bytes
of the header: if it starts with one of the protocol meth-
ods, it means it is a request (e.g., GET /test/users/1
HTTP/1.1 or POST /test/users/2 HTTP/1.1); other-
wise, if it starts with “HTTP” it means it is a response (a
typical response header is: HTTP/1.1 200 OK, where 1.1
is the version of the protocol, 200 is the response code and
OK the corresponding message) [42].

In case of a request, the algorithm appends an entry to
an internal list –depicted in Fig. 4– that contains the pending
requests, i.e, requests to be decisioned by our algorithms. The
entry in the list is marked with the current time, which
denotes the arrival time of the request. Please note that each
pending request in the list is eventually decisioned by our
algorithms to be (i) expired or (ii) terminated (either correctly
or not) as explained hereinafter: once a decision is taken, a
new record is appended to the trace.

5.3.1 Expiration of a request
The timeout checker thread runs the following algorithm.
It periodically scans the list of pending requests: at each scan,
for each entry that is stored in the list, the thread computes
the difference between (i) current time and (ii) the time the
entry was inserted in the list (i.e., the arrival time mentioned
above). If the difference is higher than a timeout4 the request
is decisioned to be expired and it is deleted from the list.
Upon the deletion, the algorithm generates a record that is
appended to the trace, such as the following example:

26−09−2018 1 0 : 3 2 : 5 6 UTC , GET , /test/users/1 , 1 7 2 . 1 8 . 0 . 1 0 ,
57170 , 1 7 2 . 1 8 . 0 . 6 , 8888 , 999 , 6 0 0 1 0 . 6 0 , Request−TIMEOUT

where the Info field is Request-TIMEOUT; moreover, the
HTTP response code is assigned a fictitious 999 value to
denote that the request is expired.

5.3.2 Termination of a request
Upon the receipt of a response, the algorithm executed by
capture packets accesses the list and attempts to match
the corresponding request, if any, based on the IP address
and TCP port pair. Matching is based on the following
assumptions: for the HTTP 1.0 standard each request cor-
responds to a response before a new request is initiated;
starting from HTTP 1.1 –although it is allowed to pipeline
multiple requests– the order of responses is the same as
the requests. If the match is fruitful, the request is deleted
from the list and a new record is appended to the trace. For
example, if the response is correct the record will resemble
the following, with response code 200 (correct service):

4. The timeout is an input parameter of the algorithm, and it set by
the user at the boot of the capture.

26−09−2018 1 5 : 4 2 : 1 6 UTC , GET , /test/users/1 , 1 7 2 . 1 8 . 0 . 1 0 ,
57170 , 1 7 2 . 1 8 . 0 . 6 , 8888 , 200 , 5 1 . 4 7 , Request−Response

A response might account for an incorrect service, which
means that it is accompanied by an erroneous HTTP code.
As such, the record in the trace will appear as the following
example (error code 502):

26−09−2018 1 6 : 1 3 : 2 6 UTC , GET , /test/users/1 , 7 2 . 1 8 . 0 . 1 0 ,
57170 , 1 7 2 . 1 8 . 0 . 6 , 8888 , 502 , 7 5 6 4 . 3 3 , Request−Response

It is important to note that the matching step might be oc-
casionally unfruitful, i.e., although it is captured a response,
there is no corresponding request in the list. This case is
observed when a request is declared expired by the timeout
checker (and thus deleted from the list) but its corresponding
response shows up later than the timeout. In this case,
the algorithm generates a record marked as NO REQUEST-
Response, such as the following:

NULL , NULL , 1 2 7 . 0 . 0 . 1 , 46594 , 1 2 7 . 0 . 0 . 1 ,
8080 , 502 , NULL , NO_REQUEST−Response

which is usually preceded by a Request-TIMEOUT record in
the trace, such as the one shown in Section 5.3.1; if needed,
reconciliation of NO REQUEST-Responses can be done when
post-processing the trace.

Whenever either (i) a response is received (with a correct
or erroneous response code) and the matching is fruitful,
or (ii) the timeout is expired, we compute the completion
time of the invocation as the difference between the current
time and the arrival time of the related request (the arrival
time is taken at the insertion of a request in the “pending
list” as stated above). The completion time is included in
the records of the trace; otherwise, if the matching step is
unfruitful the completion time is set to NULL.

It should be noted that in the first case –i.e., the response
is received and the match is fruitful– the completion time
provides an approximation of the execution time of the
service invocation. While this information is useful under
certain hypothesis (e.g., negligible transmission delay or
network congestion, such as within LAN-based environ-
ments) to pinpoint abnormal services durations, our aim is
not to develop a performance evaluation tool, such as clearly
stated in Section 4.3.

5.4 Implementation
We describe an implementation of our tracing approach
called MetroFunnel, which is a multithreaded Java program
aimed at capturing the network packets and generating the
trace. Due to space limitations, we briefly introduce the key
components and main capabilities of MetroFunnel, which is
available at the GitHub link provided in Sect. 1.

The PacketSniffer component is responsible for captur-
ing, filtering, and inferring HTTP messages’ fields. The sniffer
operates in promiscuous mode. We reviewed a number of
Java sniffing frameworks, such as Pcap4J, jpcap and jNetPcap,
which wrap the libpcap/Winpcap library. We use jNetPcap
[43], which is based on Java Native Interface rather than
Java Native Access, such as the other solutions, for better
performability. The LogManagement package is responsible
for writing the trace to a file; moreover, it implements
the tracing algorithms, including request-response matching
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and timeout checking. The 1.4r1425 version for 64-bit Linux
systems and JDK Java SE 8u151 have been used for jNetPcap
and Java, respectively.

