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Privacy-preserving Diverse Keyword Search and
Online Pre-diagnosis in Cloud Computing

Xiangyu Wang, Jianfeng Ma, Yinbin Miao, Ximeng Liu, and Ruikang Yang

Abstract—With the development of Mobile Healthcare Monitoring Network (MHMN), patients’ data collected by body sensors not only
allows patients to monitor their health or make online pre-diagnosis but also enables clinicians to make proper decisions by utilizing
data mining technique. However, sensitive data privacy is still a major concern. In this paper, we propose practical techniques for
searching and making online pre-diagnosis over encrypted data. Firstly, we propose a new Diverse Keyword Searchable Encryption
(DKSE) scheme which supports multi-dimension digital vectors range query and textual multi-keyword ranked search to gain a broad
range of applications in practice. In addition, a framework called PRIDO based on the DKSE is designed to protect patients’ personal
data in data mining and online pre-diagnosis. According to the PRIDO framework, we achieve privacy-preserving naı̈ve Bayesian and
decision tree classifiers and discuss its potential applications in actual deployments. Security analysis proves that patients’ data privacy
can be well protected without loss of data confidentiality, and performance evaluation demonstrates the efficiency and accuracy in the
diverse keyword search, data mining, and disease pre-diagnosis, respectively.

Index Terms—Privacy-preserving; online pre-diagnosis; searchable encryption; data mining.
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1 INTRODUCTION

IN recent years, Mobile Healthcare Monitoring Network
(MHMN) [1] has gained much attention in both academic

and industrial fields with the development of body sen-
sor network, mobile communication technology, and cloud
computing. Compared with the traditional medical system,
MHMN can monitor patients’ health in real-time without
affecting their daily life. Moreover, massive personal med-
ical data are stored for patient condition analysis as well
as medical research. Due to the huge requirements of data
storage and processing, outsourcing personal data to the
cloud is a promising way to improve the processing speed
and solve the excessive storage overhead [2].

In MHMN systems, patients’ personal data are collected
by sensors per second and uploaded to the cloud server
as multi-dimension vectors, cloud server stores the per-
sonal data as well as sends monitoring information to the
hospital when the real-time data is abnormal. Hospital
users (i.e., doctors, etc.) may query some samples which
contain certain textual keywords or digital keywords in
certain ranges for disease diagnosis or medical research.
For example, a certain hospital user may query all samples
with textual keywords ’cancer; diabetes’ and digital vec-
tor {’age’∈ [30, 50], ’blood sugar’ ∈ [4, 8], ’heart rhythm’
∈ [70, 80]}. Besides, the potential value of massive medical
data has attracted considerable interests recently, for exam-
ple, valuable results in diagnosis model can be yield with
large-scale aggregation analysis of personal medical data.
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The cloud server can build a diagnosis model using data
mining technology over massive data, so that hospital users
or pre-diagnosis users upload medical data (i.e., age, blood
pressure, blood sugar, etc.) to the cloud for diagnosis.

However, how to provide accurate data query, health
monitoring, data mining, and online diagnosis services
without revealing personal data is still a big challenge.
Former academics [3], [4] have researched the securities
of storage and query of Personal Health Records (PHR)
in cloud computing. Order-preserving encryption based
scheme [3] can achieve digital vectors range query effec-
tively, but it cannot support the textual keyword search.
To support both digital vectors range query and textual
keyword search, Li et al. [4] proposed a security query
program based on both Searchable Encryption (SE) and
Attribute-Based Encryption (ABE), but this system cannot
support ranked search. Moreover, these privacy-preserving
mechanisms make data monitoring and analysis impos-
sible in practice. To this end, some researchers [5], [6],
[7], [8], [9] introduce Homomorphic Encryption (HE) and
make some secure outsourcing computing protocols based
on HE to design secure health monitoring or online pre-
diagnosis schemes. Unfortunately, these protocols bring in
high communication and computation overhead, and all
these schemes cannot support other features of MHMN (i.e.,
multi-dimension vector range query and textual keyword
search, etc.).
Contribution. In this paper, we show how to efficiently
achieve the desired features of MHMN without loss of data
privacy. Specifically, the main contributions of this paper are
listed as follows:

• Diverse keywords search. We propose a new Diverse
Keyword Searchable Encryption (DKSE) scheme
which allows legitimate users (i.e., sensor users, hos-
pital users, etc.) to issue both multi-dimension digi-
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tal vectors range query and textual multi-keywords
ranked search on encrypted cloud data.

• Data mining and pre-online diagnosis. Based on the
DKSE, we construct a PRIvacy-preserving Data min-
ing and Online pre-diagnosis (PRIDO) framework. In
our PRIDO, the collected encrypted personal medical
data can be used by the cloud to train a diagnosis
model. Then, the cloud server can use the trained
model to diagnose patient’s diseases according to
his/her personal data in a privacy-preserving way.
Experimental results using real-world datasets show
that the accuracy of online pre-diagnosis in our work
is similar to that of the plaintext system.

• Efficiency. The experimental results show that our
DKSE is efficiency in practice, and the running time
of data mining and online pre-diagnosis in our
PRIDO are comparable with the original algorithm
used in plaintext.

• Privacy. Security analysis shows that our work is
secure against the known-plaintext attack, which
satisfies the privacy requirements of most high-
performance searchable encryption schemes [10],
[11], [12], [13].

Compared with the preliminary version [14] of this
paper, this journal version further supports textual multi-
keyword ranked search. This version also discusses how to
achieve more classifiers apart from naı̈ve Bayesian classi-
fier [15] based on the proposed DKSE. Moreover, we give
formal security definitions and prove the security of our
work. Besides, to evaluate the newly added textual multi-
keywords ranked search and classifier, we improve the
experiments with the new real-data set to get close to the
real situation. Finally, we make a thorough comparison with
the most recent works and describe the related work to
better evaluate our work.
Organization. The remainder of this paper is organized as
follows: In Section 2, we introduce some basic knowledge
used in our work such as the BM25 ranking model, naı̈ve
Bayesian classifier and decision tree classifier. In Section 3,
we present the system model and clarify the privacy re-
quirements. We propose our new searchable encryption
scheme in Section 4. Next, we construct the framework
of data mining and online pre-diagnosis based on DKSE
in Section 5 and discuss how to achieve naı̈ve Bayesian
classifier and decision tree classifier. Then, we analyze the
privacy and performance of the proposed work in Section 6
and Section 7, respectively. Finally, we give the related work
in Section 8 and conclude our paper in Section 9.

2 PRELIMINARIES

In this section, we give a brief review of the BM25 ranking
model [16], naı̈ve Bayesian classifier [15] and decision tree
classifier [17] used in our work.

2.1 BM25 Ranking Model
BM25 [16] is a famous ranking model based on the prob-
abilistic ranking principle [16]. Consider an unstructured
document d̄ belonging to a collection F . We regard the doc-
ument as a keywords vector d̄ = (d̃1, ..., d̃j , ...d̃m), where

d̃j denotes the keyword frequency of the j-th keyword in d̄
and m is the total number of keywords in the vocabulary. In
order to score such a document against a query, most rank-
ing functions define a keyword weighting function wj(d̄),
which exploits keyword frequency as well as other factors
such as the document’s length and collection statistics.

For one-time retrieval, and ignoring any repetition of
keywords in the query, BM25 keyword weighting function
can be simplified as

wj(d̄) =
(k1 + 1)d̃j

k1((1− b) + b dl
avgdl ) + d̃j

log
Ndoc − dfj + 0.5

dfj + 0.5
,

where dfj denotes the document frequency of keyword dj ,
dl denotes the document length, avgdl denotes the average
document length across the collection F , Ndoc denotes the
number of documents in the collection, and k1 and b are
free parameters. The document BM25 score is then obtained
by adding the document keyword weights of keywords
matching the query Q = {q1, q2, ..., qm} as

BM(d̄, Q) =
n∑
j=1

wj(d̄) · qj .

2.2 Naı̈ve Bayesian Classifier
Naı̈ve Bayesian (NB) classifier [15] is a classic classifier,
which can be used in text classification, medical diagnosis,
and other practical applications. Here, we briefly review
basic algorithms of the naı̈ve Bayesian classifier as follows.
Suppose that there are NClass classes denoted as C1, C2,
... , CNClass. Each sample in predicting has h attributes
A1, ... , Ah, which is expressed as h-dimensional vector
~Y = {Y1, ..., Yh}. The classifier needs to predict which kind
of class the sample ~Y most likely belongs to. The possibility
of ~Y belongs to Ci(0 < i ≤ h) can be calculated by Bayes’s
theorem shown in Eq. 1.

