
1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3022679, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING i

SenSchedule: Scheduling Heterogeneous
Resources in Sensor-Cloud Infrastructure

Sunanda Bose, Member, IEEE, Nandini Mukherjee, Senior Member, IEEE

Abstract—In a sensor-cloud infrastructure scheduling and allocation of resources are challenging tasks. Unlike computational cloud
infrastructure, sensor may have varying capabilities and contexts of services. Moreover, some sensors may be available for a fixed time
duration periodically. Depending on some dynamic factors, performance of a sensor may also vary. Such non-uniform performance may
be predicted from previous observations. This paper proposes novel scheduling algorithms for heterogeneous resources having varying
capabilities, contexts of usage and non-uniform performance over time. Simulation results show that the algorithms perform efficiently.

Index Terms—Sensor Cloud, IoT, Virtual Sensors, Resource Model, Selection, Allocation

F

1 INTRODUCTION

W ITH the advent of sensor, cloud and communication
technologies, it has been possible to communicate

with remotely located sensors from applications hosted in-
side cloud and vice versa. In order to capture the semantics
of functioning of heterogeneous sensors, in our earlier work
[1], we defined context and capabilities of sensors. Sensors
can have different sensing contexts, such as healthcare and
environment. They can also have varying parameters de-
scribing their capabilities, such as “a temperature sensor
measures from 900F to 1100F” or “a humidity sensor has a
detection range from 5% to 95% RH (relative humidity)”.
Thus, a pool of such sensors can create a heterogeneous
inventory of resources which can be made available for the
use of a Sensor-Cloud Infrastructure (SCI). The resources
can be provisioned like computing resources available at
the IaaS layer of a computational cloud. Sensor-owners
can provision services to the applications running on SCI.
Earlier we proposed an architecture of SCI to incorporate
remotely located sensing resources as citizens of generic
resource family, like cpu and memory [2]. Thus, instead of
confining a sensor for a specific application, an open system
is proposed, where the same sensor can be used by multiple
applications as long as its context and capabilities match
with their sensing requirements.

Sensing resources may be available periodically for a
fixed duration. For example, pollution sensing can be done
by sensors mounted on the cars parked in a designated
area. A car is parked periodically for a certain duration.
Hence, these sensors are available periodically only for a
certain length of time. Performance of sensors may also
vary with time [3] [4]. Often applications need data from
multiple sensors in order to satisfy their requirements. All
these contribute to non-uniform spatio-temporal distribu-
tion of sensing resources based on availability, applicability,
appropriateness and sensing performance. It is therefore
necessary to fulfil the requirements of any sensor-aware
application by provisioning one or multiple sensors with

● S. Bose, and N. Mukherjee are with the Department Computer Science
and Engineering, Jadavpur University Kolkata, India.
E-mail: sunanda.bose@msn.com, nmukherjee@cse.jdvu.ac.in

Fig. 1: Resource Management System

appropriate context, capabilities and performance from the
available resource pool. It should also be noted that the re-
quirements of multiple applications running simultaneously
on an SCI must also be handled. The task of scheduling
sensing resources from the pool of heterogeneous sensors to
requesting applications gives rise to a decision problem of
mapping sensing resources to sensing requests. A resource
manager in computational cloud schedules computing re-
sources to the requesting applications from a resource pool.
Similarly in SCI, sensing resources are to be scheduled and
allocated from the resource pool as shown in Figure 1.
However, for efficient mapping, a model is required for the
entire scenario. This paper addresses the issues related with
modeling of resources and the resource requests in order to
appropriately schedule the resources to requests. In an SCI,
bottleneck situation arises when large number of consumer
applications generate requests for few sensing resources. On
the other hand, in a participation based cloud [5], where dif-
ferent resource providers may contribute sensing resources,
different revenue generation models can exist. In all such
cases, the cloud should offer methodologies to minimize
resource starvation, so that all participants get fair chance.