As mentioned above, MetroFunnel is ready-to-use and
requires no system-specific configuration. At the boot of
the program, the user is simply required to customize the
capture by setting the network interface(s) and the expira-
tion timeout. It should be noted that despite the expiration
timeout is an application-dependent parameter, its value
can be easily obtained through MetroFunnel itself. In fact,
MetroFunnel allows obtaining an approximation of the time
taken by service invocations to complete, which can be used
to set the timeout parameter. MetroFunnel is available both
as standalone Java application and as Docker image.

6 CASE STUDIES

We test MetroFunnel in the context of two case studies, i.e.,
the Clearwater IMS setup consisting of Docker microser-
vices and the Kubernetes setup running tens of replicas of
a webserver microservice, presented in the following.

6.1 Clearwater IMS
Clearwater is an open-source IMS core. IMS is the standard
architecture adopted by large telcos for IP-based voice, video
and messaging services. We use a version of Clearwater
consisting of 11 microservices distributed in as many Docker
containers. We describe some of the microservices closely
referenced by this paper, while a comprehensive architec-
tural view of Clearwater can be found at [12]:

• bono is a Session Initiation Protocol (SIP) edge proxy.
It provides a WebRTC interface for handling multi-
media sessions. It represents the anchor point of the
clients’ connection to Clearwater;

• sprout is the SIP router of Clearwater, which handles
client authentication;

• cassandra is the database to store authentication
credentials and profile information;

• homestead is a C++ RESTful CRUD server on the top
of cassandra and provides an interface for retrieving
credentials and user profile information;

• homestead-prov exposes an interface to allow provi-
sioning subscriber data in cassandra;

• homer is a standard XDMS (XML Document Man-
agement Server) used to store MMTEL (MultiMedia
TELephony) service settings documents;

• ellis is a provisioning portal for self sign-up, line
management and control of MMTEL service settings.

Above microservices expose HTTP-based REST interfaces.
We use Clearwater-live-test [44] to generate a load for exer-
cising Clearwater. Clearwater-live-test is a well-consolidated
suite of Ruby programs, meant to check that a deployment is
working correctly and used by the Project Clearwater team
to validate that newly added functions work end-to-end.
The tests that we used for our experiments share a similar
pattern: (i) test setup, i.e., registering a certain number of tele-
phone accounts; (ii) actual sequence of service invocations
to Clearwater (number/type of invocations vary across the
tests, such as call and waiting call between endpoints, call
cancelation); (iii) test finalization, which deletes the telephone

Fig. 5: Clearwater experimental setup.

accounts. The test suite emulates realistic usage scenarios,
including corner cases such as: call rejected by an end-point,
call to an unreachable user, call with no response, etc.

Clearwater microservices are hosted by an Ubuntu
16.04.03 LTS OS, Intel i3-2100 3.1GHz (with 2 cores)
server. Each microservice is charactered by a unique IP
address; microservices are connected through the docker
LAN 172.18.0.* shown in Fig. 5. The docker LAN is
bridged with the physical LAN 10.0.30.* through the
eth0 interface of the server: external clients –hosted by
a different node– run instances of Clearwater-live-test and
are allowed to reach the microservices. MetroFunnel sniffs
the packets traversing the network 172.18.0.*, again, the
LAN hosting the microservices.

Clearwater’s builtin logs (BL) and the trace by Metro-
Funnel (MF) are stored in a disk partition at the server side.
We use Filebeat [45] to (i) read, on-line, new lines of log/trace
from the files as they are generated during system opera-
tions, and (ii) forward the lines to a Logstash-Elasticsearch-
Kibana (ELK) stack [19] –shown in Fig. 5– for archiving the
logs at a central location. The stack encompasses Logstash
for parsing, Elasticsearch for indexing and saving the logs
and Kibana for visualization purposes.

Although many of the considerations made in this paper
go beyond the availability of a specific log management
infrastructure, we emulate a typical setup in distributed
systems management based on the Filebeat-ELK infras-
tructure that encompasses a centralized log server. Please
note that ELK is used in other container-based monitoring
solutions, such as [17]; however, any other log management
framework would have fit the aim of the assessment.

6.2 Kubernetes orchestrator
Kubernetes (aka k8s) [46] is a portable, extensible and open-
source orchestrator for managing containerized workloads
and services, which facilitates both declarative configuration
and automation. Kubernetes provides a framework to run
distributed systems resiliently, allowing the management
of scaling requirements, failover, deployment patterns. Ap-
plications are run inside pods, i.e., the basic execution unit
of Kubernetes, which can be composed by one or multiple
containers. Pods can be easily replicated through the usage
of ReplicationControllers, which make sure that a pod or
a homogeneous set of pods is always up and available.
Applications running on a set of pods are usually deployed
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Fig. 6: Kubernetes experimental setup.

as services in Kubernetes, which allows masking the set of
pods to other applications; each service usually receives a
virtual IP that can be used by clients. Services are expected
to create a proxy on the bridge interface of the node where
they are running; the proxy - hereinafter named load balancer
– balances the traffic towards the service.