P (Ci|~Y ) =
P (~Y |Ci)P (Ci)

P (~Y )
. (1)

We can see that P (~Y ) is the same for all classes, only
P (~Y |Ci)P (Ci) needs to be maximized. In order to calculate
P (~Y |Ci)P (Ci), we can calculate the conditional probability
shown in Eq. 2 on condition that values of all are indepen-
dence of each other. If a feature attribute is discrete, the
probabilities P (Y1|Ci), P (Y2|Ci), ... , P (Yh|Ci) can be easily
obtained from the training set.

P (~Y |Ci) ≈
h∏
k=1

P (Yk|Ci). (2)

If a feature attribute is continuous, the feature attribute
values in ~Y is regarded as follow the Gaussian distribution
shown in Eq. 3. Therefore, the conditional probability esti-
mates for each continuous feature attribute in each class can
be calculated by Eq. 4.

g(x, η, σ) =
1√
2πσ

e−
(x−η)2

2σ2 . (3)

P (Yk|Ci) = g(Yk, ηCi , σCi). (4)
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2.3 Decision Tree Classifier
Decision Tree (DT) [18] is also a classic classifier, which
is a tree structure consisting of decision node and leaves. A
decision node specifies a test over one of the attributes.
Each possible outcome of the test presents a child node or
a leave. The test on a continuous attribute has two possible
outcomes, Ai ≤ t and Ai > t, where t is a value determined
at the node. Repeat the test until reaching a leaf, the class
specified at the leaf is the class predicted by the decision
tree. In this paper, we use the classic decision construction
algorithm C4.5 algorithm to construct the decision tree with
a divide and conquers strategy. In C4.5, each node in a tree
is associated with a set of cases. Also, cases are assigned
weights to take into account unknown attribute values. Let
T be the set of cases associated at the node. The weighted
frequency freq(Cj , T ) is computed of cacses in T whose
class is Ci for i ∈ [1, NClass]. If all cases in T belong to the
same class Cj , then the node is a leaf, with associated class
Cj (respectively, the most frequent class). The classification
error of the leaf is the weighted sum of the cases in T whose
class is not Cj . If T contains cases belonging to two or
more classes, then the information gain of each attribute is
calculated. For discrete attributes, the information gain is
relative to the splitting of cases in T into sets with distinct
attribute values. If Ai is discrete, and T1, T2, ..., Ts are the
subsets of T consisting of cases with distinct known value
for attribute Ai, the information gain can be calculated as

Gain = Info(T )−
s∑
i=1

|Ti|
|T |
× Info(Ti), (5)

where

Info(T ) = −
Nclass∑
j=1

(
freq(Cj , T )

|T |
× log2

freq(Cj , T )

|T |
)

is the entropy function. The attribute of maximum Gain
will be selected as the best one to split the dataset into p
partitions.

3 PROBLEM FORMULATION

In this section, we introduce the system model, threat
model, and privacy requirements, respectively.

3.1 System Model
In this system, we focus on how to meet the actual needs of
MHMN without leaking patients’ private information, such
as multi-dimension digital vectors range query and textual
multi-keyword ranked search, data mining, and online pre-
diagnosis. The system model of our work involves four
main entities, namely Sensors User (SU), Cloud Server (CS),
Hospital User (HU), and Pre-diagnosis User (PU), which are
demonstrated in Fig. 1.

• SU collects personal data in real-time with sensors
and sends the encrypted data to CS. In addition, SU
shares the data encryption key with HU so that HU
can query and obtain data from CS.

• CS which has unlimited storage space and compu-
tation abilities, can provide data storage and search
services for SU and HU. In addition, CS can perform

Hospital User

Pre-diagnosis UserSensors User Cloud Server

Pre-diagnosis

Range query Data mining

Encrypted data

Shared key Authorization

P

i i

Fig. 1. System model.

calculations over stored cloud data and provide com-
putation services for PU.

• HU has access to query data stored in CS. Moreover,
HU can provide training trapdoor for CS to train
classifiers and send encrypted medical data to CS for
clinical decision support.

• PU authorized by HU can obtain online pre-
diagnosis results through sending encrypted per-
sonal data to CS.

3.2 Threat Model

In our threat model, we assume that SU and CS are trustable,
which can provide data collecting and encrypt, respectively.
The CS is considered to be an honest-but-curious third-party
which is interested in SU’s historical personal data and the
classifier trained from SU’s data but honestly follows the
protocols established in the system. PU is also considered
as an honest-but-curious entity that is interested in SU’s
historical personal data. HU is considered as a trusted
entity that has access to SU’s historical data stored in CS,
and HU is the owner of the classifier trained from SU’s
historical data. Besides, authorized parties cannot sell or
leak their secret keys to unauthorized ones, the entities in
the system do not collude with each other. Moreover, an
external adversary is interested in all data transmitted in
the system by eavesdropping.

Based on what information the CS or adversary knows,
we consider two attack models considered in [19] with
different attack capabilities as follows.

1) Level-1: Ciphertext-only Attack (COA) [20]. The adver-
sary is only able to know the encrypted personal
data or search queries.

2) Level-2: Known-plaintext Attack (KPA) [20]. Apart
from the ciphertext, the adversary is supposed to
gain a set of tuples in dataset or queries and he/she
knows the corresponding encrypted values of those
tuples.

These two models are widely used in searchable encryp-
tion works [10], [11], [12], [13], which satisfy the require-
ments of data privacy in high-performance scenarios. The
KPA attack is more powerful than the COA attack. If an
encryption scheme resists the KPA attack, it resists the COA
attack as well.
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TABLE 1
Notation descriptions

Notations Descriptions
Ij Search index of Pj

Fj Document corresponding to Ij
EK(·) Encrypt by AES with secret key K
Ts Trapdoor used to search
QR Query range set
Reft Training trapdoor
Dtj Transformed personal data
SK = {S,M1,M2} Secret key
Pj = {d1, ..., di, ..., dn} Personal data
Rt = {r1, ..., ri, ..., rn} Divide parameter set
S = {s1, ..., si, ..., sn, γ} Randomization parameter set
Q = {q1, ..., qi, ..., qn} Search query
W = {Ww1 ,Ww2 , ...,Wwm} Textual keywords dictionary
Ref = {c1, ..., ci, ..., cn} Training reference vector
PU = {pU1 , pU2 , ..., pUn} Personal data of PU (HU)
DtU = {a′U1

, ..., a′Un} Tansformed data of PU (HU)

3.3 Privacy Requirements

In our system model, SU’s personal data contain confirmed
SU’s diseases and some sensitive personal information.
These data can be used to train the classifier. During the
data querying and data mining processes, SU’s data cannot
be directly exposed to untrusted parties; otherwise, SU will
not provide its own data to the other parties due to personal
data privacy leakage. HU authorizes CS to train the classifier
by using SU’s personal data and then authorizes the CS to
make an online diagnosis. The classifier is of great value
and cannot be leaked to other untrusted parties during
training and online diagnosis. In addition, HU or PU will
upload personal data to CS during online diagnosis, PU’s
data and the diagnosis results are highly sensitive and
cannot be directly exposed or leaked to untrusted parties.
According to the above threat models, to ensure the data
privacy of each entity in the system, the following privacy
requirements should be satisfied in our work.

1) Index (trapdoor) confidentiality. Proposed schemes
should guarantee that the CS or adversary cannot
obtain the content of indexes (trapdoors) from the
encrypted indexes.

2) Keyword privacy. Proposed schemes should generate
secure trapdoors to avoid the keywords leakage.

3) Trapdoor unlinkability. In each search process, indexes
and trapdoors (i.e., search queries) are exposed to
the CS. The trapdoors should be randomized so
that the same query is different in different search
processes. Furthermore, the CS cannot infer the
relationship between these trapdoors.

4) Privacy in data mining and online pre-diagnosis. In the
data mining process, CS uses stored personal data
to train the classifier. In this process, SU’s personal
data privacy should be guaranteed. In addition,
since the trained classifier is owned by HU, the
classifier should not be used by CS or any unau-
thorized users to get the correct diagnosis results.
In the online pre-diagnosis process, the authorized
PU sends his or her personal data to CS for online
diagnosis. PU’s personal data should be protected.

4 PRIVACY-PRESERVING DIVERSE KEYWORD
SEARCH

In this section, we first propose a Diverse Keyword
Searchable Encryption (DKSE) scheme to meet the prac-
tical needs of digital vector range query and textual
multi-keyword ranked search. In order to achieve DKSE,
we improve the Asymmetric Scalar-product-Preserving
Encryption (ASPE) [19] which can encrypt two vectors
and compute their scalar product confidentially as our
foundation. The detail of ASPE will be described together
with our DKSE as follows. The key notations used in this
paper are listed in TABLE 1. In DKSE, SU’s personal data
are collected by sensors per second as multi-dimension
vectors, and encrypted by SU before uploading to CS. CS
provides diverse keyword search services for HU. DKSE
contains five algorithms, namely KeyGen, DataEnc, Trap-
Gen, QueryRangeGen and Search as follows.
KeyGen(n,m,U): Given the dimensions of SU’s personal
data n, the size of keyword dictionary m, and noise param-
eter U , SU first randomly chooses a (3n+m+U )-dimension
boolean vector S and two (3n+m+U)×(3n+m+U) invert-
ible matricesM1,M2 ∈ Z as secret keys SK = {S,M1,M2}.
Then, SU randomly chooses a symmetric encryption (e.g.
AES) key K used to encrypt SU’s document that contains
sensitive information. Finally, SU sends {K,SK} to HU via
a secure channel.
DataEnc(SK,Pj , Fj ,W,K): Given a personal data Pj =
{d1, ..., di, ..., dn}(1 ≤ i ≤ n) ∈ Z, document Fj and
keyword dictionaryW = {Ww1

, ...,Wwi , ...,Wwm}(1 ≤ i ≤
m). SU generates encrypted search index Ij according to
Pj , Fj ,W as follows.

• First, SU extends the elements in Pj to 3n + m
dimensions, the element in the (3i− 2)-th dimension
is di(1 ≤ i ≤ n), the elements in both the (3i− 1)-th
dimension and 3i-th dimension are 1(1 ≤ i ≤ n),
and the elements from (3n + 1)-th to (3n + m)-th
dimensions are set as BM25 keyword weighting of
each textual keyword wk generated according to Fj .

• Then, SU sets U random numbers δξ(1 ≤ ξ ≤ U) ∈ Z
in the last U dimensions as noise1 which protect the
privacy better from stronger threat like scale-analysis
attack [10], [21]. We can describe the vector as

Dj = {d1, 1, 1, ..., di, 1, 1, ..., dn, 1, 1, w1(Fj),

..., wk(Fj), ..., wm(Fj), δ1, δ2, ..., δU}.

• Finally, SU splits the (3n + m + U)-dimension vec-
tor Dj into two (3n + m + U)-dimension vec-
tors according to S. If S[i] is 1, then SU ran-
domly generates Dj,1[i] and Dj,2[i], where satisfying
Dj,1[i] + Dj,2[i] = Dj [i]; if S[i] is 0, then SU sets
Dj,1[i] ← Dj,2[i] ← Dj [i]. Next, the split index pair
Ij is encrypted as {MT

1 Dj,1,M
T
2 Dj,2}, and the Fj

is encrypted as EK(Fj) by AES with K. SU sends
{Ij , EK(Fj)} to the CS.

1. The noise is drawn from a Laplacian distribution, where δ ←
Laplace(0, b). The scale parameter b is considered as a trade-off pa-
rameter between query accuracy and privacy. We will show a detailed
evaluation of how the added noise affects the query accuracy in
experiments.
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TrapGen(SK,Q,Rt,S): HU appoints a search query Q =
{q1, ..., qi, ..., qn+m}(1 ≤ i ≤ n+m) ∈ Z, a divide parameter
set Rt = {r1, ..., ri, ..., rn}(1 ≤ i ≤ n) ∈ Z, and a random-
ization parameter set S = {s1, ..., si, ..., sn, γ}(1 ≤ i ≤ n) ∈
Z, we denote that r1 � r2 � r3... � rn and si � ri−1
to make the values suitable to our search method. HU
generates a (3n+U)-dimension trapdoor Ts, and then sends
Ts to CS for range query. The specific trapdoor generation is
shown in Algorithm 1.

Algorithm 1: Trapdoor generation
Input: Secret keys SK, query Q = {q1, ..., qi, ..., qn+m},

divide parameter set Rt = {r1, ..., ri, ..., rn},
Randomization parameter set
S = {s1, ..., si, ..., sn, γ}.

Output: Trapdoor Ts.
1 for 1 ≤ i ≤ n do
2 Q′ [3i− 2]← γ · ri;
3 Q′ [3i− 1]← γ · ri · qi;
4 Q′ [3i]← γ · ri · si;
5 for n+ 1 ≤ i ≤ n+m do Q′[i]← γ · qi ;
6 Randomly choose V and 1 positions from the last U

dimensions of Q′ and set them to γ, 1, respectively;
7 for 1 ≤ i ≤ 3n+ U do
8 if S[i] is 1 then Set Q′1[i]← Q′2[i]← Q′[i] ;
9 else

10 Randomly generate Q1[i], Q2[i], where satisfy
Q′1[i] +Q′2[i] = Q′[i];

11 return the trapdoor Ts = {M−1
1 Q′1,M

−1
2 Q′2}.

QueryRangeGen(QR, Rt,S): Given the divide
parameter set Rt and the randomization pa-
rameter set S , HU appoints a query range set
QR = {qr1, qr2, ..., qr2i−1, qr2i, ..., qr2n−1, qr2n}(1 ≤ i ≤ 2n)
which contains the range of the values be queried, for
example, given a query value q1 = 100, if a search
user wants to search values between 80 to 140, then
qr1 = q1 − 80 = 20, qr2 = 140 − q1 = 40. The search query
range parameter Q′R is generated as

Q′R =

{γr1(2q1 − qr1 + s1) + δ′1, γr1(2q1 + qr2 + s1) + δ′2, ...,

γrn(2qn − qr2n−1 + sn) + δ′n, γrn(2qn + qr2n + sn) + δ′n}.
The (2i− 1)-th dimension of QR is set as ri · (2qi− qr2i−1 +
si) + δ, the 2i-th dimension of Q′R is ri · (2qi + qr2i + si) + δ,
where δ ← Laplace(0, b) denotes a noise drawn for each
dimension of QR. Then, HU sends Q′R and Rt to CS for
search query.
Search(Ij , Ts, Q

′
R, Rt): After gaining the trapdoor Ts, search

query range Q′R and the divide parameter set Rt, CS first
calculates the search result as
Scoresj = Ij · Ts

= γ(
n∑
i=1

ri(di + qi + si) +
m∑
k=1

wk(Fj)qn+k +
∑

δ
(V )
ξ ) + δ′

= γ(
n∑
i=1

ri(di + qi + si) +BM(Fj , Q) +
∑

δ
(V )
ξ ) + δ′,

where
∑
δ
(V )
ξ represents the sum of any V values in last

U positions of Ij . Then, CS obtains ranked documents list
using Algorithm 2.

Algorithm 2: Digital and textual keywords search

Input: Search range Q′R, scores set
{Scores1, Scores2, ..., ScoresN}, the divide
parameter set Rt.

Output: The top-k list of the documents.
1 for 1 ≤ j ≤ N do
2 for 1 ≤ i ≤ n do
3 if Q′R [2i− 1] ≤ Scoresj ≤ Q′R [2i] then
4 Scoresj ← Scoresj mod Rt [i];

5 else break ;

6 Obtain the top-k documents with the highest scores
from the ranked list added with the document;

7 return the ranked list.

Remark. In fact, the DKSE can perform only tex-
tual multi-keyword ranked search. Given the scores set
{Scores1, Scores2, ..., ScoresN}, the divide parameter set
Rt = {r1, ..., ri, ..., rn}(1 ≤ i ≤ n). For each search result
score Scoresj , from r1 to rn, let Scoresj modulate these
numbers in order, so that Scoresj = γ(BM(Fj , Q) +∑
δ
(V )
ξ )+δ′. Then, CS can return top-k list of the documents

with the highest scores.

Example. Assume that there is a personal data with two
digital attributes and two keywords {“male”, “cancer”},
where digital attributes are {1100, 1100} and the BM25
keywords weighting are {3, 5}. For convenience, we set the
divide parameter set Rt = {108, 104}, the randomization
parameter set S = {2000, 4000, 1000} and U = 2. Thus,
we can generate Dj = {1100, 1, 1, 1100, 1, 1, 3, 5, 1, 2}. If a
certain user wants search a personal data satisfies {900 −
1300, 800− 1200} with keywords {“male”,“cancer”}, he or
she generates the search query Q = {1000, 1000, 1, 1}, and
sets the query range as QR = {100, 300, 200, 200}. Hence,
we have Q′ = {1011, 1014, 2 × 1014, 107, 1010, 4 × 1010, 3 ×
103, 5× 103, 103, 1} and Q′R = {3.9× 1014 + 2, 4.3× 1014 +
7, 5.8 × 1010 + 3, 6.2 × 1010 + 6}. In search process, CS
first get the search result Scoresj = 4.1 × 1014 + 6.1 ×
1010 + 9 × 103 + 2. Since 3.9 × 1014 + 2 < Scoresj <
4.3 × 1014 + 7, the CS computes Scoresj ← Scoresj
mod 108 = 6.1 × 1010 + 9 × 103 + 2. Next, the CS com-
putes Scoresj ← Scoresj mod 104 = 9 × 103 + 2 since
5.8 × 1010 + 3 < Scoresj < 6.2 × 1010 + 6. Finally, the CS
can obtain the BM25 ranking score Scoresj of Dj , where
query keywords are “male”, and “cancer”. If there are N
personal data, CS can return top-k list of the personal data
containing “male” and “cancer” with the highest scores.

5 PRIVACY-PRESERVING DATA MINING AND ON-
LINE PRE-DIAGNOSIS

In this section, we first propose a PRIvacy-preserving
Data mining and Online pre-diagnosis (PRIDO) framework
based on DKSE to enable data mining and online pre-
diagnosis over outsourced cloud server without revealing
privacy of user’s personal data. Then, we show how to
achieve naı̈ve Bayesian and decision tree based on the
PRIDO and discuss how to support more classifiers.
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Fig. 2. Overview of PRIDO.

5.1 Proposed PRIDO Framework

The Overview of PRIDO is shown in Fig. 2. To train a
classifier, the HU first sends a training reference vector
to CS (Step 1©), and then CS transforms SU’s encrypted
data stored in CS(Step 2©) and trains a classifier (Step 3©).
Since the PU and the SU are not mutually trusted, that is,
the PU does not want to disclose his/her personal data
to the SU, and the SU does not want to leak his/her
historical data to the PU. In order to solve this problem,
we reset the secret key for each user before making online
pre-diagnosis to support multi-user multi-key online pre-
diagnosis (Step 4©). To make an online pre-diagnosis, HU
or PU sends encrypted personal data to CS (Step 5©) and
obtains the results (Step 6©). The PRIDO contains five algo-
rithms, namely ReferGen, DataTrans, Train, DiagInit, and
Diagnosis. We introduce them separately as follows.
ReferGen(SK,Ref,Rt,S): Given a random n-dimension
vector Ref = {c1, ..., ci, ..., cn}(1 ≤ i ≤ n) ∈ Z as
training reference vector, a divide parameter set Rt =
{r1, ..., ri, ..., rn}(1 ≤ i ≤ n) ∈ Z, and a randomization
parameter set S = {s1, ..., si, ..., sn, γ}(1 ≤ i ≤ n) ∈ Z.
HU first generates training reference trapdoor Reft in the
similar way of TrapGen(SK,Ref,Rt,S), the only different
is that the dimensions from (3n + 1)-th to (3n + m)-th are
set to 0 and V random positions in the last U dimensions
are set as ri. Then, HU sends Reft, Rt to the CS.
DataTrans(Ij , Reft, Rt): Given the training reference trap-
door Reft and the divide parameter set Rt. Encrypted
personal data Ij which stored in CS are transformed to Dtj

with Eq. 6, where
∑
δ
(V )
ξi

is the sum of the noise number
multiplied by ri.

Dtj = {γ
n∑
i=1

ri(di + ci + si +
∑

δ
(V )
ξi

) + δ′, ...,

γ
n∑
i=x

ri(di + ci + si +
∑

δ
(V )
ξi

) + δ′, ...,

γrn(dn + cn + sn +
∑

δ
(V )
ξn

) + δ′}.

(6)

Algorithm 3 shows the specific data transform. We can see
that the real values of SU are hidden by γ, δξi , δ

′, si after
transformation. We denote Dt as the set of Dtj .
Train(Dt): After obtain the transformed dataset Dt, the
CS trains the corresponding classifier according to different
classification algorithms and stores the trained classifier C.
DiagInit(Ref , Rt,S): HU keeps the training reference vec-
torRef , the divide parameter setRt, and the randomization
parameter set S used in ReferGen. Before providing online

Algorithm 3: Data transform
Input: Encrypted data Ij , the training reference

trapdoor Reft and the divide parameter set
Rt = {r1, ..., ri, ..., rn}(1 ≤ i ≤ n).

Output: Transformed data Dtj .
1 Scores = Ij ·Reft;
2 for 1 ≤ i < n do
3 Dtj [i]← Scores;
4 Scores← Scores mod ri;

5 Dtj [n]← Scores;
6 return Dtj

pre-diagnosis server for PU, HU first initializes the system
as follow steps:

• Step 1: HU generates new encryption keys as

{S
′

K ,K
′
} ← KeyGen(n,U). (7)

• Step 2: HU generates new training reference trapdoor
Ref

′

t according to SK
′
, Ref , Rt, and S as

Ref
′

t ← ReferGen(SK
′
, Ref,Rt,S). (8)

• Step 3: HU sends {K ′ , SK ′} to a registered
PU for online pre-diagnosis, and sends Ref

′

t ,
{EK′ (y1), ..., EK′ (yl)} to CS.

Diagnosis(Ref ′t , Rt): Given the training reference trapdoor
Ref ′t and the divide parameter set Rt, HU or registered PU
can make an online pre-diagnosis by uploading encrypted
personal data.

• Step 1: PU or HU encrypts personal data PU =
{pU1

, pU2
, ..., pUn} based on DataEnc with SK

′
, and

then sends encrypted personal data IU to CS.
• Step 2: CS transforms IU to DtU according to Ref

′

t

and Rt as DtU ← DataTrans(IU , Ref
′

t , Rt).
• Step 3: CS obtains the diagnosis result EK′(yk) ac-

cording the trained classifier C and the transformed
personal data DtU .

• Step 4: CS sends EK′ (yk) to PU or HU, and the PU
or HU gets diagnosis result by decrypting EK′ (yk).

5.2 Two Examples for Naı̈ve Bayesian Classifier and
Decision Tree

Here we give two examples, privacy-preserving naı̈ve
Bayesian classifier and decision tree based on the PRIDO
framework. For convenience, we only describe different
parts of the two classifier algorithms.

5.2.1 Naı̈ve Bayesian classifier

Train(Dt): CS uses Dt to train naı̈ve Bayesian classifier.
Assume that Dt contains l classes {EK′(y1), ..., EK′(yl)}
which are encrypted by AES. For each attribute Ai in
Dt, CS calculates the mean ∆(Ai) = {η(Ai)EK′ (y1)

, ..., η
(Ai)
EK′ (yl)

}
and standard deviation Φ(Ai) = {σ(Ai)

EK′ (y1)
, ..., σ

(Ai)
EK′ (yl)

},
respectively. CS keeps all of these parameters as classifier
C secretly.
Diagnosis(Ref ′t , Rt):
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• Step 1: PU or HU encrypts personal data PU =
{pU1

, pU2
, ..., pUn} based on DataEnc with SK ′, and

then sends encrypted data IU to CS.
• Step 2: CS transforms IU to DtU according to Ref ′t

and Rt as DtU ← DataTrans(IU , Ref
′
t , Rt).

• Step 3: For each continuous attribute Ai, assume
that the attributes values of DtU are DtU =
{a′U1

, ..., a′Un}, CS calculates each probability of DtU

attribute values which belongs to yi as

P (EK(yi)|DtU )

=
P (EK(yi))

P (DtU )
·
n∏
j=1

g(a′Uj , η
(Aj)
EK(yi)

, σ
(Aj)
EK(yi)

).
(9)

In this way, CS can easily find the
P (EK′(yk)|DtU ) which is the max value in
{P (EK′(y1)|DtU ), ..., P (EK′(yl)|DtU )} (1 ≤ k ≤ l),
and the patient who uploads DtU to CS is diagnosed
with disease yk possibly.

• Step 4: CS sends EK′(yk) to PU or HU, and the PU
or HU gets diagnosis result by decrypting EK′(yk).

5.2.2 Decision tree

Train(Dt): CS uses Dt to construct a decision tree. The
attribute of maximum Gain as shown in Eq. 5 will be
selected as the best one to split the dataset into l partitions.
The process will iterate until there are no more partitions.
Each leaf node corresponds to one encrypted class EK′(yk).
Diagnosis(Ref ′t , R

′
t):

• Step 1: PU or HU encrypts personal data PU =
{pU1

, pU2
, ..., pUn} based on DataEnc with SK ′, and

then sends encrypted data IU to CS.
• Step 2: CS transforms IU to DtU according to Ref ′t

and Rt as DtU ← DataTrans(IU , Ref
′
t , R

′
t).

• Step 3: CS uses DtU to perform the test on each
decision node one by one until reaching the leaf node
and obtaining the result EK′(yk).