The key contributions of this paper are as follows:
1) proposing a generalised model for sensing resources
and application requests, 2) developing an approach for
scheduling sensing resources to applications considering
availability, appropriateness and performance of the re-
sources, and 3) presenting modified approaches to minimize
resource starvation and to make the system fault tolerant.
The paper is organized as follows: Section 2 describes an

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:32:12 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3022679, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING ii

TABLE 1: Symbols

ω type of the resource (e.g. temperature, humidity)
Ω set of all resource types
λ context of the resource (e.g. health, environment)
Λ set of all resource contexts
γ a matrix of contextual parameters where row i is a

range (min,max) of contextual parameter γλi
γλ vector of parameters supported by the context γ
µ a matrix of resource capabilities where row i is a range

(min,max) of capability µωi
µω vector of capabilities for resource type ω
T = (s, δ, κ) availability pattern of a resource where s, κ, δ are the

start time, duration and recurrence respectively
ts beginning time of a request
te ending time of a request
Mm×n matrix having m rows and n columns
R set of all resources
Q set of all requests
Ri(T) availability pattern (s, κ, δ) of a resource Ri
Qk(t) time slot (ts, te) of a request Qk
Li set of performance partitions of resource Ri
←Ð
Lij beginning of jth partition of Ri
Ð→
Lij ending of jth partition of Ri
∣Lij ∣ size of the jth partition of Ri (

Ð→
Lij −

←Ð
Lij)

Fi,j feasibility of Ri for Qj
Wi,j metric of appropriateness between Ri and Qj
Pi,j,k Favourability of jth partition of Ri for Qk
Hij→pq Logistic function to model migration from jth parti-

tion of Ri to the qth partition of Rp.
ε maximum switch over cost for resource migration.

SCI infrastructure. Section 3 proposes a model to describe
the characteristics of resources. In Section 4 three scheduling
strategies, compact, balancing and fault tolerant are dis-
cussed. Experimental results are presented in Section 5. In
Section 6 we present our study on related works. Section 7
concludes the paper.

2 SENSOR-CLOUD INFRASTRUCTURE

A cloud is essentially a pool of resources which are leased by
consumers in advance or on demand basis. As our resources
have varying contexts and capabilities, requests for resources
must correspond to the diversities of resource family. Sens-
ing resources specific to healthcare are tagged with health
sensing context with contextual parameters for identifying its
attachment, i.e. patient id. Environment sensors can have a
different context and may include its location as contextual
parameter. Models of the resources and requests are defined
in Tuples 1a and 1b respectively. Symbols are shown in
Table 1 along with their definitions. Sensing context is also
specified in resource request. Only those resources which
match with the context specified in request can be selected
to satisfy the request.

{ω ∈ Ω, λ ∈ Λ, γ =M2×∣γλ∣(Z), µ =M2×∣µω ∣(Z), T} (1a)

{ω,λ, γ,µ, (ts, te)} (1b)

Different sensors have different sensing capabilities, such
as sensitivity, accuracy etc. A capability is defined as a pair of
minimum and maximum values. Vector µω (Table 1) defines
capabilities of resource type ω ∈ Ω, of which each element
is a pair of minimum and maximum values. Thus, it is
a matrix of two columns and ∣µω ∣ rows as shown below.
Due to the mobility and other reasons, unlike computing

Fig. 2: Two resources having different availability slots serv-
ing a request for ts → te

resources, sensing resources may be available periodically.
The availability pattern is expressed as a tuple of s (start
time), δ (duration) and a recurrence κ > δ. Resource i
appears at every si+nκi and serves till δi time unit ∀n ∈ Z+.
Time can be represented as unix time stamp *.

A resource request has one time span defined as (ts, te)
indicating the start and end times of the request time
span as shown in Figure 2. A single resource may not be
available during the requested time span. In such scenario
multiple physical resources (shown as S1, S2 in Figure 2)
may be leased in order to provide uninterrupted sensing
service. Sensing services are provided to consumers as vir-
tual sensors abstracting sensing time of one or more physical
sensor(s) which are leased in response to a request during
the resource selection phase.

Once a resource is available, its performance may vary
over time (e.g. due to instability in transmission network).
In some previous experiments [3], it was observed that
throughput of mobile sensors vary greatly while passing
through tunnels in road, or even in busy hours when
network load is high. However as the resources are leased
for multiple times, we may observe its throughput pattern
and avoid allocating requests to the resources in different
times or localities (in case of mobile sensors) when their
throughput is expected to be low.