We use a lightweight and local kubernetes cluster, named
Microk8s [47]. MicroK8s is a CNCF (Cloud Native Comput-
ing Foundation) certified Kubernetes deployment that can
run locally on a single workstation. We deploy a test suite
[48] on our setup, made of three types of microservices:

• loadbot, a client generating requests to a service,
based on the Vegeta HTTP load testing tool [49];

• webserver, a microservice that responds to loadbots.
It is deployed as a service in Kubernetes, along with
a replication controller; the service masks a number
of replicas running in different pods;

• aggregator, the orchestrator of the test suite; it scales
up and down the number of replicas/loadbots and
collects statistics about the test suite execution, such
as request success rate and mean latency.

The test suite can be configured to run different load scenar-
ios, by varying both the number of webserver replicas and
loadbots. The requests generated by loadbots are received by
the webserver; then, the load balancer forwards each request to
one of the replicas. It should be noted that the testbed allows
to stress different aspects of Kubernetes, i.e., applications
deployed as services, replication controllers, load balancer,
etc., under different load conditions. More important, it
allows to test MetroFunnel at scale, in scenarios with several
microservices under load balancing and replication.

Fig. 6 depicts the experimental setup of the Kuber-
netes case study. The Kubernates cluster has been deployed
on a Xubuntu 16.04.03 LTS OS, 2 x Intel Xeon E5-2630L
v3 2.9GHz (with overall 16 cores), 16 Gb RAM server.
Each microservice is reachable through a unique IP ad-
dress, e.g. 10.1.1.*, on the cbr0 network interface, i.e.,
10.1.1.1. The webserver has a Virtual IP address, i.e.,
10.152.183.153. The cbr0 LAN is bridged with the phys-
ical LAN 10.0.30.* through the eth0 interface of the
server, which is used to reach the node hosting the ELK
stack. MetroFunnel sniffs the packets traversing the network
10.1.1.*, i.e., the LAN hosting the microservices.

ID Record
1 27−09−2018 1 2 : 4 9 : 5 5 UTC ,GET ,/impi/6505550350%40example .com

/av?impu=sip3A6505550350%40example .com&server−name=sip%3A
sprout%3A5054%3Btransport%3Dtcp , 1 7 2 . 1 8 . 0 . 1 0 , 5 7 1 7 0 ,
1 7 2 . 1 8 . 0 . 6 , 8 8 8 8 , 5 0 4 , 0 . 6 8 ,Request−Response

2 27−09−2018 1 2 : 4 9 : 5 5 UTC ,GET ,/public/sip%3A6505550359%40
example .com/associated_private_ids , 1 7 2 . 1 8 . 0 . 1 2 , 3 4 6 1 0 ,
1 7 2 . 1 8 . 0 . 7 , 8 8 8 9 , 5 0 0 , 0 . 7 9 ,Request−Response

3 27−09−2018 1 2 : 4 9 : 5 5 UTC ,DELETE ,/accounts/live .tests@
example .com/numbers/sip%3A6505550359%40example .com ,
1 0 . 0 . 3 0 . 8 8 , 5 8 9 8 0 , 1 7 2 . 1 8 . 0 . 1 2 , 8 0 , 5 0 2 , 2 . 4 9 ,Request−Response

4 27−09−2018 1 2 : 4 9 : 5 7 UTC ,GET ,/public/sip%3A6505550350%40
example .com/associated_private_ids , 1 7 2 . 1 8 . 0 . 1 2 , 3 4 6 1 2 ,
1 7 2 . 1 8 . 0 . 7 , 8 8 8 9 , 9 9 9 , 2 0 3 5 . 9 1 ,Request−TIMEOUT

5 27−09−2018 1 2 : 4 9 : 5 7 UTC ,DELETE ,/accounts/live .tests@
example .com/numbers/sip%3A6505550350%40example .com ,
1 0 . 0 . 3 0 . 8 8 , 5 8 9 8 2 , 1 7 2 . 1 8 . 0 . 1 2 , 8 0 , 9 9 9 , 2 0 3 7 . 4 3 ,
Request−TIMEOUT

Fig. 7: Records from the motivating example.

Both builtin logs (BL) generated by the webserver replicas
running on the top of the Kubernetes cluster and the trace
by MetroFunnel (MF) are stored in a disk partition on the
cluster. As in the Clearwater setup, we use Filebeat to collect
log lines and forward them to the ELK stack hosted on
the 10.0.30.91 machine with the aim to archive logs at
a central location.

7 INFORMED DECISIONS WITH METROFUNNEL

Assessment focuses on two aspects: (i) given that our ap-
proach can reveal anomalies that reflect into the request-
response protocol, this information is useful to practitioners
for traversing the logs of microservices; (ii) the approach
implementation does not impact performance significantly.

The first aspect is an assertion about what a human
expert would find it useful in carrying out a cognitive task:
while we stem from our experience in log analysis and
provide practical examples of log decisions informed by
MetroFunnel in the following sections, its validity is left to
the reader’s intuition because it is hard to find an objective
method to quantify it. Regarding the second point, we use
traditional metrics in computer systems evaluation, such as
performance and log size overhead, which will be evaluated in
Section 8.

7.1 Reflections on the motivating example

We start by discussing how MetroFunnel could have helped
with the motivating example presented in Section 3, which
refers to our Clearwater setup. As a reminder, the example
encompassed a timeout of the server side (504 response
code) and two 502 errors upon attempting the deletion of
telephone accounts. Fig. 7 shows some of the records gener-
ated by MetroFunnel during the same error scenario. Record-
ID 1 relates to the timeout, where a request to 172.18.0.6
(i.e., the IP address of the homestead) terminates with a 504
response. This record suggests practitioners that homestead
is a reasonable candidate for deeper inspection. Please note
that in Section 3 we ended up to the log of homestead after
(i) several fruitful and unfruitful log investigations, which
involved client, bono and sprout, and (ii) strong hypothesis
on the system architecture and source code. On the contrary,
MetroFunnel provides ready-to-use evidence –i.e., requiring
no peculiar expertise– to start the analysis.
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ID Record
1 28−09−2018 1 0 : 4 2 : 2 4 UTC , PUT ,/private/6505550742%40example

.com 1 7 2 . 1 8 . 0 . 1 2 , 4 8 2 6 0 , 1 7 2 . 1 8 . 0 . 7 , 8 8 8 9 , 5 0 2 , 0 . 4 3 ,
Request−Response

2 28−09−2018 1 0 : 4 2 : 2 4 UTC GET ,/private/6505550742%40example
.com/associated_implicit_registration_sets 1 7 2 . 1 8 . 0 . 1 2 ,
4 8 2 6 2 , 1 7 2 . 1 8 . 0 . 7 , 8 8 8 9 , 5 0 2 , 0 . 4 4 ,Request−Response

3 28−09−2018 1 0 : 4 2 : 2 5 UTC PUT ,/org .etsi .ngn .simservs/users/
sip%3A6505550742%40example .com/simservs .xml , 1 7 2 . 1 8 . 0 . 1 2 ,
3 5 2 5 4 , 1 7 2 . 1 8 . 0 . 8 , 7 8 8 8 , 2 0 0 , 0 . 2 6 ,Request−Response

4 28−09−2018 1 0 : 4 2 : 2 6 UTC GET ,/public/sip%3A6505550742%
40example .com/associated_private_ids , 1 7 2 . 1 8 . 0 . 1 2 , 4 8 2 6 6 ,
1 7 2 . 1 8 . 0 . 7 , 8 8 8 9 , 5 0 2 , 0 . 2 3 ,Request−Response

Fig. 8: Records generated by MetroFunnel during the crash.

Client errors in deleting the telephone accounts are re-
ported by MetroFunnel at record-ID 3 and 5, respectively in
Fig. 7. It should be noted that the latter is a timeout error
by MetroFunnel (record-ID 5). This is consistent with the
error notifications that we found in the log of ellis in Section
3, where the accounts sip:6505550359@example.com
and sip:6505550350@example.com had a 500 (Internal
Server Error) and a 599 (Timeout) error, respectively. In both
record-ID 3 and 5, the service destination is 172.18.0.12,
i.e., the ellis microservice; more important, these records are
preceded by record-ID 2 and 4, respectively, which further
point out to errors involving the destination 172.18.0.7,
i.e., the homestead-prov microservice. Again, differently from
the time-consuming work that we did in Section 3, Metro-
Funnel provides a clear picture on the microservices po-
tentially related to errors and, in turn, evidence to drive
informed decisions for forensics.

7.2 Crash of a microservice in Clearwater

This scenario encompasses the crash of the process
homestead-prov –belonging to homonymous microservice
container in our Clearwater setup– during the execution of
the test suite. The following error is displayed by the client:

Account creation failed with HTTP code 502 , body {”status” :
502 , ”message ” : ”Bad Gateway” , ”reason ” : ”Upstream request
failed” , ”detail ” : {”Upstream error ” : ”502” ,”Upstream URL” :
”http ://homestead−prov :8889/private/6505550742%
40example .com”} , ”error” : true}

where it can be found an Upstream request failed
message and response code 502. Fig. 8 shows some of
the records produced by MetroFunnel during the same
setting. It can be noted that for the record-ID 1, 2 and 4 the
response code is 502; moreover, in all these records the in-
teraction is between 172.18.0.12 and 172.18.0.7, i.e.,
ellis and homestead-prov. This information can be leveraged
by practitioners to go straight to potential candidates for
deeper inspection without error-prone reasoning or specific
hypothesis, such as with traditional logs. Although we do
not list all the events from the logs due to space limitations,
the inspection of ellis pointed out to several Non-OK HTTP
response and Bad Gateway error messages upon interacting
with homestead-prov, which thus confirms the usefulness of
the attribution done with MetroFunnel.

7.3 System overload in Clearwater

In establishing the factors used for the assessment con-
ducted in Section 8.1, we observe that –in our setup– Clear-
water becomes unavailable with a load of 15 concurrent

ID Record
1 03−09−2018 1 4 : 3 4 : 2 0 , PUT , /org .etsi .ngn .simservs/users/

sip%3A6505550490%40example .com/simservs .xml , 1 7 2 . 1 8 . 0 . 1 2 ,
52844 , 1 7 2 . 1 8 . 0 . 8 , 7888 , 999 , 9 2 1 0 . 0 6 , Request−TIMEOUT

2 03−09−2018 1 4 : 3 4 : 2 0 , DELETE , /private/6505550086%40
example .com , 1 7 2 . 1 8 . 0 . 1 2 , 38582 , 1 7 2 . 1 8 . 0 . 7 , 8889 , 999 ,
9 2 0 9 . 5 4 , Request−TIMEOUT

3 03−09−2018 1 4 : 3 4 : 2 1 , DELETE , /private/6505550036%
40example .com , 1 7 2 . 1 8 . 0 . 1 2 , 38586 , 1 7 2 . 1 8 . 0 . 7 , 8889 , 999 ,
9 2 0 9 . 0 6 , Request−TIMEOUT

4 03−09−2018 1 4 : 3 4 : 2 6 UTC , DELETE , /accounts/live .tests@
example .com/numbers/sip%3A6505550664%40example .com ,
1 0 . 0 . 3 0 . 8 8 , 5 0 0 9 4 , 1 7 2 . 1 8 . 0 . 1 2 , 8 0 , 9 9 9 , 8 9 7 1 . 8 7 ,Request−TIMEOUT

5 03−09−2018 1 4 : 3 4 : 2 8 , POST , /accounts/live .tests@example
.com/numbers/ , 1 0 . 0 . 3 0 . 8 8 , 33282 , 1 7 2 . 1 8 . 0 . 1 2 , 80 , 999 ,
8 1 9 2 . 9 8 , Request−TIMEOUT

Fig. 9: Records from the Clearwater overload scenario.

Fig. 10: Completion time of one example service by ellis.

clients. This failure is reported by the clients with several
error lines, such as:
RuntimeError thrown : Account creation failed with HTTP code
504 , body <head><title>504 Gateway Time−out</title></head>

This is a spontaneous failure, which can be reproduced sys-
tematically with our testbed. Different from the previous
case, the error notification by the clients says almost nothing
about the location of the failure, which makes it hard to
come up with effective hypothesizes for troubleshooting.

During the overload, MetroFunnel produces several
timeout expiration records, such as the ones shown in Fig.
9. Timeouts are the outcome of a progressive performance
depletion that affect Clearwater’s services. For example, Fig.
10 shows the completion time (y-axis, log scale) –collected
by MetroFunnel– of the service POST /accounts/live.
tests@example.com/numbers/ offered by ellis since the
boot of the system (x-axis).

Records in Fig. 9 provide two clear indications: (i) some
errors pertain the interactions between 10.0.30.88 and
172.18.0.12, i.e., the client machine and ellis, such as
record-ID 4 and 5; (ii) these records are preceded by time-
out notices pertaining the interactions between ellis and
either homer (172.18.0.8 - record-ID 1) or homestead-prov
(172.18.0.7 - record-ID 2 and record-ID 3).

We thus looked at ellis, homer and homestead-prov as
candidates for deeper inspection. For example, by following
the indication by MetroFunnel, we found out that ellis’s log
contains several Non-OK HTTP response messages, such as:
03−09−2018 1 4 : 3 4 : 2 0 , WARNING utils .py : 5 3 : Non−OK HTTP
response . HTTPResponse (code=599 ,request_time=30.03533101
081848 ,buffer=None ,_body=None ,time_info={} , request=
<tornado .httpclient .HTTPRequest object at 0x7fbb69be0710>,
effective_url= ’http ://homesteadprov :8889/public/
sip3A650555099640example .com/associated_private_ids ’ ,
headers={} ,error=HTTPError ( ’HTTP 5 9 9 : Timeout ’ , ) )

where it can be noted that the HTTP response code received
from homestead-prov is 599, typically used to notify a network
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connection timeout. Again, MetroFunnel allowed pointing
to a relevant log for the analysis without the need for
formulating elaborated hypothesis.

7.4 System overload in Kubernetes

During the setup of the test suite used as load generator
for our Kubernetes case study, we notice that the system ex-
hibits an overload –in our deployment– when the test suite
is configured with 50 loadbots and 5 webserver replicas. The
overload can be noted by looking at the statistics reported
by the aggregator (the test suite orchestrator):

Success : 93.97% Latency (mean ) : 520 .20ms

These results highlight that the webserver running on our Ku-
bernetes deployment has not been able to manage all the re-
quests from the loadbots, with about 6.03% of failed requests.
The analysis of the logs generated by the webserver replicas
did not allow pinpointing the cause of such behavior. The
replicas only report the received requests and the responses,
as shown in Fig. 11, which do not allow to spot the loss in
the request success rate. On the other hand, MetroFunnel
reported several timeout expiration records, such as the ones
in Fig. 12. As in the Clearwater overload scenario, time-
out records indicate that there is a performance depletion
affecting the webserver; however, they also indicate that a
number of requests did not receive any response, motivating
the loss in the request success rate. It is important to note
that MetroFunnel reports requests/responses from both the
loadbots to the webserver and from the load balancer to the
webserver replicas. A deeper inspection of the MetroFunnel
records allows understanding that the timeouts did not
affect only the webserver replicas, but also the load balancer.
For instance, from record-ID 1 and 2 in Fig. 12, it can be
seen that the timeout of the request from the load balancer
(10.1.1.1)5 to the webserver replica (10.1.1.123) led to
the timeout of the request from the loadbots (10.1.1.143)
to the webserver (10.152.183.153). However, some of
the requests received by the load balancer do not reflect
into requests to replicas, as it can be seen in record-ID 3,
4 and 5, where only timeouts from loadbots requests are
reported. Differently from record-ID 1, record-IDs 3-5 have
no counterparts at the replicas’ side, highlighting the loss
of requests by the load balancer, which contributes to the
6.03% of failed requests. It is important to note that this is a
valuable piece of information for practitioners, which would
have not been discovered without the trace of MetroFunnel,
since: (i) no logs are generated by the load balancer, and (ii)
webserver replicas do not log anything about requests lost by
the load balancer.

To mitigate the overload in our setting, we scale up the
number of webserver replicas to 50, thus achieving a success
rate of 99.39%. In this experiment we run MetroFunnel at
scale by recording the communication involving around
100 Kubernetes pods/containers, with load balancing and
replication capabilities.

5. Please note that the load balancer has the same IP address of the
cbr0 interface (see Fig. 6) since it is a service proxy deployed on that
interface, as described in Section 6.

2019/06/27 1 2 : 4 5 : 5 6 Request :
2019/06/27 1 2 : 4 5 : 5 6 GET / HTTP/1.1
Host : 1 0 . 1 5 2 . 1 8 3 . 2 5 3
Accept−Encoding : gzip
User−Agent : Go−http−client/1.1

2019/06/27 1 2 : 4 5 : 5 6 Response :
2019/06/27 1 2 : 4 5 : 5 6 {

”name” : ”simple−webserver” ,
”date” : ”27 Jun 19 12 :45 UTC” ,
”response” : ”OK”}

Fig. 11: Webserver logs from the K8s overload scenario.

ID Record
1 27−06−2019 1 2 : 4 5 : 0 9 UTC ,GET , / , 1 0 . 1 . 1 . 1 4 3 , 5 5 3 6 5 ,

1 0 . 1 5 2 . 1 8 3 . 1 5 3 , 8 0 , 9 9 9 , 2 0 0 0 . 2 3 9 8 9 6 , 2 6 , 3 6 ,Request − TIMEOUT
2 27−06−2019 1 2 : 4 5 : 0 9 UTC ,GET , / , 1 0 . 1 . 1 . 1 , 6 0 8 9 2 ,

1 0 . 1 . 1 . 1 2 3 , 8 0 , 9 9 9 , 2 0 0 0 . 5 5 9 0 9 5 , 2 7 , 3 4 ,Request − TIMEOUT
. . .

3 27−06−2019 1 2 : 4 7 : 0 6 UTC ,GET , / , 1 0 . 1 . 1 . 1 4 0 , 4 8 8 1 3 ,
1 0 . 1 5 2 . 1 8 3 . 1 5 3 , 8 0 , 9 9 9 , 2 1 0 3 . 5 3 4 8 8 3 , 8 6 , 2 0 ,Request − TIMEOUT

4 27−06−2019 1 2 : 4 7 : 0 6 UTC ,GET , / , 1 0 . 1 . 1 . 1 7 2 , 4 8 8 2 3 ,
1 0 . 1 5 2 . 1 8 3 . 1 5 3 , 8 0 , 9 9 9 , 2 0 9 6 . 5 2 1 8 4 1 , 9 2 , 1 9 ,Request − TIMEOUT

5 27−06−2019 1 2 : 4 7 : 0 6 UTC ,GET , / , 1 0 . 1 . 1 . 1 7 8 , 5 3 9 3 5 ,
1 0 . 1 5 2 . 1 8 3 . 1 5 3 , 8 0 , 9 9 9 , 2 0 9 5 . 1 4 7 7 6 9 , 9 0 , 1 8 ,Request − TIMEOUT

Fig. 12: MetroFunnel records from K8s overload scenario.

8 OVERHEAD ASSESSMENT

In this section we assess the overhead introduced by Metro-
funnel and compare it with the one caused by the collection
of microservices’ builtin logs. We focus on the overhead
observable on the target system in terms of performance
penalty and size of the produced log, which then reflects
on the amount of information to be stored or transmitted
over the network.

8.1 Performance overhead

To measure the performance overhead of MetroFunnel we
setup a rigorous experimental design approach. In particular,
for each case study, we identify a response variable and
controllable factors, and conduct a set of experiments based
on the well-consolidated procedures and recommendations
available in [50]. In the Clearwater assessment, the response
variable is the test suite duration (TSD), i.e., the time
(measured in seconds) taken by the tests within Clearwater-
live-test to complete. TSD summarizes the capability of
our Clearwater setup at handling service requests. In the
Kubernetes study, the response variable is the mean request
latency (MRL), i.e., the mean time between a request and
a response, which is provided by the aggregator of the used
Kubernetes test suite. In both studies, the response variable
is assessed with respect to the following controllable factors:
(i) load (LD), and (ii) type of log (TL).

LD is the number of concurrent clients generating re-
quests to exercise the target system. In the Clearwater
system LD represents the number of clients executing the
Clearwater-live-test independently, while in Kubernetes it
represents the number of loadbots generating requests to-
ward the webserver microservice. The levels of LD –i.e., the
values LD can take according to the experimental design
terminology– are established by conducting a stress test,
which consists in running the system with an increasing
number of clients. We observe that in our setup Clearwater
becomes unavailable as we approach 15 clients. As such,
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TABLE 1: Clearwater performance overhead results.
NL BL MF BL+MF OBL OMF ∆ OBL+MF

avg. test suite duration (s) % % % %
LOW 665.4 677.4 664.8 679.4 1.8 ≈0 -1.8 2.1

MEDIUM 853.2 868.8 881.4 895.9 1.8 3.3 1.5 5.0
HIGH 1,554.5 1,596.7 1,648.2 1,699.1 2.7 6.0 3.3 9.3

we conduct our assessment within 1-12 clients6. Moreover,
as usually done in many empirical assessments, we cate-
gorize LD through a smaller number of actionable classes
-i.e., LOW , MEDIUM and HIGH , denoting 2, 6, and
12 clients, respectively- which can be easily applied and
understood by practitioners [50]. Similarly, we observe that
our Kubernetes setup is overloaded when using around 50
loadbots. Therefore, we conduct our assessment considering
30 as maximum number of loadbots, and use the LOW ,
MEDIUM and HIGH classes to denote the scenarios
encompassing, 1, 3 and 30 loadbots.

The levels assumed by TL vary within {NL, BL, MF ,
BL + MF}, which denote the collection of no log (NL),
builtin logs (BL), i.e., the logs generated by Clearwater
or by the webserver replicas running on Kubernetes, trace
by MetroFunnel (MF ), and collection of both builtin logs
and MetroFunnel’s trace at the same time (BL + MF ). As
mentioned above, logs are handled with Filebeat-ELK; we
start/stop the Filebeat components shown in both Fig. 5 and
Fig. 6 to enabled/disable the transmission of either BL or
MF to the ELK node during the experiments.

In the following, we discuss the experiments done with
the standalone Java console version of MetroFunnel because
there was no statistically significant difference in the perfor-
mance metrics with respect to the Docker version. Please
note that, as shown in both Fig. 5 and Fig. 6, MetroFunnel
and the target system microservices are hosted by the same
machine, otherwise the assessment would had been too
favorable to our proposal. As such, measurements presented
hereinafter represent an upper bound for what it can be
expected in practice because MetroFunnel can be conve-
niently deployed at a dedicated machine. We adopt a full
factorial design with repetitions, which means that we run
experiments for all the combinations in LD × TL.

Clearwater. TABLE 1 reports the average test suite du-
ration (TSD) with LOW , MEDIUM and HIGH load
for NL, BL and MF , as well as the overhead caused by
the type of log. Overhead is computed as follows. Given
a level of LD, let us denote by (i) TSDNL the test suite
duration measured when collecting no log (NL), and (ii)
TSDBL the test suite duration obtained under the collection
of Clearwater’s builtin logs (BL). The percentage overhead
induced by BL is given by: OBL = TSDBL−TSDNL

TSDNL
· 100.

The overhead of MetroFunnel OMF is computed by using
TSDMF (i.e., the test suite duration with the collection of
MetroFunnel’s trace), instead of TSDBL in the overhead
equation. Similar considerations apply to the computation
of the overhead obtained by combining both builtin logs
and MetroFunnel, i.e., OBL+MF , for which TSDBL+MF is
used in the equation.

We observe that the collection of builtin logs induces
an overhead of 2.7% at HIGH load. There is no appreciable
overhead of MetroFunnel at LOW load. Overhead is 6.0%
at HIGH load and MF . The ∆ column of TABLE 1 shows

6. We limit our experiments to 12 concurrent clients in order to avoid
approaching the system’s unavailability.

TABLE 2: Kubernetes performance overhead results.
NL BL MF BL+MF OBL OMF ∆ OBL+MF

avg. request latency (µs) % % % %
LOW 536.2 565.1 560.9 615.5 5.4 4.6 -0.8 14.8
MED. 534.9 622.1 565.0 642.9 16.3 5.6 -10.7 20.2
HIGH 626.2 741.6 677.4 868.3 18.4 8.2 -10.2 38.7

the difference between the overhead of MF and BL. It
can be noted that at the maximum load HIGH , OMF is
around 3.3% more than OBL, which means that –in the
worst case– the overhead of supplementing logs with our
black box execution trace is reasonably negligible. This is
confirmed also by the overhead obtained collecting both
BL and MF , shown in the right most column of TABLE
1, which is quite around the sum of OBL and OMF .

Kubernetes. TABLE 2 reports the MRL, i.e., the mean
request latency, obtained with different combination of LD
and TL in our Kubernetes deployment, along with the
overhead caused by the type of log (which has been com-
puted as in the Clearwater study). It can be noted that in
our Kubernetes setup the collection of MetroFunnel trace
induces an overhead (OMF ) that is lower than the one
caused by the collection of builtin logs (OBL), i.e., the logs
generated by the webserver replicas. While their overhead
is quite comparable with LOW load, i.e., 5.4% and 4.6%
for BL and MF , respectively, the difference becomes more
evident when considering MEDIUM and HIGH load. In
fact, at maximum load OBL is around 10.2% more than
OMF , as shown in the ∆ column of TABLE 2. This is also
confirmed by the overhead obtained by collecting both data
sources, i.e., OBL+MF , which exhibits values quite around
the sum of the single overhead, as in the Clearwater case
study, except for HIGH load, where the overhead is around
39%. We argue that, in this case, the performance is also
affected by Filebeat, that has to cope with multiple data
sources at high load. The combined overhead suggests that a
good strategy to improve the performance is to process and
collect only MF logs at runtime, for monitoring and early
warning. BL logs could be kept on their respective nodes
(managed with log rotation, as usual) and they would be
accessed only when needed, for troubleshooting, guided by
the initial attributions made through MF logs.

Comparing the results obtained in the Kubernetes case
study with the Clearwater one, we can note that the over-
head introduced by MetroFunnel is lower, with respect to
BL logs, in the Kubernetes case. This can be explained by
both considering the differences in the hardware configura-
tion and the log size. About the configuration, Clearwater
runs on a two-core processor with Solid-State Drive (SSD),
while Kubernetes runs on a 16-core processor with magnetic
disks. Since MetroFunnel is cpu-bound, it takes advantage
of the multiple cores available on the Kubernetes deploy-
ment; on the other hand, the presence of an SSD in the
Clearwater setup gives an advantage to process verbose
logs, i.e., the Clearwater microservices. About the file size, it
can be noted that, in the Kubernates case, BL logs tend to be
bigger than MF logs, if compared to the Clearwater case (as
discussed in Section 8.2), hence their collection introduces a
higher performance penalty.

8.2 Log Size overhead
We measure the average log size of BL and MF logs
produced during experiments for all LDs and for both the
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TABLE 3: Log size overhead in Clearwater.
BL MF OMFBL

average log size (KB) %
2 (LOW) 15.82 6.52 -58.79
6 (MED.) 46.90 19.32 -58,81

12 (HIGH) 93.52 38.72 -58,60

TABLE 4: Log size overhead in Kubernetes.
BL MF OMFBL

average log size (KB) %
1 (LOW) 5,125.18 1,173.39 -77.11
3 (MED.) 15,558.59 3,549.93 -77.18

30 (HIGH) 18,1720.55 39,504.47 -78.26

case studies. Results are reported in TABLE 3 for Clearwater
and TABLE 4 for Kubernetes, along with the overhead of
MetroFunnel with respect to the builtin logs in terms of
log size. Overhead is computed as follows. Given a level
of LD, let us denote by (i) LSBL the size in KB of the
either Clearwater’s builtin logs or the logs from webserver
replicas running on Kubernetes and (ii) LSMF the size of
the log trace generated by MetroFunnel. The percentage
overhead induced by MF with respect to BL is given by:
OMFBL

= LSMF−LSBF

LSBF
· 100.

It can be seen that in both case studies MF trace is signif-
icantly smaller than overall BL logs; in particular, it is less
than half of BL in the case of Clearwater, and around one
quarter of BL in the case of Kubernetes. As expected, the
difference in size depends on the target system and on the
verbosity of builtin logs that, in our case studies, is higher
for Clearwater logs. This reflects in the overhead reported
in the rightmost column of both TABLE 3 and TABLE 4,
which can be seen as a potential reduction, in terms of log
files to be collected and transmitted over the network, if
one decides to collect and centralize MF logs only. It can
be noted that MetroFunnel achieves a reduction of the log
files accounting for about 59% and 78% for Clearwater and
Kunbernetes, respectively, in the worst case setting.

9 THREATS TO VALIDITY

As for any study proposing a new approach, there may be
concerns regarding the validity and generalizability of the
proposal and results. We discuss them, based on the aspects
of validity listed in [51].

Construct validity. Our study builds around the intu-
ition that traces gathered at negligible overhead and with no
knowledge of the application design, can support useful at-
tributions on microservices. This is pursued by instantiating
the proposal in the context of synchronous protocols with
REST, which is the most used style for APIs development.
Our implementation leverages a consolidated Java library
for tracing. We rely on log analysis methods and our past
expertise in the area. The analysis is based on two case
studies, namely Clearwater IMS and Kubernetes orchestra-
tor, which are two representative examples of microservices
systems. It can be observed that asynchronous protocols,
such as the Advanced Message Queuing Protocol (AMQP),
are used too for microservices communication. MetroFunnel
currently does not target these protocols, however, mon-
itoring solutions are already available for most adopted
implementations. Examples are MONAD [33], discussed in
section 2, and the monitoring layer of RabbitMQ [52]. For
instance, the latter provides a wide set of useful metrics

for black box analysis, such as, number of unacknowledged
messages, number of messages ready for delivery, publish-
ing and delivery rate. As future work, we will investigate
the integration of MetroFunnel with monitoring solutions
for asynchronous protocols, with the same aim: to accom-
pany microservices logs with black box tracing.

Internal and conclusion validity. Findings have been
inferred by means of a rigorous approach encompassing
design of experiments. We replicated the experiments under
different configurations of the key factors. We opted for a
conservative system deployment with the aim of avoiding
any favorable setting to our proposal. We evaluated differ-
ent metrics; moreover, analysis has been supplemented by
manual investigations of both the logs in hand and the trace
by MetroFunnel. Overall, this mitigates internal validity
threats and provides a reasonable level of confidence on the
conclusions.

External validity. Our proposal should be easily ap-
plicable to other similar LAN systems. Passive tracing re-
quires no microservices modifications; practitioners are not
expected to spend any efforts in using our proposal or
supporting a certain methodology. MetroFunnel does not
incorporate the knowledge of the application design. We
do not require a specific log management framework for
collecting the execution traces. The details provided can
reasonable support the replication of our study by other
researchers and practitioners. Most notably, we made Metro-
Funnel available to the community.

10 CONCLUSION

This paper presented an approach to accompany microser-
vices logs with black box tracing in order to support informed
decisions by practitioners. Our solution is based on passive
tracing and aims to cope with the flexibility requirements
of microservices systems. We achieve an average reduction
of around 59% in log size, at 3.3% higher performance
overhead when compared to the collection of buitlin logs in
the worst case, i.e., our Clearwater setup. Better results have
been obtained for Kubernetes, where MetroFunnel exhibited
a performance overhead of around 10% lower than the one
obtained collecting the webserver replicas logs, with an
average reduction of around 78% in log size.

Our work highlighted new challenges underlying log
analysis in this domain; as such, we believe that the findings
of our study should be extremely useful to practitioners and
to drive future research directions. We will devote future
work to engineering a full-fledged framework on the top
of tracing, which will encompass –for example– interactive
dashboards, filters, and automated tools for archiving and
browsing the traces. While these aspects do not pose specific
research challenges, they are meant to boost the usability of
our approach for production environments. We also plan to
conduct an experimental campaign aiming at understand-
ing the types of errors that can be caught with our proposal.
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