• Step 4: CS sends EK′(yk) to PU or HU, and the PU
or HU gets diagnosis result by decrypting EK′(yk).

Discussion. As described in Section 2, in naı̈ve Bayesian
classifier, values of different attributes are independence of
each other. Therefore, for continuous attributes, as long as
the same attribute takes the same transformation parame-
ters, the accuracy of the prediction results can be guaran-
teed. In the online pre-diagnosis process of our framework,
despite the secret key is rebuild, PU’s (or HU’s) personal
data can be transformed into the same form since the
Ref,Rt, and S are unchanged. Therefore, all classifiers that
satisfy the independence assumption can be implemented
based on our framework.

6 PRIVACY ANALYSIS

In this section, we analyze our proposed work to check
whether it can satisfy the privacy requirements described
in Section 3.3. Since ASPE has been proved to be weak
against Known-Plaintext Attack (KPA) [21], [22], our frame-
work is proposed based on ASPE with Noise (ASPEN), we
first briefly review its security proof, and then analyze the
privacy of our work.

6.1 Security of ASPEN
To prove the security of the ASPEN, without loss of gener-
ality, we assume that the query Q and the data object P are
n-dimensional.

Definition 6.1 (Asymmetric Scalar-product-Preserving En-
cryption with Noise (ASPEN)). Let E(p, SK) be the en-
crypted value of a digital vector p, where E is an encryp-
tion function and SK is a secret key. E is ASPEN if and
only if there exits a computational procedure f such that
∀p1, p2, SK, f(E(p1, SK), E(p2, SK)) = Scal(p1, p2) + δ,
where Scal(p1, p2) is the scalar product of p1, p2, and δ is a
random number. We summarize the procedures of ASPEN used
in our work as follows.

• Key: Two (n+U)×(n+U) invertible matrices M1,M2;
a n + U -bits randomly generated boolean vector S ∈
{0, 1}n+U .

• Index encryption: Each index vector p is firstly extended
to (n + U)-dimension, where the last U dimensions are
set as random number δ1, δ2, ..., δU . Then, each index
vector is split into two parts {p′, p′′} according to S,
if S[i] is 1, then randomly generate p′[i] and p′′[i],
where satisfy p′[i] + p′′[i] = p[i]; if S[i] is 0, then set
p′[i]← p′′[i]← p[i]. The encrypted value of p is the pair
p̂ = {MT

1 p
′,MT

2 p
′′}.

• Query encryption: Each index vector p is firstly extended
to (n + U)-dimension, where the first n dimensions of p
are multiplied by γ and a random position in the last U
dimensions is set as γ. Then, each query vector q is split
into two parts {q′, q′′} according to S, if S[i] is 1, then set
q′[i]← q′′[i]← q[i]; if S[i] is 0, then randomly generate
q′[i] and q′′[i], where satisfy q′[i] + q′′[i] = q[i]. The
encrypted value of q is the pair q̂ = {M−11 q′,M−12 q′′}.

• Scalar product comparison: Let p̂1, p̂2 and q̂ be the
encrypted value of index vector p1, p2 and query vector q.
To compare the scalar product of p1, q and p2, q, it only
need to compare p̂1 · q̂ ⇔ p̂2 · q̂.

Theorem 6.1. The ASPEN is secure against the known-plaintext
attack, if the random number γ for each query and δ for each object
cannot be known by the adversary.

Proof. In the known-plaintext attack model, the adversary
can obtain a set of queries and their ciphertexts. For each
query q, the adversary would have the encrypted pair
q̂ = {M−11 q′,M−12 q′′} used in scalar product comparison
process. In the ASPEN described above, the scalar product
between q̂ and p̂ = {MT

1 p
′,MT

2 p
′′} can be calculated as

p̂ · q̂ = MT
1 p
′ ·M−11 q′ +MT

2 p
′′ ·M−12 q′′

= (MT
1 p
′)TM−11 q′ + (MT

2 p
′′)TM−12 q′′

= (p′)T q′ + (p′′)T q′′ = γ · (p · q + δ′) + δ′′.

(10)

As described in [21], [22], if the adversary can obtain the
plaintext of q, Eq. 10 contains n+ 3 unknowns (i,e., γ, δ′, δ′′,
and the n dimensions of p). If the random number γ is same
for each query, the adversary can solve the n+ 3 unknowns
in p and δ′, δ′′ by collect n + 4 plaintext-ciphertext pairs of
query points to construct n+ 4 equations like Eq. 10.

However, in the above ASPEN, the random numbers
γ, δ′, δ′′ are generated different for each time. Therefore,
there are 4n + 12 unknowns (i.e., n + 4 random number
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{γ1, γ2, ..., γn+4}, n + 4 random number {δ′1, δ′2, ..., δ′n+4},
n+4 random number {δ′′1 , δ′′2 , ..., δ′′n+4}, and n dimensions of
p) in the equation set. Since there are only n+4 equation, the
adversary does not have sufficient information to solve p,
even if n+ 4 queries and corresponding scalar products are
known by the adversary. Similarly, if the adversary obtains
a set of objects in the dataset with their ciphertexts. Since
the random number δ′, δ′′ for each object is unknown for the
adversary, there are 3n+9 unknowns in n+4 equations, the
adversary also does not have sufficient information to solve
q. Recently, [21] proposed an algorithm for a KPA adversary
to reconstruct the plaintext of queries. However, their algo-
rithm is focused on binary data domain, which cannot work
on our work on the real data domain. Therefore, the ASPEN
is secure against the known-plaintext attack.

Theorem 6.2. The ASPEN is secure against the known-plaintext
attack, if the bit string S cannot be known by the adversary.

Proof. Assume that the adversary knows the data object p
with its corresponding ciphertext p̂. For any data object,
if the adversary does not know the bit string S used for
splitting, p has to be modeled as two unknown (n + U)-
dimensional vectors. The equations for solving the secret
matrices M1,M2 can be constructed with p and p̂. Notice
that there are 2(n + U)|p| unknowns in p’ and p”, where
|p| is the number of data objects in the dataset. There
are also 2(n + U)2 unknowns in the secret matrices, but
only 2(n+ U)|p| equations constructed. Similarly, using the
queries, there are 2n|q| equations constructed which contain
2(n + U)|q| + 2(n + U)2 + 1 unknowns, where |q| is the
number of obtained queries. Therefore, the information to
solve the unknowns is insufficient for the adversary, and the
ASPEN is secure against the known-plaintext attack.

6.2 Privacy of DKSE

Next, we analyze proposed DKSE concerning the privacy
requirements as described in Section 3.3.

6.2.1 Index (trapdoor) confidentiality
Theorem 6.3. Each index stored in the CS or search query is
resilient to the level-2 attack defined in the attack model.

Proof. In proposed DKSE, SU’s personal data Pj or HU’s
search query is encrypted by SK = {S,M1,M2} before
sending to the CS. According to Theorem 6.1 and The-
orem 6.2, if the secret key SK, random number γ and
δ1, δ2, ..., δU are kept confidential, it is difficult for the ad-
versary to deduce the meaning of each dimension in the
index or query, each index stored in the CS or trapdoor is
resilient to the level-2 attack defined in the attack model.

6.2.2 Keyword privacy
Theorem 6.4. Assume that our DKSE is attacked by a level-2
attacker whose knowledge H = 〈{I, P}, Rt, Q′R,W, Scores〉,
where {I, P} is a set of plaintex-ciphertext of indexes. The
attacker cannot infer the value of digital keywords and which
textual keywords are queried.

Proof. For digital keyword, the adversary can infer search
range from Q′R as

Q′R[2i− 1]−Q′R[2i]

=γ · ri(2qi − qr2i−1 + si) + δ′

− γ · ri(2qi + qr2i + si) + δ′′

=γ · ri(qr2i + qr2i−1) + δ′ − δ′′.

(11)

Since ri is known by the adversary, if δ′ − δ′′ = 0, the ad-
versary can construct two equations like Eq. 11 and infer γ
by compute the gcd value among them. Then, the adversary
can obtain qr2i+qr2i−1. However, such infer cannot work in
our scheme, because the δ′ and δ′′ are independently drawn
from Laplacian distributions. In search process, there are
2n + m + V + 2 unknowns (i.e., the n + m dimensions of
q, n random number si, V noise number δξ , random δ′, and
γ) in Eq. 12.

Scoresj

= γ(
n∑
i=1

ri(di + qi + si) +BM(Fj , Q) +
∑

δ
(V )
ξ ) + δ′.

(12)
To solve the search query, 2n + m + V + 3 equations
can be constructed with I and P . However, each equation
introduces additional V + 1 unknowns, which makes the
constructed equations contain (2n+m+ V + 2)(V + 2) un-
knowns. The adversary does not have sufficient information
to solve q. As for textual keyword, Cao et al. proposed scale
analysis attack [10], which can make the CS identify the
keyword by referring to the keyword specific document fre-
quency information about the dataset. To resist this attack,
we set U noise keywords δξ(1 ≤ ξ ≤ U) in each index and
randomly select V noise keywords in each trapdoor TQ. To
make the probability of two

∑
δ
(V )
ξ having the same value

is less than 1/2ω , every index should include at least 2ω
noise entries, and every query vector will randomly select
half noise entries. While V = U/2, the probability of two∑
δ
(V )
ξ have the same value is less than 1/2U . Therefore,

even for the same ~Q and document, the final similarity score
will be different because the

∑
δ
(V )
ξ is different. The textual

keyword privacy can be protected in DKSE.

6.2.3 Trapdoor unlinkability
Definition 6.2 (Trapdoor unlinkability). Let T ′s, T

′′
s be two

trapdoors, T ′s, T
′′
s conform trapdoor unlinkability if the CS or a

adversary cannot distinguish whether T ′s and T ′′s are generated
by the same Q.

Theorem 6.5. The trapdoor generated in DKSE is trapdoor
unlinkability against the level-2 attack defined in the attack model.

Proof. In DKSE, each query is random split according to S
before encrypting as {M−11 Q1,M

−1
2 Q2}. As shown in Algo-

rithm 1, while S[j] = 0, Q1[i] and Q2[i] are randomly gen-
erated which satisfy Q1[i]+Q2[i] = Q[i]. The two trapdoors
T ′s, T

′′
s will be exactly the same if and only if all the values

in S are 1, which the probability is 1/2(3n+m+U). In search
process, the CS or a level-2 adversary can obtain the final
similarity scores, which may reveal the relationship between
trapdoors. To randomize similarity scores, we introduce
some random numbers (i.e., γ and si). Besides, the random
choice of locations of noise keywords can also increase the
trapdoor randomness in DKSE. The similarity scores of the
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same index Ij and Ts can be calculates by Eq. 12. As proved
above, the probability of two

∑
δ
(V )
ξ having the same value

is less than 1/2U and the (γ′, γ′′), (s′i, s
′′
i ) are totaly different

for T ′s and T ′′s . Thus, with different trapdoors generated by
the same search query, different similarity scores will be
produced even for the same index.

As for query range QR, there are 5 unknowns in Eq. 11.
To solve the search range qr2i−1, qr2i, if the adversary con-
structs 6 equations like Eq. 11, 2 additional unknowns will
introduced by each equation, which makes the constructed
equations contain 15 unknowns. Therefore, it is hard for the
CS or a level-2 adversary to mine the relationship between
two trapdoors by comparing them directly. The trapdoor
generated in DKSE is trapdoor unlinkability against the
level-2 attack defined in the attack model.

6.3 Privacy of Data Mining and Online Diagnosis
Theorem 6.6. Privacy of Data mining and Online Diagnosis
in our proposed PRIDO framework can be guaranteed against the
level-2 attack defined in the attack model.

Proof. In data mining process, HU sends a training refer-
ence vector Reft and a divide parameter set Rt to CS to
train classifier, and then SU’s historical personal data will
be transformed by Ref and Rt. The value of SU’s data
dx is hidden by γ

∑n
i=x ri · (di + ci + si +

∑
δ
(V )
ξi

) + δ′

after transforming. Even though the divide parameter set
Rt = {r1, ..., ri, ..., rn}(1 ≤ i ≤ n) is known by CS or
a level-2 attacker, each personal data di is still protected
by si, γ, ci, δ

′, and
∑
δ
(V )
ξi

. The trained classifier C is also
protected by these random numbers.

In online pre-diagnosis process, HU uses the new secret
key SK

′
to generate a new trapdoor Ref

′

t of the reference
vector Ref used in classifier training, and then sends Ref

′

t

to CS. Meanwhile, SK
′

is sent to authorized PU. PU en-
crypts his/her personal data and sends ciphertexts to CS
for online pre-diagnosis. PU’s personal data is protected
by the encryption mechanism, and his diagnosis results are
also encrypted. Therefore, PU privacy can be guaranteed.
In addition, SU’s historical personal data are secure because
the secret key used in diagnosis is different from which is
used to encrypt SU’s data. The trained classifier is a private
property of HU and of great value, it cannot be used by
unauthorized users. In our framework, only transformed
data can be predicted correctly, and only users who are au-
thorized by HU can get SK

′
to encrypt their personal data

and transform the encrypted data in CS. Therefore, if the
adversary stoles the classifier, it still cannot use it without
SK

′
. The privacy of Dada mining and online diagnosis in

our proposed PRIDO framework can be guaranteed against
the level-2 attack defined in the attack model.

• Selective of QR: Although error of range query will
not be affected by query range. In border point, di
is still cannot be searched. We suggest setting query
range a little bigger than what you want to query if
the border value is necessary to be searched.

• Selective of PD: The bigger PD is, the lower error is,
and it also depends on PTD. We suggest that PD is at
least 103 bigger than PTD to ensure accuracy.

7 PERFORMANCE ANALYSIS

We analyze the performance of our work in this section.
We build our work in Python using NumPy2 and gmpy23

extension modules. All experiments are run on a machine
with one 3.3-GHz two-core processor and 8-GB RAM.

7.1 Performance of DKSE

7.1.1 Query precision

Precision of range query. Here, we analyze the preci-
sion of range query in DKSE. As descried in Section 4,
for each attributes in personal data, the query range is
γri(2qi− qr2i−1 + si) + δ′i, γrn(2qi + qr2i + si) + δ′i, and the
search score is Scores = γ(

∑n
i ri(di+qi+si)+BM(F,Q)+∑

δ
(V )
ξ ) + δ′. Hence, as shown in Fig. 4, search error occurs

when Scores ∈ [γri(2qi+qr2i−1+si)+δ′i, γri(2qi+qr2i−1+

si)+δ
′
i+γ(

∑n
j=i+1 rj(dj+qj+sj)+BM(F,Q)+

∑
δ
(V )
ξ )+δ′]

or Scores ∈ [γri(2qi + qr2i + si) + δ′i, γri(2qi + qr2i + si) +

δ′i+γ(
∑n
j=i+1 rj(dj + qj + sj) +BM(F,Q) +

∑
δ
(V )
ξ ) + δ′].

AS r1 � r2 � r3... � rn, if query range {qr2i−1, qr2i} is
much wider than |qi − di|, the small random numbers can
be ignored in range query of qi. However, if the query are
on the boundary value, the small random numbers should
be in consideration. There are two factors that may affecting
query accuracy, namely Query Range (QR) and the Precision
of Divide parameter (PD) (i.e., PD = max(ri)/max(ri+1)).
Define range error error = Scores/ri(2qi + QR + si)
in each loop of Search, we consider a test vector D =
{100, 100, 100, 100, 100}, and query it with different QR and
PD. In Fig. 3(a), we plot error in different QRs, where PD =
4. We can see that the error is similar in different QRs. And
we plot the range error in different PDs in Fig. 3(b), where
QR is set to 5. As PD increases, the error decreases, because
the larger PD is, the larger ri than ri+1, the effect of small
random number on query precision is reduced. In addition,
the Precision of the Tuples in D between each other (PTD)
(i.e., PTD = D[i+1]/D[i]) will also affect the query accuracy.
We set QR = 5 to test the error in different PTDs. The result
is plotted in Fig. 3(c), we can see that error in different PDs
is very low when PTD= 10. When PTD = 102, the error in
PD = 4 is more than 1%, but is still less than 0.1% when
PD≥ 5. When PTD = 103, the error in PD = 4 is more than
10%, and the error in PD = 5 is more than 1%. From Eq. 6,
we can see that Scores of qi is divided by multiplying a
random number ri. If ri/ri+1 � di+1/di, the affect of rest
values

∑n
x=i+1 rx ·(dx+qx+sx+δξx)+

∑
δVξ can be ignored

in search comparison. Else if ri/ri+1 is close to di+1/di, the
range error will be high. Based on the above analysis, we
give some advice on use of DKSE as follows:
Precision of textual multi-keyword ranked search. As for
textual multi-keyword ranked search, since Cao et al. [10]
proposed Multi-keyword Ranked Search over Encrypted
data (MRSE) based on tf-idf similarity score, many extended
schemes [11], [13], [23] based on MRSE have been proposed
to meet different application requirements. Our DKSE in-
troduces the BM25 ranking model for similarity ranking,
which has higher ranking precision than that of the MRSE.

2. https://numpy.org/
3. https://pypi.org/project/gmpy2/
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Fig. 3. Actual performance analysis of DKSE (test 10 times for average). (a) (b) (c) are range error in each loop of Search in different situations;
(d) is the data encryption throughput of DataEnc algorithm varying with Number of Attributes (NA), where Precision of Divide parameter (PD) =
4, Query Range (QR) = 5; (e) (f) are computational cost of Search algorithm for range query in different situations; (g) is the computational cost
of index encryption varying with Number of Keywords in Dictionary (NKD) in different Number of Documents (ND); (h) is the computational cost of
textual multi-keyword ranked search varying with NKD in different ND.
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We use LETOR 4.0 dataset [24] to test the ranking precision
of our DKSE and MRSE. The LETOR 4.0 dataset is a package
of benchmark data sets for research on web search, which
contains standard features, relevance judgments, and data
partitioning. There are many kinds of features included in
LETOR 4.0, such as tf-idf, BM25, and LMIR. We use Mean
Average Precision (MAP) and Precision at position k (P@k),
which are widely used to analyze retrieval performance,
to evaluate the precision of our work. P@k measures the
relevance of the top k results of the ranking list with respect
to a given query, which can be calculated as P@k = (Number
of relevant docs in top k results) /k. For a single query,
Average Precision (AP) is defined as the average of the P@k
values for all relevant documents as

AP =

∑N
k=1(P@k ∗ rel(k))

Ndocs
, (13)

where N is the number of retrieved documents, and rel(k)
is a binary function on the relevance of the k-th document. If
the k-th doc is relevant, set rel(k) = 1; otherwise, rel(k) =
0. We get MAP by averaging the AP values of all the queries.

In this evaluation, we use our DKSE to encrypt the BM25
features of keywords and we also use MRSE to encrypt the
tf-idf features of keywords. The number of noise keywords
is set as U = 100, and the scale parameter of noise is set
to b = 1, b = 0.5, respectively. As shown in Table. 2, the
textual multi-keyword ranked search precision of our DKSE
is significantly higher than that of MRSE. Besides, we can
see that big d leads to a higher precision of search results.

TABLE 2
Precision Comparison of Textual Multi-keyword Ranked Search

Method P@1 P@5 P@10 MAP
MRSE (b=1) 0.1673 0.1389 0.1102 0.1395

Our DKSE (b=1) 0.2967 0.2132 0.1692 0.2661
MRSE (b=0.5) 0.1225 0.1014 0.0816 0.1095

Our DKSE (b=0.5) 0.2153 0.1536 0.1217 0.1914

7.1.2 Computational cost of DKSE

Theoretical analysis. Let |d| be the bit-length of each el-
ement in personal data and SK, |r| be the bit-length of
each divide parameter. The secret key SK = {S,M1,M2} is
generated as two (3n+m+U)× (3n+m+U) matrices and
a (3n+m+U)-dimension boolean vector, the storage cost of
SK is O((3n+m+U)2) · |d| bits. In DataEnc, each personal
data is extended into (3n+m+U)-dimension, split into two
(3n+m+U)-dimension vectors and encrypted by MT

1 and
MT

2 , respectively. The storage cost of each encrypted per-
sonal data is O(3n+m+U) · |d| bits and the computational
cost of data encryption isO((3n+m+U)2). As for TrapGen,
each search query is generated as (3n+m+U)-dimension,
split into two (3n+m+U)-dimension vectors and encrypted
by M−11 and M−12 , respectively. Since the divide parameters
are much larger than elements in personal data, the storage
cost is at mostO(3n+m+U)·|r| bits. The computational cost
of trapdoor generation is O((3n+m+ U)2). In Search, the
CS first performs Ij ·Ts and then performs n modular oper-
ations. The computational cost of Search is O(4n+m+U),
and the memory space cost is at most O(n+m) · |r| bits.

Experimental results. Here, we evaluate the computational
cost of DKSE. There are three factors affecting the running
time of DKSE, namely the Number of Personal Data (NPD),
the Number of Attributes (NA) contained in data, and the
Precision of Divide parameter (PD). To fully evaluate the
performance of DKSE, we performed experiments using
synthetic datasets with different NPD and NA. In Fig. 3(d),
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we plot the data encryption throughput of DataEnc which
varies with NA in personal data. From Fig. 3(d), we can
see that the data encryption throughput decreases with
increasing NA. Even if NA = 60, more than 2, 000 personal
data can be encrypted per second, which can meet real-time
requirements. We also plot the running time of Search vary-
ing with NA and NPD in Fig. 3(e) and Fig. 3(f), respectively.
We can observe that the running time of Search increases
linearly with increasing NA and NPD, and 10, 000 personal
data can be searched in 120 ms. Moreover, we evaluate
the running time of textual multi-keyword ranked search
in DKSE. Assume that each personal documents contain 10
attributes and all of them are in query range, there are two
factors affecting the running time of multi-keyword ranked
search, namely Number of Documents (ND) and Number
of Keywords in Dictionary (NKD). In Fig. 3(g), we plot the
running time of DataEnc varying with NKD in different
ND. We can see that the running of index encryption is
increasing with increasing ND and NKD. From Fig. 3(h),
we can notice that the running time of Search also increases
with increasing ND and NKD, 10,000 indexes with 12,000
keywords can be searched in 900 ms.

7.2 Performance of PRIDO
In this experiment, we evaluate the performance of the
proposed PRIDO framework.
Datasets. We consider three datasets, where two of them
(i.e., Pima Indians Diabetes Dataset (PIDD) and Breast
Cancer Wisconsin Dataset (BCWD)) are used by the UCI
machine learning repository4, and a synthetic dataset is
used to test all factors which affect the performance of our
framework. The PIDD is created by the National Institute
of Diabetes and Digestive and Kidney Diseases, which is
used to predict whether a female of Pima Indian heritage
suffers from diabetes. This dataset contains 768 instances,
and each instance contains 8 attributes. The BCWD is cre-
ated by Dr. WIlliam H. Wolberg from the University of
Wisconsin Hospitals, which is used to predict whether a
female suffers from Breast Cancer. This dataset contains 683
intact instances, and each instance contains 10 attributes.
We delete the useless attributes (i.e., id numbers) in BCWD.
The synthetic dataset contains 10,000 instances, and each
instance 25 attributes randomly chosen from 10 to 100.

7.2.1 Accuracy of online pre-diagnosis
Here, we use PIDD and BCWD to train naı̈ve Bayesian
classifier and decision tree classifier using our framework
for performance evaluation. For better comparison, we also
implement original naı̈ve Bayesian and decision tree algo-
rithms used in plaintext. As discussed in Section 7.1.1, we
set PD = 4 to ensure the range query precision.

Table. 3 shows that the diagnosis accuracy in our PRIDO
is evidently affected by the scale parameter b of the noise
variable δ. We can see that smaller b leads to higher accuracy
of diagnosis but lower privacy guarantee, while large b
results in higher diagnosis privacy guarantee but lower
accuracy. In other words, our scheme provides a balance
parameter for users to satisfy their different requirements
on accuracy and privacy.

4. http://archive.ics.uci.edu/ml/.

TABLE 3
Average Accuracy of Online Pre-diagnosis (Test 10 times)

Dataset BCWD PIDD
Classifier NB DT NB DT
plaintext 95.707% 94.706% 73.113% 72.281%

b=0.9 95.23% 94.79% 74.81% 72.95%
b=0.7 94.54% 93.32% 73.05% 70.97%
b=0.5 92.81% 92.43% 72.85% 70.64%
b=0.3 90.94% 90.26% 71.12% 69.84%
b=0.1 88.45% 89.05% 69.62% 68.93%

7.2.2 Computational cost of PRIDO

Theoretical analysis. Here, we analysis the complexity of
our PRIDO framework. In ReferGen, the PU generates a
(3n + m + U)-dimension training reference trapdoor Reft
according to TrapGen, where the computational cost is
O((3n + m + U)2) and storage cost is O(3n + m + U) · |r|
bits. As for DataTrans, the CS costs O(|I|(4n + m + U))
operations, where |I| is the number of personal data. The
memory space cost when performing DataTrans is at most
O(n+m) · |r| and the storage cost of transformed dataset Dt

is O(|I|n) · |r|bits. In Train, the CS cost the same operations
as the plaintext to train classifiers. The cost of DiagInit
is the same as that of ReferGen since its just generates
a new training reference trapdoor Ref ′t . The Diagnosis
performs one-time DataEnc and one-time DataTrans, which
cost O((3n+m+U)2) operations and at most O(n+m) · |r|
bits memory space.
Experimental results. In order to test all factors affecting our
framework, we use the synthetic dataset. There are three
factors which affect the running time of our framework,
namely the Number of Personal Data (NPD) used to train
a classifier, and the Number of Attributes (NA) contained
in data. In Fig. 5(a) and Fig. 5(c), we plot the running
time of our NB, DT and original NB, DT varying with
PD, respectively. We can see that the running time of all
algorithms increases with NA because more tuples need to
be calculated. In Fig. 5(b) and Fig. 5(d), we plot the running
time of our NB, DT and original NB, DT varying with
NPD, respectively. As more data need to be processed, the
running time of all algorithms increases with NPD. From
all aforementioned figures, we can see that computational
cost in our framework is comparable with the original
algorithm used in plaintext in classifier training and online
diagnosis. In the classifier training process, our framework
spends more time on DataTrans than the original algorithm,
and larger data values after transform also lead to larger
computational overhead. Similarly, the running time of our
framework is larger than that of the original algorithm in the
diagnosis process. However, only one personal data needed
to be transformed in Diagnosis, which cause it takes less
than 1 ms for a user to make an online pre-diagnosis.

7.3 Comparative Analysis
Here, we make a comparison between our work and the
most recent works of outsourced Personal Health Records
(PHR) search and privacy-preserving online pre-diagnosis
systems, which is shown in Table 4. From Table 4, we can
conclude that the recent works [3], [4], [5], [7], [9], [10]
support only one or a few functions which is important in
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Fig. 5. Average computational cost of PRIDO (test 10 times). (a) is the running time of our NB and original NB varying with PD, where PD = 4, NPD
= 1,000; (b) is the running time of our NB and original NB varying with NPD, where PD = 4, NA = 10; (c) is the running time of our DT and original
DT varying with NA, where PD = 4, NPD = 1,000; (d) is the running time of our DT and original DT varying with NPD, where PD = 4, NA = 10.

MHMN scheme as we discussed in Section 1. None of the
recent works support both digital vectors range query, tex-
tual multi-keyword ranked search, and online pre-diagnosis
efficiently. Yao et al. [3] present a scheme that just supports
digital vectors range query and the performance is limited.
Li et al. [4] proposed a scheme which supports both digital
vectors range query and textual keyword search, but its
performance is low and cannot support ranked search. Cao
et al. [10] first proposed an efficient Multi-keyword Ranked
Search over Encrypted cloud data (MRSE) scheme, but their
work just supports textual multi-keyword ranked search
and the ranking model is tf-idf, which has lower search
precision than that of BM25 model. All of the above works
just need 1 round of communication to complete the func-
tion. Several homomorphic encryption based schemes [5],
[9] are proposed to support privacy-preserving online pre-
diagnosis. However, their works only support specific clas-
sification algorithms and required 2 or 3 rounds of com-
munication, with huge communication and computational
overhead. Moreover, [3], [4], [9] are designed based on the
predicate encryption [25], which are Selectively secure un-
der the Chosen-Plaintext Attack (SCPA) model. [7] and [5]
are based on the Paillier cryptosystem [26], which are secure
under Chosen-Plaintext Attack(CPA) model. MRSE [10] is
secure under the Konwn-Background Attack (KBA) model
for computational cost saving. In order to meet the perfor-
mance requirements of the actual application scenario, our
solution is secure under the KPA model, which is weaker
than CPA and SCPA but similar to MRSE and most of the
practical searchable encryption schemes [11], [12], [13]. In
general, our solution is a trade-off between functionality,
security, and performance. Compared with the above recent
works, our work can support digital vector range query, tex-
tual multi-keyword ranked search, and online pre-diagnosis
in reasonable security.

8 RELATED WORK

8.1 Searchable Encryption

In 2000, Song et al. [27] first proposed the notion of Search-
able Encryption (SE) in the symmetric key setting. Following
this work, Curtmola et al. [28] gave the improvements and
advanced security definitions of SE. Next, Wang et al. [29]
solved the keyword ranked search problem. However, all
of the schemes mentioned above only support single key-
word search. Cao et al. [10] first defined the problem of
Multi-keyword Ranked Search over Encrypted cloud data

(MRSE) and proposed corresponding schemes based on the
Vector Space Model (VSM). To achieve higher search result
accuracy, Sun et al. [30] generated the search index based on
term frequency and the VSM with cosine similarity measure.
Next, Fu et al. [31] adopted parallel computing to increase
the effectiveness of multi-keyword search. Moreover, many
extended schemes [11], [12], [13] based on MRSE have
been proposed to meet different application requirements.
Xia et al. [11] proposed a dynamic multi-keyword ranked
search scheme which can realize dynamic update operations
(i.e., deletion, insertion, etc.). Fu et al. [12] generated a
user interest model as the importance model, which can
return search results personalized search results combining
with the keyword vector space model. To achieve smart
semantic search, Fu et al. [13] proposed a modified linear
form of Conceptual Graphs and use Conceptual Graphs as
knowledge representation. In addition, some researches [4],
[32], [33], [34] studied the SE schemes in multi-user settings.
First, Li et al. enabled efficient multi-dimensional keyword
searches with range query based on the hierarchical predi-
cate encryption. Then, Miao et al. [32] devised a hierarchical
attribute-based keyword search scheme supporting multi-
keyword search and user revocation. To achieve expressive
keyword search and improve computational efficiency, Hui
et al. [33] present a public-key searchable encryption scheme
in the prime-order groups, which allows keyword search
policies to be expressed in conjunctive, disjunctive or any
monotonic Boolean formulas and achieves significant per-
formance improvement over existing schemes. In [34], Wang
et al. proposed an efficient hidden policy ABE scheme with
keyword search, which enables efficient keyword search
with constant computational overhead and constant stor-
age overhead. Unfortunately, as far as we know, there is
currently no searchable encryption scheme that can support
machine learning.

8.2 Privacy-preserving Online Diagnosis
To provide privacy-preserving online diagnosis, many
works [5], [6], [7], [8], [35], [36], [37], [38] have been pro-
posed. Ayday et al. [36] employed logistic regression model
to calculate the disease probability while protecting the
privacy of patients. While in all the above two settings,
the prediction model is publicly known, and their proposed
schemes can only protect the patient’s information. In [35],
Bost et al. constructed three major classification protocols
based on homomorphic encryption for hyperplane decision,
naı̈ve Bayesian, and decision trees. Liu et al. also presented
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TABLE 4
Comparison Summary

Scheme Range
query

Textual
keyword

Ranking
model

Data
mining

Online Diagnosis
(Health monitoring)

# of rounds Performance Security

[3] ! % N/A % % 1 Medium SCPA
[4] ! Func 1 N/A % % 1 Low SCPA
[10] % Func 2 tf-idf % % 1 High KBA
[9] % % N/A % Binary decision tree 2 Low SCPA
[7] % % N/A % SVM 3 Low CPA
[5] % % N/A ! Naı̈ve Bayesian 2 Low CPA

Our work ! Func 2 BM25 ! Diverse algorithms 1 High KPA

Notes. Func 1: Multi-keyword search;
Func 2: Multi-keyword ranked search.

secure multiparty protocols based on Paillier cryptosys-
tem [26] for privacy-preserving naı̈ve Bayesian [5] and
single-layer neural network [6], which can help clinicians
to securely diagnose the risk of patients’ diseases. Similarly,
Rahulamathavan et al. [7] achieved Support Vector Machine
(SVM) for online diagnosis by using Paillier cryptosystem.
In addition, Liu et al. [37] proposed a privacy-preserving
reinforcement learning framework for a patient-centric dy-
namic treatment regime. Unfortunately, the computational
and communication overhead of all these homomorphic
encryption based schemes is huge. To improve efficiency,
Zhu et al. [8] proposed a novel framework based on
lightweight multi-party random masking and polynomial
aggregation techniques that greatly improve the prediction
efficiency without disclosing any sensitive medical informa-
tion. Moreover, Zhang et al. [38] present an efficient and
privacy-preserving disease prediction system. They trained
prediction models by using Single-Layer Perceptron (SLP)
learning algorithm and utilize random matrices to protect
the privacy and facilitate secure outsourced computation of
SLP. However, none of the above privacy-preserving online
diagnosis is able to achieve secure search on encrypted data.

9 CONCLUSION

In this paper, we proposed practical techniques for diverse
keyword search, data mining, and online pre-diagnosis over
encrypted cloud data. By taking our scheme, the CS can pro-
vide range query and textual multi-keyword ranked search
services for HU in a privacy-preserving way. Furthermore,
HU could use big medical dataset stored in CS to train clas-
sifiers, and then applied the classifier for disease diagnosis
without compromising the privacy of PU. Thorough privacy
analysis and performance analysis demonstrated that our
scheme is practicable. As a part of future work, we will
continue to improve the security of our work.
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