So to satisfy a request, we need to search for a set of
appropriate resources that match best with the requested
capabilities and context. At the same time the selected re-
sources need to be available during the time span of the
request. Further, to provide a good sensing experience we
may prefer switching to a better resource when the currently
allocated resource cannot perform efficiently or has some
fault. But too much switching over may cause delay, So
decisions are to be taken to minimize the delay, while main-
taining the required efficiency of the sensing services. On
the other hand, if a large number of requests are served by
small number of resources, then dependency on the sensing
resources increases. If one such sensing resource fails, it
will impact a large number of requests. Moreover, other
resource providers will starve, thereby loosing motivation in
business in a participation based sensor cloud. So to balance
resource sharing, it is also important to minimize resource
dependency and starvation. In the subsequent sections we
move towards solution of these problems one by one.

3 MODELING RESOURCE CHARACTERISTICS

To solve the problems discussed in the previous section
we first address heterogeneity and select resources that are
feasible to satisfy the request. However all resources of the

*. e.g. a resource available every 2 to 11PM since Jan 1 2017 (UTC)
may be represented using T = {s ∶ 1483279200, δ ∶ 32400, κ ∶ 86400}.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:32:12 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3022679, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING iii

same type (ω) are not uniformly favored. Some are more
favored than the others due to varying capabilities. So we
create an appropriateness matrix between resources and
requests where a higher value implies that a resource is
more favorable for the request. As the sensing resources
may not perform uniformly we also create a performance
vector for each resource based on the past observations.

Heterogeneity
In order to allocate a request, a set of feasible resources are
selected that match with the type and capability required by
the request. Each capability parameter µωi = {µωi,min, µωi,max}
is a pair of min and max values, ∀µωi ∈ µω , as shown
in Example 3.1. While matching, in order to reduce the
computational requirement, we create a pair of scalar values
representing the minimum and maximum bounds. Instead
of matching all parameters in capabilities matrix µω ,we
check against that pair of minimum, maximum values.
We represent this as a transformation of µω to µ̂ω , where
µ̂ω = (ξ ↓, ξ ↑) is represented by two scaler encodings
obtained from all minimum and maximum bounds as de-
scribed below.

Example 3.1.

µ
sensT =

⎡⎢⎢⎢⎢⎣

0 100
0 1
2 2

⎤⎥⎥⎥⎥⎦
The above is an example of a temperature sensor capable of sensing 0
to 100°C, with an accuracy of 0 to 1 degrees, and transmitting twice
in a minute (or in a unit time).

We assign unique prime number ρi to each capability pa-
rameter µωi ∈ µω . For most of the capability parameters the con-
straints are: R(µωi,min) ≤ Q(µωi,min) and R(µωi,max) ≥ Q(µωi,max),
where R,Q denote capability of resource and request respec-
tively.

We use the prime number property pvmod pu = 0 iff
v ≥ u where u, v ∈ Z+ and p is a prime number. Similar prime
number based approach has been used in [6] for IO redirection.
Formulation of ξ ↓, ξ ↑ are shown in Equation 2. For a resource
(R) to be feasible for request (Q), we need R(ξ ↑) to be
divisible by Q(ξ ↑) and Q(ξ ↓) to be divisible by R(ξ ↓).

However all capability parameters cannot be modeled in the
similar manner. In Example 3.1 capability parameter accuracy
is used. Unlike sensitivity, a request requiring sensor accuracy
of ±2 cannot be allocated to a resource having accuracy ±5,
however the opposite is true. We use the term restrictive to
denote such type of parameters. To model the restrictive param-
eters we keep another flag si ∈ {0,1} which is 1 for restrictive
parameters. We model another pair of scalars that preserve only
the restrictive parameters in (ζ ↓, ζ ↑) as shown in Equation 3.

ξ ↓=
∣µω ∣

∏
i=1

ρ
µωi,min
i ξ ↑=

∣µω ∣

∏
i=1

ρ
µωi,max
i

(2)

ζ ↓=
∣µω ∣

∏
i=1

ρ
siµ

ω
i,min

i ζ ↑=
∣µω ∣

∏
i=1

ρ
siµ

ω
i,max

i
(3)

where ρi ∈P is the ith prime and P is the set of primes
We combine ξ and ζ in Equation 4 to formulate feasibility of a
resource w.r.t. a request. As ζ contains prime powered product
of the restrictive parameters only, we cancel out by dividing ξ
by ζ. Then we swap the restrictive parameters of resource and
requests as shown in Example 3.2.

Q(ξ ↓)R(ζ ↓)
Q(ζ ↓)

mod R(ξ ↓)Q(ζ ↓)
R(ζ ↓)

= 0

R(ξ ↑)Q(ζ ↑)
R(ζ ↑)

mod Q(ξ ↑)R(ζ ↑)
Q(ζ ↑)

= 0

(4)

Example 3.2.

⎡⎢⎢⎢⎢⎣

αr α′r
βr β′r
γr γ′r

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

αq α′q
βq β′q
γq γ′q

⎤⎥⎥⎥⎥⎦

ξ ↓ ξ ↑ ζ ↓ ζ ↓
R ραr1 ρβr2 ργr3 ρ

α′r
1 ρ

β′r
2 ρ

γ′r
3 ργr3 ρ

γ′r
3

Q ρ
αq
1 ρ

βq
2 ρ

γq
3 ρ

α′q
1 ρ

β′q
2 ρ

γ′q
3 ρ

γq
3 ρ

γ′q
3

Given a resource r and a request q having capabilities denoted as
shown in the first two matrices from left, the right-hand side table
is the ξ and ζ as calculated through Equations 2 and 3 assuming the
last parameter γ is restrictive. When we apply Equation 4 we actually
swap the last parameter as shown below.

Q(ξ ↓)R(ζ ↓)
Q(ζ ↓)

= ραq1 ρ
βq
2 ρ

γr
3 ,R(ξ ↓)Q(ζ ↓)

R(ζ ↓)
= ραr1 ρ

βr
2 ρ

γq
3

R(ξ ↑)Q(ζ ↑)
R(ζ ↑)

= ρα
′
r

1 ρ
β′r
2 ρ

γ′q
3 ,Q(ξ ↑)R(ζ ↑)

Q(ζ ↑)
= ρα

′
q

1 ρ
β′q
2 ρ

γ′r
3

Therefore Equation 4 is satisfied only if the following inequalities hold,
because pv is divisible by pu if and only if v ≥ u where u, v ∈ Z+ and
p ∈ P is a prime number.

αr ≤ αq, βr ≤ βq, γr ≥ γq, α
′
r ≥ α′q, β

′
r ≥ β′q, γ

′
r ≤ γ′q

However, instead of checking all the above-mentioned inequalities, we
perform a single divisibility check as shown in Equation 4. Also ξ and
ζ for resources can be computed at the time of resource registration
using Equations 2 and 3. So we do not need to recompute this every
time when we need to allocate resources for a request.

Thus the proposed capability model may include any prop-
erty that can be expressed using a pair of non-negative integers
and restrictiveness flag.

Appropriateness
Our objective is to select different consecutive time slots of
most appropriate resources that cover the requested time frame
while minimizing cost and maximizing performance. In order
to do that we need to select resources which are feasible to
satisfy the request. So we create a binary Feasibility Matrix (F).
However all feasible resources are not equally favorable for a
request. Resources which deviate less from the specifications in
the requests are more preferred than the others. So we create a
Distance Matrix (W). The construction of these two matrices are
shown below. We obtain appropriateness matrix (A) based on
F and W as shown in Equation 7.

Feasibility Matrix(F): (binary matrix): Capability and
contextual parameter matrices are scalarized when the re-
sources join the infrastructure or update their details (which do
not happen often). Based on the divisibility of scalarized min
and max values we define the feasibility matrix F as described
in the Equation 5. If resource j is feasible for request i, Fi,j is
set to one.

F =M∣R∣×∣Q∣

Fi,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if Q(ω) = R(ω)
∧ Q(λ) = R(λ)
∧ eq 4 holds

0 otherwise

(5)

Distance Matrix(W): (metric space): On the other
hand, one request may be feasible for multiple resources.
However, each of them may not be appropriate; e.g. to satisfy
a request for temperature sensor with sensitivity of 50°C to
100°C we should try selecting resources with ranges closest to
the bounds specified in the request’s capability matrix. Thus,
if there are two sensors, one with a sensing range of 0°C to
100°C and the other with sensitivity of 40°C to 100°C, the latter
should be more preferred. Without a metric of appropriateness,
sensing services will depend only on a few sensing resources
having large range of capability parameters, and rest of the
resources will starve.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:32:12 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3022679, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING iv

Capabilities of resources and requests can be expressed in
an euclidean space. We can use euclidean distance as a distance
function to calculate the favourability of a resource for a re-
quest. However, this would require the distance to be calculated
on every new request. Although computation of euclidean
distance is trivial, if the number of requests is high and many
resources with various capabilities are available, computational
cost for calculating distances may not be negligible. Therefore,
we first compute a scalar representing capability matrix. While
comparing a resource’s capability with that of a request, we
compare these scalars instead. We maintain a distance matrix
as shown in Equation 6

W =M∣R∣×∣Q∣

Wi,j =
⎧⎪⎪⎨⎪⎪⎩

inf if Fi,j = 0
R(ξ↑)Q(ξ↓)
R(ξ↓)Q(ξ↑) (

R(ζ↓)Q(ζ↑)
R(ζ↑)Q(ζ↓))

2
otherwise

(6)

Based on these two matrices we compute Aik as appropriate-
ness of resource i to satisfy request k as shown in Equation 7.

Aik =
Fik
Wik

(7)

Performance Partition
A continuous time slot (ts, te) is specified for a request q ∈ Q.
However a single resource may not be available during the
entire time slot. The resource manager is supposed to multiplex
multiple resources with availability slots which are subsets
of the requested time span to power the virtual sensor. On
the other hand varying performance of a sensor may be ob-
served during an availability slot. Depending on communi-
cation methodologies, environmental hazards, signal-to-noise
ratio, usage pattern etc. a sensor may perform differently at
different times impacting its transmission. This leads to increase
or decrease in the number of sensed data at different times.
During the process of resource selection, we try to favor a
sensor when it has better performance (e.g. transmits more
sensed data) than others. Once a resource is leased multiple
times, we can predict a time varying performance expectation
by observing its past performances. The observed performance
of a sensing resource is used to find a set of non-uniform time
intervals, each with different expected throughput as shown
in Figure 3. A partitioning process partitions the observed
performance which is shown on the left to non-uniform per-
formance partitions as shown on the right. These performance
partitions are the input to the scheduling process. There have
been many works on traffic prediction [7] [8] [9] [10]. However,
traffic prediction and the partitioning process are not within
the scope of this work. In this work throughput is considered
as its performance. But, any time varying property can be in-
corporated within the scheduling process through partitioning.
After partitioning, we get a vector Li for each sensor Si. Each

Fig. 3: Performance Partitions

such partition in Li is a set of start time (
←Ð
Lij), end time (

Ð→
Lij),

and expected approximate throughput (L̂ij). We use the symbol
∣Lij ∣ =

Ð→
Lij −

←Ð
Lij to denote the length of a partition. To satisfy

the entire request we need a set of partitions that cover the
requested time frame. These partitions may overlap each other,

however, if there is a gap between two partitions there will
be no service available during that time period. We schedule
partitions having high appropriateness and better performance.
However, switching from one partition to another may cause
resource migration if the source and destination partitions are
from two different resources. Consecutive partitions of the
same sensor is a preferred option, however if another sensor
provides much better appropriateness and performance, we
perform a migration from one sensor to the other. Frequent
switching over may result in service delays. Also a hop (switch
over) to a longer partition is less costly than a hop to a shorter
partition. In order to minimize switch over we use a parachor
curve as a logistic function to determine the hop cost. ε is the
maximum switch over cost.

Hij→pq =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{
0 p = i
ε e−f ∣Lp,q ∣ otherwise

bpq ≤ eij
∞ otherwise

∀ k (8)

Hop cost as modeled in Equation 8 is described as follows.
Hij→pq is the cost of reserving partition q of resource p after
reserving partition j on resource i, where ∣Lp,q ∣ is size of the
destination partition and f determines steepness of the curve.
For our experiments we have used 0.02 as the value of f.

As we are scheduling performance partitions, we need
to compute favourability of the partitions in terms of their
appropriateness and performance. Pijk shown in Equation 9
measures how favorable is the partition j of resource i for
request k. We want to select a set of partitions such that the
total favorability is maximized and total hop cost is minimized.

Pijk = AikL̂ij ∣Li,j ∣ ∀ i, j, k (9)

Competition
However if the same partition is selected for too many requests
we will have more number of consumers dependent on less
number of resources. Small devices like sensors are more prone
to errors. Also if some resource is never allocated for any
request in spite of being feasible it will cause resource star-
vation. This resource starvation may discourage the resource
provider to participate in the sensor cloud infrastructure. Thus
we need to balance the load in such a way that number of
dependent consumers is inversely proportional to its number
of competitors. A performance partition having no competitors
implies the resource is available in such a time span when
no other resource is available. In such cases that partition has
to be shared with all requests as number of competitors is 0.
Otherwise we have a group of resources available in the same
time span creating a competitors group.

Competition of ith resource’s pth performance partition on
mth availability instance w.r.t. the kth request is defined by
Cki (m,p) as shown in Equation 10. A resource may not compete
with all resources in the inventory, i.e. all resources in the
inventory may not be feasible for request k. Thus competi-
tion of resource i is determined against a subset of resources
Rk ⊂ R∖{Ri}. To check feasibility we use the feasibility matrix
(F) defined in Equation 5. Rl(T) denotes the availability slot
T = {s, κ, δ} of lth resource ∈ Rk. Competition is expressed
in terms of number of availability slots of other resources that
cover the SPAN of pth performance partition on mth availability
instance of resource i. SPAN is calculated as a pair of start
and end time of that partition on the given instance as shown
in Equation 11. O(T, ts) shown in Equation 12 is a binary
function that returns 1 if the given time span (ts) is completely
overlapped by some instance of availability slot T .

C
k
i (m,p) = ∑

Rl∈Rk
O(Rl(T), rs)

rs = SPAN(Ri,m, p)
R
k = {Rt ∈ R ∣ Ft,k = 1}

(10)

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:32:12 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3022679, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING v

(a) Partial Overlap

(b) Complete Overlap (c) No Overlap

Fig. 4: Time spans overlapping with T

SPAN(Ri,m, p) = {si +mκi , si +mκi + δi} (11)

O(T, ts) = { 1 OverlapsF (T, ts).c = 1
0 else (12)

An example of such complete overlap is shown in Figure 4b
between time span {ts ∶ 34, te ∶ 37} and availability slot T =
{s ∶ 18, δ ∶ 4, κ ∶ 8}. Two other time spans {ts ∶ 24, te ∶ 44}
and {ts ∶ 39, te ∶ 41} have been shown in Figure 4a and 4c.
These time spans may be of some other resource partition that is
feasible to serve the same request. As we can see in Figure 4 one
or more instances of a resource availability slot may be used to
cover a given time span. We use a, b to denote the index of first
and last resource instance of an availability slot that the given
time span can use. In the partial overlap scenario shown in
Figure 4a a = 1, b = 3. Similarly in Figure 4b a = b = 2 as service
starts and ends in the second service instance of the resource’s
availability slot. In the No overlap scenario no instances of the
resource can be used to satisfy the given time span. We obtain
coverage of a resource availability slot w.r.t. a given time span
through OVERLAPSF as shown in Algorithm 1.

Algorithm 1 OVERLAPSF(T = {s, κ, δ}, ts = {ts, te})

1: ∣ ∣+ ∶= 1
2(+ ∣ ∣) ▷ operator Z→ Z+ ⇐⇒ > 0

2: as ← ⌊ ts−(s+δ)k ⌋ + 1; ae ← ⌊ te−sk ⌋
3: if as ≠ ae then return {-1,-1,0} end if
4: b← ⌊ te−sk ⌋; a← as
5: θ ← MIN(∣(s + ak) − ts∣+, te − ts)
6: φ← MIN(∣te − (s + bk + δ)∣+, te − ts)
7: c← θ+φ+(n−m)(k−d)

te−ts
8: return {a, b, c}

OVERLAPSF as shown in Algorithm 1 takes availability
pattern T = {s, κ, δ} of a resource and a time slot (ts, te). If
there is any overlapping, the function finds the first and last
availability instances of the resource. As a, b are the first and last
availability instances, the recurrence relations in Equations 13
holds. We compute euclidean division w.r.t. ts and te in order
to find as, ae respectively. Unless te < s or the time span {ts, te}
lies in the gap (e.g. Figure 4c) of two instances, as = ae should
hold. So if that condition does not hold that time span never
overlaps with the input T , and we return 0 coverage and invalid
(-1) instance indexes.

s + (a − 1)k + δ < ts < s + ak + δ (13a)
s + ak < s + bk < te < s + (b + 1)k (13b)

θ, φ are the terminal left over of the span that are either beyond
ath or bth instance. To discard the negative values we define an
operator that yields 0 if the input is < 0, otherwise returns the
input. Then we use that to compute the coverage as c.

The OVERLAPSF function is generic and none of its argu-
ments are necesssarily tied up with a resource or request. Given
any periodic pattern and time interval it can compute {a, b, c}.

TABLE 2: Resources

ID AVAILABILITY PERFORMANCE

1 {s ∶ 10, δ ∶ 60, κ ∶ 80}

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 15 15 100
15 20 5 5
20 40 20 120
40 60 20 80

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2 {s ∶ 20, δ ∶ 50, κ ∶ 100}

⎡
⎢
⎢
⎢
⎢
⎣

0 15 15 50
15 20 5 200
20 50 30 150

⎤
⎥
⎥
⎥
⎥
⎦

3 {s ∶ 65, δ ∶ 30, κ ∶ 110} [
0 15 15 50
15 30 15 60

]

TABLE 3: Legends used in Figures

Symbol Definition
Performance partitions, differently colored to differen-
tiate from the neighbors, heights correspond to perfor-
mance of that partition.

☀,⧫
the beginning and ending partitions of a resource w.r.t.
a request are marked with star and rhombus
Arrows of any color denote possible hop. Red arrows
denote the selected hops

In this section we use ts as the span of a resource partition.
However in latter sections we use ts of a request time span.

A competitor’s group is formed with a resource partition
and its competitor partitions which belong to different service
instances of different resources. Partitions having no compe-
tition leads to creation of a singleton group with only one
element. Also having no competition (C = 1) implies it has to
be shared with all requests as there are no other resources that
serve in the same time span. So competition value is inversely
proportional to sharing coefficient. Thus sharing coefficient
SHARE(i,m, p) of pth performance partition on mth availability
instance of resource i is expressed as sum of inverse of compe-
tition of all partitions in the group as shown in Equation 14.

SHARE(i,m, p) =
⎡⎢⎢⎢⎢⎢
∑
k

1

Cki (m,p)

⎤⎥⎥⎥⎥⎥
(14)

Sharing coefficient determines a limit that can be imposed
on resources while scheduling. Imposing this limit will result
in a balanced schedule, whereas ignoring it will lead to a
scenario where more number of requests are satisfied with less
number of resources thus compacting the number of resources
in use. Although we can achieve compaction by ignoring this
constraint, this may result in resource starvation. We discuss
the effect of both of these balancing and compaction strategies
in next Section 5.1.

4 PROPOSED APPROACHES TO SCHEDULING
We can model our problem like a graph traversal problem
where each partition is represented as a vertex and edges
represent migration (hop) from one partition to another. Our
objective is to compute a continuous path that starts from a
partition overlapping with ts till we reach a partition overlap-
ping with te of the request. However while selecting a vertex
we need to favor more appropriate partitions, but also obey the
competition constraints. The problem can be visualized in Fig-
ure 5. The consecutive partitions are colored differently using
different colors, so that they can be distinguished from each
other. Heights of the partitions correspond to their appropri-
ateness with respect to a request. Edges represent hop from one
partition to another partition. All possible edges are shown in
Figure 5. Each partition of resource i is labeled with Xi,j where
j is the vertex id of that partition. A vertex id is obtained from
the instance id and partition id. Figure 5 represents the problem

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:32:12 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3022679, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING vi

Fig. 5: Single request layer of partition scheduling problem (all possible edges), Legends shown in Table 3

(a) Solution of request layer 1 (b) Solution of request layer 2

Fig. 6: Solution of scheduling partitions (with inappropriate edge position), Legends shown in Table 3

w.r.t. 3 resources and one request only. We have one such layer
representing one request. With multiple such layers we label
our vertices with Xi,j,k where k corresponds to the request.
While visualizing our model, we use a set of resources that only
differ by availability slot and performance for simplicity. These
resources are described in Table 2. Although the resources
are of same type and context, appropriateness of partitions
differ due to varying performances. Further we consider two
requests of same type and context requesting for same time
span {ts ∶ 30, te ∶ 300}. Start and end of partitions are marked
with star and rhombus. It may be noticed that resource 3 does
not have a starting partition (star) and resource 2 does not have
an ending partition (rhombus). This is because no instance of
these resources overlap with ts ