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Abstract�Fog computing brings the cloud closer to a user with the help of a micro data center ( mdc), leading to lower response times
for delay sensitive applications. RT-SANE (Real-Time Security Aware scheduling on the Network Edge) supports batch and interactive
applications, taking account of their deadline and security constraints. RT-SANE chooses between an mdc (in proximity to a user) and
a cloud data center (cdc) by taking account of network delay and security tags. Jobs submitted by a user are tagged as: private,
semi-private and public, and mdcs and cdcs are classi�ed as: trusted, semi-trusted and untrusted. RT-SANE executes private jobs on a
user’s local mdcs or pre-trusted cdcs, and semi-private and public jobs on remote mdcs and cdcs. A security and performance-aware
distributed orchestration architecture and protocol is made use of in RT-SANE. For evaluation, workload traces from the CERIT-SC
Cloud system are used. The effect of slow executing straggler jobs on the Fog framework are also considered, involving migration of
such jobs. Experiments reveal that RT-SANE offers a higher �success ratio� (successfully completed jobs) to comparable algorithms,
including consideration of security tags.

Index Terms�Fog computing, mobile data center, cloud data center, security aware services, real-time systems.

F

1 INTRODUCTION

I N ternet of Things (IoT) enabled devices are now in-
creasingly generating large amounts of data. In real-time

systems, there is a requirement for this data to be processed
within a speci�ed deadline [9]. Although numbers may
vary (across Gartner, Cisco and other market forecasts), it
is estimated that we will have multi-billion Internet enabled
devices by 2020 [26]. Hence, there is a strong need to con-
struct distributed systems that can be successful in analyz-
ing �big data� produced from these IoT devices. There has
also been signi�cant hardware innovation over recent years,
with servers of the not so distant past being of comparable
performance to current day mobile phones. Availability
of such user-owned devices have enabled processing of
data intensive applications in geographical proximity to
users. A cloud data center (cdc) can be used to process
the data that is generated by such IoT devices [15], and is
the most dominant execution mode currently being used.
The downside is the signi�cant network latency involved
between the cdcand the IoT devices. Real-time applications
would however miss their processing deadlines by the time
their data reaches the cdc [18]. Multi-user gaming, im-
age/video rendering, audio/video content streaming, smart
& autonomous cars, etc. are some examples of real-time
applications that have such latency-sensitive processing re-
quirements.

By using the network edge to perform as much com-
putation as possible [3], one can get around the latency
that would be involved if application data was sent across
the network to the cloud. Switches, routers, gateways are
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examples of some edge devices that can execute jobs that
would have been scheduled to run at the cloud data center.
Bittencourt, Lopes, Petri and Rana [15] and Dastjerdi,
Gupta, Calheiros, Ghosh and Buyya [17] discuss the edge
computing paradigm, where access points are used by ap-
plications to retrieve and transfer the data to a cdc. These
access points may be enhanced to provide both storage
and computation capacity at the edge of the network, and
would be referred to as mdcs (also known as cloudlets).
The communication between phones, mdcs and the cdc is
as follows: smart phones , mdcs , cdc. Moreover, peer-
to-peer communication between the various mdcs is also
possible. This communication is needed for the storage of
the execution states of applications, and may be used to
preempt applications from their local mdc, on the account
of mobility, and to later resume applications on a new mdc.

Additionally, based on their characteristics and QoS
requirements, applications may broadly be classi�ed into
two categories: interactive and batch [29]. Interactive tasks
are typically less compute intensive, and require real-time
performance, i.e. the task should be �nished by a speci�ed
deadline. Batch jobs, on the other hand, are more compute
intensive, and may not have a real-time requirement. Intu-
itively, interactive tasks may be executed on the edge, i.e.
on the mobile data centers (mdcs) � to limit the latency
associated with sending data to a cloud data center. Two
types of cdcs have been considered for the execution of
batch jobs: private and public cdcs. Private cdcs are more
secure than public cdcs, but this is provided at an extra cost
[32]. Applications that require high security and can tolerate
latency can be run on these securecdcs[33], [34].

Privacy and security capabilities in Cloud computing
depend on security controls offered by a provider. These can
range from the types of encryption algorithms they support,
facilities for data anonymisation to hosting locations of
data centres employed as part of their deployment strategy.
Rahulamathavan and others [37] investigated risk of a data
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breach (i.e. user data privacy concern) associated with data
center hosting. The security tags identi�ed in this work are
based on the analysis undertaken in [37] � whereby data
privacy is associated with the types of capabilities offered
by a provider and included as a tag to support discovery of
an mdc or cdc(depending on the audited security capability
based on these security controls). A similar approach is
adopted by the Cloud Security Alliance, which makes use of
self-certi�cation through a �Cloud Controls Matrix� security
methodology for Cloud providers 1. We consider 16 data
privacy controls from [37] to support the inclusion of such
security tags for both mdcs and cdcs.

In this paper, we introduce a scheduling algorithm
called RT-SANE, that addresses both the privacy/security
and real-time performance requirement of application jobs
amalgamating an mdc and a cdc. In RT-SANE, interactive
applications that are private to a user are constrained to run
only on their local mdc, while private batch applications
are constrained to be run on the private cdc. Applications
that are semi-private (i.e. those that involve use of a data
set held at the cloud data center) are sent to the local cdc
(either private or public). Finally, applications that belong
to the public category, may be executed at a remote mdc
or a cdc (either private or public). As interactive jobs have
stringent deadline requirements, they are executed on the
local or foreign mdcs, provided one with spare capacity is
available. Batch jobs are assumed to haveloose/�exible or
no deadlines, and are executed on thecdcs.

The rest of this paper is structured as follows. Related
work covering combined use of fog/edge resources and a
cloud system is discussed in section 2. Section 3 introduces
a novel distributed orchestration architecture and protocol.
Section 4 discusses the system model and provides a for-
mulation of the research problem. The proposed algorithm
RT-SANE is described in section 5. Section 6 talks about the
results of various simulations that have been carried out.
Finally, section 7 provides conclusions that can be drawn
from this work.

2 RELATED WORK
Edge computing infrastructure can provide bene�t for ap-
plications with stringent latency and response time require-
ments, such as gaming and stream processing, enabling
some initial processing to be carried out closer to the
user device/data generation source. Additionally, where the
network connecting a user device to a cloud data center
can fail or have a variable availability pro�le (i.e. network
Quality of Service can change signi�cantly over time, in
unpredictable ways), edge resources can either: (i) support
an approximate version of capability that would be carried
out within a data center [30], or (ii) enable adaptation
of a pre-generated model to be carried out [27], enabling
subsequent re-synchronisation of this model with the cloud
once the network connection is re-established. The use of
edge resources also has a bearing on issues around data
ownership and trust in a cloud data center provider, as data
shared with a cloud provider can be directly viewed and
searched.

Scheduling across edge computing resources has also
been explored by a number of authors. In [25], iFogStor

1. https://cloudsecurityalliance.org/working-groups/cloud-
controls-matrix/

and iFogStorZare proposed to support scheduling � the �rst
uses an Integer Linear Programming-based approach to �nd
an optimal result, whereas the second uses a heuristic to
create an approximate result at lower computational cost.
However many of these approaches [24], [25] do not con-
sider application deadlines. A mobility-aware scheduling
algorithm (and a survey) is proposed in [12], but no support
for deadline-centric tasks is provided. This aspect also aligns
with focus on understanding how services can be mapped
to edge resource, considering a group of possible edge nodes
on which such resources can be hosted. Skarlat and others
[19] show how this can be modelled as an optimisation
problem, focusing on the reduction of communication de-
lay between different services within a work�ow (using a
genetic algorithm to �nd possible solutions to this problem)
and realised through the use of a cloud-fog middleware.

Some researchers have characterized and compared
�real-life� workloads [28], [29]. In [29], Google’s data center
workloads have been studied, including over 25 million
tasks, spread over 12,500 hosts. The following characteristics
were studied � job length, job submission frequency, job
resource utilization (both CPU & memory). Two kinds of
jobs were studied: short interactive jobs and long grid jobs.
These workloads may be fed as input to algorithms that
schedule jobs on fog networks.

Approaches used in real-time scheduling also align with
the focus of this work [9], [10], [11], with limited coverage of
support for edge networks [14]. This work is an extension of
[31], where we considered jobs whose characteristics were
randomly generated. In this paper, we consider �real-life�
workloads from the Czech CERIT Scienti�c Cloud (CERIT-
SC) [28], consisting of both interactive & batch jobs. Interac-
tive jobs require fast response times, e.g. a keyword search.
On the other hand, a batch job is computationally intensive,
with little or no I/O. This workload is typical of other data
centers, where this mix of interactive & batch jobs can be
observed.

3 DISTRIBUTED ORCHESTRATION ARCHITECTURE
& PROTOCOL

3.1 Distributed Orchestration Architecture

Fig. 1. Distributed Orchestration Architecture (DOA) for Edge Comput-
ing

A centralized architecture for orchestration is much sim-
pler and easier to implement. However, such an architecture
has a number of shortcomings from the perspectives of
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security and performance. First, a centralized architecture
is less resilient to failure due to a single point of failure. An
attacker can launch a Denial of Service (DoS) attack. Second,
the centralised orchestrator is often deployed in a cloud. The
consequence of such cloud deployment is that the frequent
communication needed between the edges and cloud intro-
duces extra latency. To overcome these challenges, a fully-
decentralized distributed orchestration supported by an un-
derlying collaborative multi-agent system is introduced. In
our distributed architecture, an orchestration agent resides
on each computing device. Across the different nodes being
used in the system, these agents create instances that are
speci�c to each job. These agents cooperate with each other
with the aim of attaining a system wide goal. For example,
a goal could be the completion of a job on-time with min-
imum cost and meeting the speci�ed security and privacy
requirements. Deploying Orchestration Agents (OAs) and
proxies can be a time consuming process however, and
we assume that these either already exist, or their one-
off deployment time is lower than processing requirements
over an application lifetime.

Figure 1 shows a conceptual architecture of our proposed
distributed orchestration mechanism for edge computing.
As illustrated in the �gure, a user has a mobile device (D x )
which can perform a number of activities; for example, it
could generate and process data, execute a computational
job, receive the output as a result of the execution of jobs,
and trigger actions on the output received. We refer to a
unit of work as a job/task. Both terms, job and task, are
used interchangeably in this paper. In our illustration, we
consider that each user device has a network connection
to its local mdc (referred to as ml ), which is capable of
executing jobs with low latency, and is trusted by its local
(home) devices D x . We also assume that eachmdc has a
connection with at least one cdc. The homepublic cdc(clpu )
is semi-trusted. The implication for this is that it can execute
the requested jobs. However, what it cannot do is guarantee
that the privacy requirements of jobs and data is satis�ed.
Private local and remote cdcs are assumed to be trusted.
Other non-local/remote mdcs : mf and public cdcs :cfpu
are assumed to be untrusted.

3.2 Best Effort Orchestration Protocol
Based on the components of our distributed orchestration
architecture above, a protocol for interaction between these
components is proposed. We consider three different cases:
(a) local mdc : ml takes control of the execution of the job
(b) local cdc : clp =clpu , takes care of the execution of the job
and (c) a remotemdc : mf is responsible for the execution of
the job. A sequence diagram for these three different cases
is provided in Figure 2. The aim here is to demonstrate a
best effort orchestration protocol, without taking account of
exception scenarios such as failures, attacks, message losses,
etc.

In the �rst case, a device (D 1) submits a job submission
request to its local mdc (mdc1). We assume thatmdc1 meets
all the speci�ed requirements of cost, deadline and security
for the submitted job. The OA sends positive acknowledge-
ment to D1. By default, this job is executed at the local mdc,
with results sent back to D1 on the completion of the job.
Since a device trusts its local mdc, the job execution occurs
at the highest level of security.

In the second case, we assume that a deviceD1 submits
a job request that cannot be executed on the localmdc. This
could happen for a number of reasons � such as a busy
mdc executing another job, the mdc does not have enough
resources to execute the job or it is cheaper to execute the
job at the cdc. For instance, in the scenario where themdc
is busy, the job to be executed cannot meet the deadline
if it waits in a queue. In such cases, the local instance of
orchestration agent OA interacts with a cdc (cdc1) to create
a proxy OA. The OA forward the request of D1 to cdc. The
cdc agent takes over the responsibility of the completion
of the job. The job is directly submitted to cdc. When the
cdc completes the job, the result is returned to D1. This is
an example of a scenario in which a job is executed on a
resource that is semi-trusted. Moreover, the job is also able
to meet the dual requirements of deadline and cost.

In the third case, we assume that the home cdc (cdc1)
cannot meet the requirements for the job to be executed
locally. Then the request of D1 is forwarded to other cdcs
or mdcs. If any of them is capable of executing the job at
that time the acknowledgement is sent to D1 directly and
then the job is submitted to it.

4 SYSTEM MODEL

TABLE 1
Mathematical Symbols

C cdc set
clp ; cfp ; clpu ; cfpu Local, remote, private & public cdcs

M mdc set
m l ; m f Local and remote mdcs

JS Job set
I Interactive task set
B Batch task set
D Device set
D i Particular device D i 2 D
i j Speci�c interactive task 2 I
bj Speci�c batch task 2 B
Tt Tag set allocated to tasks
Tr Tag set allocated to resources

tp ; t sp ; t pu Private, semi-private, public task tags
tht ; t st ; t ut Trusted, semi-trusted, untrusted resource tags

cp(m) capacity of mdc m 2 M
cp(c) capacity of cdc c 2 C

et Execution cost of a part of i j or bj
st Start time of task i j or bj
ct Completion time of task i j or bj
d Deadline for task i j or bj
cd Communication delay

DC system Deployment cost
UTsystem System utilization

In this section, we provide a formulation of the research
problem (using the notation in Table 1) and a possible
system model. We consider C = fc 1; c2; c3; ::::; cO g, which is
a set ofO cdcs. Based on its functionality, a cloud data center
c can be in one of four categories: local private (denoted by
clp ), local public (denoted by clpu ), foreign private (denoted
by cfp ) or foreign public (denoted by cfpu ). A cdc is linked
to a set of Z mdcs, given by M = fm 1; m2; m3; ::::; mZ g.
The resources available to support job execution consist
of the various mdcs and cdcs. Similar to a cdc, an mdc
m 2 M can also fall into one of two categories: a local
micro data center (denoted by ml ) or a foreign micro data
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Fig. 2. Sequence diagram illustrating the Orchestration Protocol

center (denoted by mf ). Every one of the mdcs has an
execution rate/capacity cp(m). The units of this is MIPS
(i.e. Millions of Instructions per Second). For evaluation,
we have used a simulator called iFogSim [6] � which also
uses MIPS to specify computational capacity � this unit is
therefore used to provide compatibility with the simulator.
Besides MIPS, other alternatives metrics can also be used to
measure computational capacity and job execution capacity
of a cloud or micro data center. We also assume that all mdcs
demonstrate identical execution pro�les. This means that
a particular job needs the same amount of time on all the
mdcs. Our model can however be easily extended to handle
the case of �heterogeneous� mdcs. We assume a network
connection, with bandwidth bw, exists between each cdcc
and each mdc m.

The set of all user devices is represented by: D =
fD 1; D2; D3; ::::; Dn g. There is a set of jobs/applications, i.e.
JS, that need to be executed on acdc or an mdc, whether
local or foreign. The set JS consists of sets for interactive
and batch jobs, i.e.JS = fI; B g. Two categories of jobs are
assumed, let I = fi 1; i 2; i 3; ::::i gg be the set of interactive
jobs. These jobs demand a short response time from the
fog network. Let B = fb1; b2; b3; ::::; bh g represent the set
of batch jobs. These are computationally intensive tasks,
with little or no I/O involved. Such jobs aim to maximize
resource utilization. The jobs in this work are real-time in
nature. Hence, they need to �nish their execution before the
allocated deadline. Moreover, we consider the case of non-
preemptive jobs. This means that a job, once started, may
not be preempted by another job.

In order to model the security aspect, each job i j 2 I
and bj 2 B , is assigned a security tag. Such a set of tags is
given by Tt = ft p; tsp ; tpu g. Tag tp is meant for �private�
jobs. Such private jobs can be run only on the local mdc ml
associated with a user or private cdc. Tag tsp is meant for
�semi-private� jobs. These are to be run on the local mdc ml
or the local cdc clp /c lpu of a user. Lastly, tag tpu is meant for

TABLE 2
Assignment of jobs to processors

tht tst tut
tp Yes No No
tsp Yes Yes No
tpu Yes Yes Yes

�public� jobs. These tasks can be on any execution resource
- i.e. and cdc; cfp =cfpu or mdc; mf . According to the job tag
assigned, the notation of an interactive job i j 2 I becomes
i jp , i jsp or i jpu respectively. Likewise, the notation of a batch
job bj 2 B becomesbjp , bjsp or bjpu respectively.

Likewise, we allocate a security tag to every execution
resource. Such a set of tags is given byTr = ft ht ; tst ; tut g.
Tag tht is meant for �highly trusted� resources. These would
be the local mdc; ml of a user and private cdc; clp =cfp .
Tag tst is meant for �semi-trusted� resources. These would
be the local public cdc; clpu of a user. Lastly, tag tut is
meant for �untrusted� resources, for example, mdcs, mf
and public cdcs,cfpu . These are outside the home coverage
area of users. The allocations between jobs and resources
is depicted in Table 2. A value of ’Yes’ means that we can
allocate a particular job to a particular execution resource.
On the other hand, a value of ’No’ implies that the allocation
between a job and an execution resource is not allowed.

The quantity et represents the execution cost of a job. The
start time of task is denoted by st. In this work, we assume
that all the jobs are �independent�. This means that there is
no precedence among jobs. Therefore, we can safely assume
that all jobs may start at time = 0. Each job has a completion
time, which is represented by ct.

For a particular job with a private security tag, it follows
that, ct(i jp ) = st(i jp ) + et(i jp ). Owing to the privacy
constraints, a private job i jp can be executed only on a local
mdc ml .
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The quantity cd(i jp ; ml ) represents the communication
delay associated between job i jp and ml , which is its local
mdc. The bandwidth of the network connection between a
user and her ml is denoted by bw. Each user transmits data
of a particular size, which is represented by s(i jp ). It takes
an amount of time to initialize the network link, and this
is represented at t. The cost associated with conveying the
state of job i jp is represented assc(i jp ; ml ). The communica-
tion cost between a task i jp and its ml can now be modeled
as shown in equation 1. Note that equations 1 and 3 are
general in nature and the parameters and their values may
depend on the speci�c execution environment.

cd(i jp ; ml ) = t + sc(i jp ; ml ) +
s(i jp )

bw
(1)

Since the tasks assigned toml are real-time, it is imper-
ative that they �nish their execution before the assigned
deadline. This constraint may be represented as shown in
equation 2.

st(i jp ) + et(i jp ) + cd(i jp ; ml ) � d(i jp ) (2)

Similarly the semi-private & public interactive jobs (i jsp
& i jpu ) will be executed. Job i jsp can be executed onml or
clp or clpu while job i jpu can be executed on any device that
has enough capacity to accommodate it. However, priority
for job execution will be given to the nearest available
device.

Private batch jobs may be of�oaded to the local cloud
data center clp for execution. The quantity cd(bjp ; clp ) rep-
resents the communication latency between bjp and clp .
Formally this is represented as equation 3.

cd(bjp ; clp ) = t + sc(bjp ; clp ) +
s(bjp )

bw
(3)

In this case, we run task bjp on its local cdc; clp . Note that
the bjp needs to �nish prior to the expiry of its deadline.
Equation 4 represents this condition:

st(bjp ) + et(bjp ) + cd(bjp ; clp ) � d(bjp ) (4)

Similarly the semi-private & public batch jobs ( bjsp & bjpu )
will be executed. Job bjsp can be executed on clp or clpu
while bjpu can be executed on clp or clpu or cfp or cfpu .
However, priority for job execution will be given to the
nearest available device.

Note that the mdcs may already be executing tasks prior
to dispatching more tasks to them. Hence, it should not be
the case that dispatching i jp to ml leads to the missing
of deadlines of tasks(s) that are already running or are
scheduled to run. The quantity J (m l ) represents the set
of tasks that are already executing on an mdc; ml . Let us
denote et(i jp ) as the run cost/time of a task i jp 2 J (m l ).
Now, we may pick a task i 0 for execution on an mdc; ml , if
and only if equation 5 holds.

8i jp 2 J (m l ); 8ml 2 M; st(i jp )+et(i jp )+cd(i jp ; ml ) � d(i jp )
(5)

Note that similar equations (numbers 1 - 5) need to hold
for each interactive jobs i jsp ; i jpu 2 I , and for batch job
bjp ; bjsp 2 B as well.

The number of interactive tasks is denoted by g and the
number of batch tasks is denoted by h. This includes the
sum of all private, semi-private and public batch jobs. Let
the sum of both interactive and batch jobs be given by y,
such that y = g+ h. Further, we denote the number of tasks
that �nish their execution before their deadlines as y0. Note
that y0 � y. A popular metric to evaluate the performance
of a real-time system is called Success Ratio (SR), which is
simply the number of tasks that �nish execution before their
deadline divided by all the jobs examined for execution.
Formally, we may state that SR = y0

y . The Success Ratio
assumes signi�cance in a distributed system, as it has an
impact on the correctness of running an application.

An important metric that needs to be considered is
the cost of deployment of mdcs and cdcs. These costs are
denoted by DC (m) and DC (c). This corresponds to the
monetory cost of keeping these devices in operation, for
running the various jobs. These devices may be leased
from various service providers. The costs due to power and
cooling also need to be considered. The deployment cost
would therefore depend on how long the mdcs and cdcs
are up and running. Now, DC (m l ) denotes the deployment
cost of a particular ml 2 M . There are multiple parts
in DC (m l ). One part is cd(i jp ; ml ), which is the network
communication latency between a private task i jp and a
local mdc; ml . The mdc needs to wait till the job is received
over the communication channel. Next is, t(m l ), which is
the sum of execution costs of all jobs assigned to ml . This
is directly proportional to the operation time of the server,
while it is running the tasks. On combining the above parts,
we come up with equation 6 that models the deployment
cost for eachmdc; ml 2 M :

DC (m l ) =
N ( j p ;m l )X

j =1

cd(i jp ; ml ) + t(m l ) (6)

The total number of jobs assigned to an mdc is denoted
by N (j; m). Here, j may be interactive or batch, private or
semi-private of public. Likewise, m may be local or foreign.
Similar notation would exist for jobs assigned to cdcs as
well. Next, et(i jp ; ml ) models the execution cost of a task
i jp assigned to ml . Here, t(m l ) can be represented in the
form of equation 7.

t(m l ) =
N ( j p ;m l )X

j =1

et(i jp ; ml ) (7)

Likewise, there will be a deployment cost DC (m f ) for
all mf 2 M . These equations are similar to equations 6 and
7, and have been omitted owing to space constraints.

Similar to DC (m l ) described in equation 6, the deploy-
ment costs of all mdcs mX 2 M is represented below as
equation 8. M here is the set of all mcs, local and foreign.

DC (M ) =
ZX

X =1

DC (mX ) (8)

In a similar manner, equation 9 models the deployment
cost of a local cdc; clpu .

DC (clpu ) =
N ( j pu ;c lpu )X

j =1

cd(bjpu ; clpu ) + t(c lpu ) (9)
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Here, cd is the communication delay between a public
batch job bjpu and the cdc. Note that the cdc needs to wait
till it receives the job over the communication network. The
quantity t(c lpu ) represents the sum of execution costs of all
jobs executed on the cdc. This is directly proportional to
the operation time of the cdc, and is given by the following
equation 10:

N (j pu ;c lpu )X

j =1

et(bjpu ; clpu ); 8bjpu 2 J (clpu ) (10)

Likewise, there will be a deployment cost DC (cfpu ),
DC (clp ), DC (cfp ) for all cfpu ; clp ; cfp 2 C. These equations
are similar to equations 9 and 10, and have been omitted
owing to space constraints.

Similar to DC (clpu ) shown above in equation 9, the
deployment costs of all cX 2 C is represented below as
equation 11. C here is the set of all cdcs, local and foreign.

DC (C ) =
OX

X =1

DC (cX ) (11)

Lastly, we represent the total cost of deployment of all
cdcs &mdcs, in the form of equation 12.

DCsystem = DC (M ) + DC (C ) (12)

Since the deployment costs are directly related to the
time for which the mdcs are up and running, the goal is
to minimize these costs. This is done by minimizing the
number of mdcs used. Another mdc is considered for job
execution only if the local mdc is overloaded.

Next, we de�ne utilization (UT) , which is the percentage
of time that an execution resource (mdc or cdc) is busy
executing jobs. The value of UT will be in range f0 � 1g. In
order to justify leasing/purchase costs, the utlization needs
to be maximised. We model the utilization of a particular
mdc, ml 2 M using equation 13.

UTm l =
P N (j p ;m l )

j =1 et(i jp ; ml )
cp(ml )

; 8i jp 2 J (m l ) (13)

Similarly, we calculate the utilization of an mdc; mf 2
M , which is given by UTm f .

Likewise, we can represent the utilization of a cdc,cX 2
C in the form of equation 14.

UTclpu =
P N ( j pu ;c lpu )

j =1 et(bjpu ; clpu )
cp(clpu )

; 8bjpu 2 J (clpu ) (14)

The total utilization of all the mdcs is obtained by adding
the utilization for all individual mdcs, and is given by
equation 15. Here, mdc mX can be local or foreign.

UT(M ) =
ZX

X =1

UTm X ; 8mX 2 M (15)

Likewise, the total utilization of all cdcs is obtained by
adding the utilization for all individual cdcs, and is given
by equation 16. Here, cdc cX can be local or foreign.

UT(C ) =
OX

X =1

UTcX ; 8cX 2 C (16)

The total system utilization is obtained by adding
UT(M ) and UT(C ), and can now be represented in the
form of equation 17.

UTsystem = UT(M ) + UT(C ) (17)

We now represent the optimization problem that needs
to be solved:

Maximize SR, i.e. maximize y0

n and UTsystem , while
minimizing DCsystem ; 8mX 2 M; 8cX 2 C. Note that this
is based on the constraints between tasks and execution
resources, that are depicted in table 2. Note that this takes
care of the privacy issues of the users. By maximizing the
Success Ratio (SR), we are ensuring that as many tasks as
possible meet the following conditions: 8i jp 2 I; 8bjpu 2
B; 8mX 2 M; 8cX 2 C; 8ui 2 U, the following equations A
and B need to hold:

st(i jp ) + et(i jp ) + cd(i jp ; ml ) � d(i jp ) (A)

st(bjpu ) + et(bjpu ) + cd(bjpu ; clpu ) � d(i jpu ) (B )

Similar equations (numbers A - B) would need to hold
8i jsp ; i jpu , as well as for 8bjp and bjsp 2 B .

5 PROPOSED SCHEME: RT-SANE
In this section, we describe in detail our proposed schedul-
ing scheme RT-SANE. As mentioned earlier, on page 4, jobs
may be assigned one of three security labels: � the label tp
is assigned to tasks that are private, the label tsp is allocated
to tasks that are semi-private, and �nally, public tasks are
assigned a label of tpu . In a similar fashion, the execution
resources are also assigned one of three security labels: � the
label tht is reserved for resources that are highly trusted, the
label tst is for resources that are semi-trusted, and �nally,
untrusted resources are allocated a label of tut . Note that
either an mdc, or a cdc could represent a resource. For a
particular task i j 2 I , or bj 2 B , it is assumed that ml ,
clp & cfp are trusted. Additionally, clpu is semi-trusted, and
other mdcs and cdcsfall under the untrusted category. Note
that ml , clp and clpu stand for the local mdc, private cdc
and public cdc respectively. The sets of tasks that need
to be executed - I & B , are partitioned into 2 queues.
All interactive jobs go to queue Qi , and all batch jobs are
sent to queue Qb. There are some schedulability conditions
that need to hold in our proposed algorithm. These are as
follows:

� MDC deadline condition (C 1): st(i jp ) + et(i jp ) +
cd(i jp ; ml ) � d(i jp ).

� CDC deadline condition (C 2): st(bjpu ) + et(bjpu ) +
cd(bjpu ; cfpu ) � d(bjpu ).

� MDC spare capacity condition (C 3): 8i jp ; 8ml ,
et(i jp ) � (cp(ml ) �

P N (j p ;m l )
j =1 et(i jp ; ml )).

� CDC spare capacity condition (C 4): 8bjpu ; 8cfpu ,
et(bjpu ) � (cp(cfpu ) �

P N (j pu ;c fpu )
j =1 et(bjpu ; cfpu )).

Note that similar schedulability conditions would need
to hold for all semi private, public interactive and batch
jobs, as well as for all local and foreign mdcs and cdcs.
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Conditions C1 & C2 ensure that all job deadlines are met.
Conditions C3 & C4 ensure that jobs are assigned to re-
sources for execution only if there is suf�cient spare capacity
available on the resources.

The proposed algorithm is non-preemptive. This means
that once a job starts running on a mdc or cdc, we cannot
block the execution of this job in order to run some other job.
In the algorithm, job i j 2 I could be private, semi private
or public - i jp ; i jsp ; i jpu . Likewise, job bj 2 B could also
be private, semi private or public - bjp ; bjsp ; bjpu . The steps
of RT-SANE are as follows. First, we calculate the following
mathematical quantities for all i j 2 I , and for all bj 2 B : st
(start time), ct (completion time), cd (communication delay).
The scheduling queues Qi and Qb are populated with the
interactive and batch jobs, respectively. Next, based on the
EDF algorithm, we sort all jobs in the queues in a non-
decreasing order of their deadline values. Hence, the �rst
job in the queue has the least deadline. In the event that
more than one job has the same deadline, the execution
sequence is done on a random basis. The scheduler now
makes an attempt to execute all private jobs on their ml ,
subject to the the meeting of conditions C1 and C3 (deadline
and spare capacity conditions). If this does not happen,
the jobs have no choice but to wait and try execution at
a later instance of time. Note that in the case of private jobs,
they can only be executed on their local mdc, and nowhere
else. The preemption of job execution is carried out by the
distributed orchestrator. The schedule tries to execute all
jobs that are semi-private and public on ml or cl . However,
in case these are already executing jobs to their full capacity,
the scheduler sends these jobs to a remotemdc or cdc for
execution. If, for a remote mdc, both conditions C1 and C3
are successfully satis�ed, the job may be executed there. In
case this is not feasible, the scheduler sends the job to a
remote cdc for execution. Note that irrespective of the mdc
or cdc used to execute jobs, both the �deadline� and the
�spare capacity� condition need to be satis�ed.

5.1 RT-SANE Analysis
Now, we carry out the analysis of the proposed algorithm
RT-SANE. Let y, be the total number of jobs that need to
be scheduled in the system, such that y = g + h. Here, g is
the number of interactive jobs, and h is the number of batch
jobs. Likewise, let w be the total number of mdcs and cdcs,
such that w = Z + O. Here, Z is the number of mdcs and
O is the number of cdcs. Here,y includes all private, semi-
private and public jobs, and w includes all highly trusted,
semi trusted and un-trusted mdcsand cdcs. In the �rst stage
of RT-SANE, the quantities st, ct and cdare calculated for all
jobs. The complexity of this stage is O(y � w). The next stage
involves the addition of all jobs to the queues Qi and Qb.
The complexity of this stage is O(y). In the next stage, both
queues are sorted in increasing order of job deadlines. The
complexity of this stage is O(y2). In the next stage, we check
the spare capacity and deadline condition for all jobs. The
complexity of this stage is O(y � w). The next step involves
assigning the jobs to the mdcs and cdcs. The complexity
of this step is O(y + w). Finally, we calculate the DC and
UT values, for a complexity of O(y + w). On adding all
these terms, the complexity of RT-SANE becomesO(y � w)+
O(y) + O(y2) + O(y � w) + O(y + w) + O(y + w) = O(2 �
y � w) + O(2 � (y + w)) + O(y) + O(y2). Now, we also know

that the total number of jobs is much greater than the total
number of mdcs and cdcs, soy � w. Therefore, the above
equation evaluates to � O(y2).

Algorithm 1 RT-SANE
1: procedure RT-SANE
2: Compute quantitiesst, ct, cd, 8i j 2 I; 8bj 2 B .
3: Fill Qi & Qb with tp, tsp & tpu jobs.
4: Order Qi & Qb in non-decreasing deadline sequence.
5: 8i j ; bj with tag tp:
6: if (C1 holds for ml ) && (C 3 holds for ml ) then
7: schedulei j on ml .
8: else
9: try job submission in future.

10: end if
11: if (C2 holds for clp ) && (C 4 holds for clp ) then
12: schedulebj on clp .
13: else
14: try job submission in future.
15: end if
16: 8i j ; bj with tags tsp or tpu :
17: if (C1 is met on ml ) && (C 3 is met on ml ) then
18: schedulei j on its local mdcml .
19: end if
20: if (C2 is met on clpu =clp ) && (C 4 is met on clpu =clp )

then
21: schedulebj on its local cdcclpu =clp .
22: end if
23: if (C1 is met on mf ) && (C 3 is met on mf ) then
24: schedulei j on a remote mdcmf .
25: end if
26: if (C2 is met on cfpu =cfp ) && (C 4 is met on cfpu =cfp )

then
27: schedulebj on a remote cdccfpu =cfp .
28: end if
29: Compute quantitiesDC , UT, 8m; c 2 M; C .
30: end procedure

6 SIMULATION RESULTS

Now, we elaborate on the simulation results that we have
done with the goal of performance evaluation of the pro-
posed algorithm RT-SANE. We have used sample situations
that agree with our proposed Distributed Orchestration
Architecture (DOA), explained in �gure 1. The proposed
algorithm RT-SANEhas its roots in this architecture and pro-
tocol. The following three cases can arise in the orchestration
protocol:

� Tasks (whether interactive or batch) are executed on
their local mdc ml .

� Tasks are run on their local private cdc clp or local
public cdc clpu .

� Tasks are run either on a foreign mdc mf , or on a
foreign cdc cfp or cfpu .

As far as the security requirements are concerned, ml ,
clp are trusted, clpu is semi-trusted, and mf s, cfpu s are
untrusted.

Different cloud systems vary in their performance pro-
�les, and the results are likely to change depending on the
system we use. This has also been demonstrated through
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benchmarking of cloud systems in the past, where different
choice and combinations of VMs lead to differing appli-
cation execution pro�les [35], [36]. Based on this analysis,
our focus in this paper has been to investigate bounds
on performance using various scheduling strategies. Our
results align with trends observed in the above publications.

We have compared RT SANE with iF ogStor [25],
another scheduling algorithm for the edge-cloud architec-
ture. iF ogStor is a non-real time data placement technique
in the fog environment that uses heterogeneity and geo-
location to assign tasks to the edge and the cloud hosts
so that the overall system latency is minimised. iF ogStor
divides the fog nodes into zones. A zone contains the fog
devices that are in the same geographical area. The task
placement is done in the same zone to reduce the total delay.
Heterogeneity is used to �nd a suitable host, as a job may
only execute on a speci�c kind of host.

6.1 Workload
For the simulations, we have considered the workload from
the CERIT-SC system [28], which is a scienti�c cloud from
Czechoslovakia, hosted by Masaryk University. This cloud
has a capacity of roughly 5500 CPU cores & 5 Petabytes of
storage. Roughly 75% of the CPU cores are virtualized, and
the remaining cores are used for �bare metal� applications.

The workload was collected for a period of one year, i.e.
2016. This workload is mixed and consists of two types of
jobs � cloud VMs and grid jobs. By de�nition, the grid jobs
are computationally intensive, and request more CPUs. On
the other hand, cloud VMs are less demanding of the CPU.
Hence, grid jobs may be executed on the cdcs, and the VMs
may be executed on themdcs.

The Fog environment considered for simulations con-
sists of 12 mdcs (i.e. Z = 12) and 1 cdc (i.e. O = 1). The
communication delay (cd) from a device D i to an mdc is
5 milliseconds and from D i to a cdc is 105 milliseconds
(5 milliseconds from the D i to the proxy server and 100
milliseconds from the proxy server to cdc). The capacity
of each mdc, cp(m) has been taken as 3500 MIPS and the
capacity of the cdc,cp(c) has been taken as 60000 MIPS. The
bandwidth (bw) from user to mdcs is 1000mbpswhile from
proxy server to the cdcis 4000mbps. The number of jobs (i.e.
Job SetJS) varies from 180 to 300 and the execution costs of
these jobs (i.e.et) varies from 155 to 9786 MIPS. Each job
represents a user with mobile device (D x ). Except section
6.5, we assume that 60% of the jobs are interactive, and 40%
of the jobs are batch. iFogSim does not provide the means
to model the network link initializing time t, or the cost to
transfer the state of a job sc. Hence, we set both of these to 0.
Finally, note that this is one particular representation of the
job characteristics. Users may vary the characteristics, based
on the requirement.

6.2 Simulation Setup & Parameters
For carrying out the simulations, we chose iFogSim [6]. This
simulator has allowed us to model various features of mdcs
and cdcs. The iFogSim simulator is capable of evaluating
various fog and cloud environment scheduling strategies,
hence it has been extremely useful to us. This simulator
follows the sensor ! processor ! actuator representation.
Hence, it becomes pertinent for various devices that are

edge-enabled. We have created a class namedMultipleApps.
This class has been used to store both the deadlines of the
tasks, as well as their MIPS capacity needs. Additionally,
the following have also been added to this class: execution
capabilities of all the mdcs and cdcs, the communication
network delay cd, and the allocation of modules. There is
a function called updateAllocatedMips(this is located in the
class FogDevice), that allocates theMIPS requirements of
all the different execution modules. We have made suitable
modi�cations to this class so that it is now possible to factor
in the task deadlines. The �time shared� method has already
been coded in the simulator. In the simulator, there is a
job priority queue. This queue contains the modules in an
increasing deadline sequence, which is from the head of the
queue to its tail, or in a �rst come �rst serve sequence.
Additionally, we have coded a function that can tell us if
a module has run to completion. If this is the case, we take
away that module from the queue, to give a chance to the
remaining jobs in the queue to run on the mobile and cloud
data centers. The following parameters have been used in
our simulations.

1) Success Ratio (SR): This is de�ned as the per-
centage of tasks that �nish execution before their
deadlines divided by the the total number of tasks
that were reviewed for scheduling. Formally, SR =
y0

y � 100.
2) Throughput: This is de�ned as the number of jobs

that complete their execution within a particular
time frame.

3) Task Load (T L): This is de�ned as the MIPS
requirement of all the jobs. From the MIP S values
of all jobs, the averageMIPS value was calculated,
which was then multiplied by a factor of 1 to 6 to
get a range of Task loads.

4) Deadline Factor (DF ): The deadline factor is the
range over which the task deadline values have
been varied. The signi�cance of this quantity is as
follows. A small value of DF would be a sign
of deadlines that are tight & a large value would
indicate looser deadlines overall. For calculating the
DF values, we obtained a lower bound on the task
deadline d(i j ) = ect(i j ). Next, we calculated the
average deadline of the system. Next, we multiplied
this average value from 1 to 6 to get a range of DF
values.

5) Delay Factor (DLF ): This quantity is de�ned as
the range for the communication delay between the
tasks, the micro data centers (mdcs) and the cloud
data centers (cdcs). A small value for DLF would
suggest smaller overall communication delays and
a large value for DLF would indicate larger com-
munication delays overall. Initially, we set the delay
value (cd) of 5 msec. between the user and anmdc,
and a value of 100 msec. between the user and the
cdc. We increment these initial values by 5 msec. to
obtain the values for DLF .

6.3 Results & Discussion
6.3.1 Effect of including Edge capacity on Performance
The motivation for this section is to demonstrate the bene�t
of employing Fog Devices (mdcs), to augment the capability
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of the Cloud data-center (cdc). The performance has been
measured in terms of the Success Ratio (SR) for the follow-
ing two scheduling schemes: RT � SANE and cdc� only.
In the cdc� only algorithm, we dispatch all tasks to the cdc
for their execution. The number of mdcs has been �xed at
12. Among all the jobs considered, 80% are interactive jobs
executing on mdcs, and 20% are batch jobs executing on
the cdc. Speci�cally, we observe the impact of the following
metrics on the SR, for both algorithms.

1) Deadline Factor (DF ).
2) Task Load (T L).
3) Delay Factor (DLF )

In the �rst simulation, the Deadline Factor (DF ) has been
increased, & it’s effect on the Success Ratio (SR) has been
observed.

Fig. 3. Effect of DF on SR

The communication delay between a device & an mdc
is set as 5 milliseconds, and between a device & the cdc
has been set as 105 milliseconds. TheDF of the jobs has
been increased from 1 to 6. Figure 3 shows the results of this
simulation. We observe that in general, increasing the DF
value results in a corresponding increase in the SR value.
We observe that increasing the DF generally makes the job
deadlines more �loose�. Hence, both algorithms are able to
ensure that a larger number of jobs meet their deadlines,
& this is re�ected in the increased SR. In fact, beyond a
speci�c DF value, the deadlines are so loose, that both
algorithms are able to ensure that all the jobs meet their
deadlines, i.e.SR = 100%. We also observe thatRT � SANE
offers higher SR values than cdc � only. Note that the
interactive jobs have tight deadlines, while in comparison,
the batch jobs have looser deadlines. This is because the
batch jobs are much more computationally intensive. The
Orchestration Agent (OA) in RT � SANE tries to execute
the interactive jobs on the mdcs and the batch jobs on the
cdc. On the other hand, in the cdc� only algorithm, all jobs,
whether interactive or batch are sent to the cdcfor execution.
This is detrimental to the interactive jobs, as owing to the
large communication delays between the device & the cdc,
they would not be able to meet their �tight� deadlines.
Therefore, the SR values for RT � SANE are higher than
those for cdc� only.

In the next simulation, we show the effect of task load
(T L) on system performance (SR). The results of this simu-
lation are shown in Figure 4. We assume a communication

delay of 5 milliseconds from users to mdcs, and a delay of
105 milliseconds from users to the cdc.

Fig. 4. Effect of T L on SR

The task load (T L) has been increased from 1 to 6.
In general, increasing the T L value puts more load on
the system. This causes more and more jobs to miss their
deadlines, resulting in a decrease in the SR value. Note that
this behavior holds for both RT � SANE & cdc � only.
However, RT � SANE also employs mdcs for the execution
of the jobs. A number of tight deadline jobs, which, on being
sent to the cdc, would miss their deadlines, are able to now
meet their deadlines on the mdcs. This is due to the fact that
the mdcsare in proximity to the users, and hence, the user to
mdc delay is less. On the other hand, jobs scheduled using
cdc� only are not able to take advantages of themdcs, and
so, a number of these tight deadline jobs end up missing
their deadlines. Hence, RT � SANE performs better than
cdc� only, due to higher Success Ratio (SR) values.

In the third simulation, we observe the effect of Delay
Factor (DLF ) on the SR. As explained earlier, DLF is a
measure of the overall communication delay in the system.
As with previous simulations, the initial communication de-
lay from the users to mdcs has been taken as 5 milliseconds
and delay from the users to the cdc has been taken as 105
milliseconds. In each iteration of the simulation this initial
delay has been increased by 5 milliseconds. The results of
this simulation are depicted in Figure 5. We observe that as
the DLF value increases, more delays are introduced in the
system, causing jobs to spend more time in communication.
Due to this, the start time of jobs (st) at the mdcs & the
cdc increases. This, in effect, causes the completion time of
jobs (ct) to exceed their deadlines (d). Hence, the SR value
reduces for increase in DLF values.

However, RT � SANE , owing to the employment of
mdcs, is able to ensure that more jobs �nish before their
deadline. Hence, it’s SR values are higher than those offered
by cdc� only, which does not employ mdcs.

6.3.2 Effect of Deadline Heuristic on Performance
In this section, we evaluate and contrast RT � SANE
with iF ogStor [25] . Both algorithms employ mdcs for
scheduling jobs, in addition to the cdc. Both algorithms
differ in the way that the tight deadline jobs are sent to
the mdcs. In RT � SANE , jobs are sent in increasing order
of deadlines, i.e. a job with the smallest deadline is sent
�rst. On the other hand, in iF ogStor , jobs are sent to the
mdcs on the basis of mdcs0 location with respect to the
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Fig. 5. Effect of DLF on SR

user in �rst come �rst serve order. As was the case with
the previous set of simulations, we observe the impact of -
deadline factor (DF ), task load (T L), & delay factor (DLF )
on system performance (SR). For this set of simulations,
the number of mdcs have been �xed at 12. Out of all the
jobs considered, 80% are assumed to interactive and 20%
are assumed to be batch. The orchestration agent sends the
interactive jobs to the mdcs and the batch jobs to the cdc for
execution.

Fig. 6. Effect of DF on SR

First, we evaluate the effect of deadline factor (DF ) on
success ratio (SR). The communication delays from user to
mdc & from user to cdc have been assumed to be 5 mil-
liseconds & 105 milliseconds respectively. The DF has been
increased from 1 to 6 & the effect on SR has been plotted.
Figure 6 shows the results. From the �gure, we observe that,
in general, increasing the DF values makes the deadlines
looser. Hence, a larger number of jobs are successful in
�nishing their execution before their deadlines, leading to
an increase in the SR value. However, RT � SANE , due
to it’s superior heuristic of earliest deadline �rst, is able
to ensure that a larger number of jobs are able to �nish
execution before the expiry of their deadlines. Note that
beyond a particular DF value, the performance of both
algorithms is similar. This is because, at this stage, the
deadlines are so loose that the heuristic becomes irrelevant
to the scheduling. As the deadline increases, so does the
number of jobs that meet their deadline. RT � SANE
performs better than iF ogStor because it uses the earliest
deadline �rst heuristic, so the jobs with smaller deadlines

will execute �rst, while iF ogStor uses the nearest location
mdcs, but in a �rst come �rst serve order. Hence jobs with
loose deadline may execute �rst and jobs with tight deadline
may execute later. As the deadlines become too loose, both
algorithms perform equally well because all jobs meets their
deadline.

Fig. 7. Effect of T L on SR

Next, we evaluate the effect of varying task load T L on
performance SR. Figure 7 shows the results of this simula-
tion. In general, increasing T L leads to a reduction in SR.
This trend can be explained as follows. An increasing T L
puts more pressure on the execution elements of the system,
speci�cally, the mdcs. Ultimately, the sum of execution costs
of all jobs becomes greater than the execution capacities of
the mdcs. All this leads to an increased number of jobs
missing their deadlines, which is re�ected in a decreasing
SR. However, RT � SANE outperforms iF ogStor because
of it’s superior heuristic of scheduling the job with the
earliest deadline �rst. It is interesting to note that after a
speci�c value of T L, the performance of both algorithms is
similar. At this point, the load has become so much that a
majority of jobs miss their deadlines, irrespective of which
scheduling heuristic is employed. Note that the SR value
is not zero, as the batch jobs are still able to meet their
deadlines.

Fig. 8. Effect of DLF on SR

The next simulation studies the effect of delay factor
(DLF ) on the success ratio (SR). An initial communica-
tion delay of 5 milliseconds from users to mdcs has been
assumed. A delay of 105 milliseconds from users to the cdc
has also been assumed. This initial delay is gradually in-
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creased in each iteration by 5 milliseconds. Figure 8 depicts
the result for this simulation. Intuitively, increasing DLF
induces more delay in the system, which leads to more
number of jobs spending extended time in communication.
This advances the start times & completion times of the
jobs. Importantly, the completion times exceed the deadline
values, and hence, the success ratio (SR) reduces. Once
again, the superior heuristic used by RT � SANE is the
cause of it’s offering a higher SR versus iF ogStor .

6.4 Effect of number of mdcs on Performance
Next, we investigate the effect of varying the number of
mdcs on the system performance (SR).

Fig. 9. Effect of No. of mdcs on performance

The results of this study are shown in �gure 9. As the
number of mdcs increases, the waiting time for jobs will
decrease. As the computing capacity of the system increases,
the jobs will get quicker access to an mdc, and hence, more
number of jobs are able to �nish before their deadlines,
leading to an increase in the SR value. We observe from
�gure 9 that RT � SANE demonstrates a higher SR value
as compared to cdc � only. This is because of the fact that
RT � SANE employs mdcs in addition to the cdc for job
execution. Expectedly, increasing the number of mdcs will
not have any impact on SR for cdc� only as the algorithm
does not employ mdcs for job execution. Figure 10 shows
the same simulation, this time comparing RT � SANE with
iF ogStor . Both these algorithms use mdcs, in addition to
the cdc, for job execution. Once again,RT � SANE shows
higher SR values, owing to the superior real-time heuristic
of earliest deadline �rst, that it employs.

6.5 Effect of job mix on Performance
In this section, the effect of job mix on the Success Ratio

has been studied. The results are shown in �gures 11 & 12.
The format of the data points on the x-axis of both graphs is:
(% of interactive jobs, % of batch jobs). Initially, for the �rst data
point, all jobs are batch jobs i.e. 100% of the jobs are batch
and 0% of the jobs are interactive. In each iteration (data
point), the number of batch jobs has been decreased by 10%
and the number of interactive jobs has been increased by
10%. After repeating this process 10 times, the number of
batch jobs becomes 0% and the number of interactive jobs
becomes 100%. In general, as we go from one data point
to the next, the SR increases.RT � SANE performs better
than cdc� only, as in the latter, all jobs (even interactive) are

Fig. 10. Effect of No. of mdcs on performance

sent to the cdc. Hence, the performance is poor.RT � SANE
performs better than iF ogStor , as it schedules jobs using
the earliest deadline �rst heuristic, so, during a given time
period, a larger number of interactive jobs are able to meet
their deadlines.

Fig. 11. Effect of job mix on performance

For the initial data points, the number of batch jobs
is pretty high. As the mdcs are not suitable for executing
batch jobs, the performance of RT � SANE , iF ogStor and
cdc � only is almost similar. After increasing the number
of interactive jobs, the success ratio increases, especially
in RT � SANE and iF ogStor , because the Orchestration
Agent tries to executes the interactive jobs on the mdcs as
much as possible.

6.6 Effect of Security mix on Performance
In this section we study the effect of security tag assignment
on the performance of RT � SANE , iF ogStor & cdc� only.
Speci�cally, we consider three different security mixes:

� Security Mix 1: the number of private ( tp) & semi-
private (t sp ) jobs are constant, and the number of
public (t pu ) jobs is repeatedly increased by 1

3 every
x-axis data point.

� Security Mix 2: The number of public (t pu ) & semi-
private (t sp ) jobs are constant, and the number of
private (t p) jobs is increased by 1

3 every x-axis data
point.

� Security Mix 3: The number of public ( tpu ) & private
(tp) jobs are constant, and the number of semi-private
(tsp ) jobs is increased by 1

3 every x-axis data point.
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Fig. 12. Effect of jobs mix on performance

For this set of simulations, 160 jobs were considered
initially. The results for all three security mixes are shown
in �gures 13 - 15. For all these �gures, the format of each
x-axis data point is as follows: (# of tpu jobs, # of tp jobs, #
of tsp jobs). Figure 13 shows the results for security mix 1.

Fig. 13. Effect of security mix-1 on performance

As number of public jobs are increased, more and more
load is placed on the cdc, as most of the public jobs are sent
there for execution, if there is not enough spare capacity
in the mdcs. In general, when the load is increased, more
jobs will miss their deadlines. The cdc � only algorithm
perform the worst because of the large communication
delays involved between the user & the cdc.RT � SANE
performs better than iF ogStor as it gives a higher priority
to jobs with smaller deadlines.

The results for security mix 2 are shown in �gure 14. In
the second case, we increased the number of private jobs, &
kept the number of other job types constant.

As the private jobs are sent to local mdcs only by
Orchestration Agent, the cdc� only approach performs the
worst, as it is unable to execute the increased number of
private jobs. On the other hand, the performance of the
iF ogStor algorithm goes down gradually, because of an
increase in private job traf�c on mdcs, which results in more
waiting time for jobs. Hence, more jobs start missing their
deadlines, & the Success Ratio is reduced. The performance
for RT � SANE may be explained as follows. In this
algorithm, the jobs are executed in an earliest deadline �rst
fashion. As the number of private jobs is increased, more
jobs are sent to local mdcs by the Orchestration Agent.
Initially, the SR increases, because there is spare capacity

Fig. 14. Effect of security mix-2 on performance

available in the local mdcs for jobs to occupy. As soon as the
local mdcs reach their full capacity, the waiting time of the
private jobs increases and they start missing their deadlines.
This leads to a reduction in the SR value.

In the third case of security mix 3, the number of Semi-
private jobs was increased, & the number of other job types
was kept constant. The results of this simulation are shown
in �gure 15.

Fig. 15. Effect of security mix-3 on performance

Semi-private jobs exhibit very different characteristics, as
compared to public jobs or private jobs. This is because these
jobs can use either themdcs, or the cdc, or both. The semi
private jobs are executed on themdcs (local or foreign), until
the mdcs have suf�cient spare capacity available. Once the
mdcs spare capacity is not suf�cient, these jobs are assigned
to the cdcby the Orchestration Agent. In case of cdc� only,
the Success Ratio decreases gradually because of the in-
creased job load and the high communication delay between
the user and the cdc. RT � SANE demonstrates better
performance than iF ogStor due to it’s superior heuristic of
earliest deadline �rst, which ensures that a higher number
of jobs �nish execution before their deadline.

6.7 Effect of Task Load on Throughput
In this section, we study the effect of task load on through-
put. Throughput here is de�ned as the number of jobs
completed per unit time. A unit time of 100 milliseconds
has been considered. Since our focus in this simulation is on
the throughput, and not the meeting of deadlines, we have
considered the deadlines of jobs to be loose enough, so that
no deadlines are missed. The results are shown in �gure
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16. Not surprisingly, increasing the task load reduces the
throughput. This is because increasing the task load leads to
more pressure on the mdcs, which results in higher job wait
times, & lower throughput. However, RT � SANE offers
a higher throughput than cdc � only, due to it’s feature of
employing mdcs for job execution.

Fig. 16. Effect of task load on throughput

6.8 The case of Straggler Jobs

The goal of this simulation is to analyze the effect of strag-
gler tasks on the system performance. By de�nition, strag-
gler tasks are slow running & poor performing tasks that
delay the execution of other tasks [30]. This could be due to
faulty hardware, or miscon�guration. For this simulation,
we considered 200 tasks and 12mdcs. We consider four
cases. In the �rst case Slow mdc1 (Sm1), one of the mdcs
is slow, i.e. has a low MIPS value. In caseSm2, two mdcs
are slow. Likewise, case Sm3 and Sm4 have 3 and 4 slow
mdcs respectively. An mdc is slow if its MIPS value is
less than the average MIPS value of all mdcs that have
been considered. We evaluate the SR for two algorithms:
RT � SANE , which is the basic algorithm described earlier,
and RT � SANE (JM ), which is RT � SANE with job
migration enabled. Basically, we migrate all jobs from the
slow mdc(s) to an mdc that is free, i.e. it has its full
computing capacity available.

The results for this simulation are given in Table III. From
the table, we observe that as we move from case SM1 to
SM4, the Success Ratio (SR) offered reduces. This is due to
the fact that the number of slow mdcs is increasing, causing
the number of straggler jobs to also increase. Hence, only
a fraction of the jobs that we migrate to a free mdc are
able to meet their deadlines. We also observe that the SR
offered by RT � SANE (JM ) is higher than that offered by
RT � SANE . This can be attributed to the feature of job
migration, wherein straggler jobs on the slow mdc(s) are
migrated to a free mdc, which leads to a larger number of
jobs being able to meet their deadlines.

TABLE 3
The case of Straggler Jobs

SR(RT � SANE ) SR(RT � SANE (JM ))
Sm1 85.5% 93%
Sm2 79 83.5
Sm3 72.5 76
Sm4 67 71

7 CONCLUSION
There is considerable communication latency involved in
executing applications on the cloud. This level of latency is
not suitable for real-time applications with tight deadlines.
It is intuitive to execute such applications at the edge of
the network, on the fog devices. Due to the fact that fog
devices are in proximity to the users, the communication
delay is much less vs. the cloud. We observe that schedul-
ing applications with tight deadlines on the edge devices
has two advantages. First, it leads to a better performance
(higher Success Ratio). Second, the security concerns about
sending data to the cloud are also addressed. To that end,
we propose a scheduling algorithm called RT-SANE, that
addresses both performance and security. We consider two
types of jobs: interactive and batch. Private interactive and
private batch jobs are sent to the local mdc and private
cloud cdc respectively. Semi private interactive and semi
private batch jobs are sent to the foreign mdc and foreign
private cdc respectively. Finally, public interactive and pub-
lic batch jobs are executed at the foreign mdc and foreign
public cdc respectively. The security of jobs are taken into
account by executing private jobs on local mdcs and cdcs. In
addition, a Distributed Orchestrator based architecture and
protocol has also been proposed. We also consider the case
of straggler jobs, which delay the execution of other jobs in
the system unnecessarily. To that end, we propose a simple
extension to RT � SANE that migrates these jobs to other
free mdcs in the system, thereby improving the application
performance. Simulations comparing RT � SANE with
iF ogstor and cdc� only on real workload data of the CERIT
system [28] and of Google [29] show that the RT-SANE
provides a better system performance, due to a higher value
of Success Ratio. While doing this, the proposed algorithm
addresses the application security requirements, and con-
siders the hierarchical nature of the edge-cloud architecture.
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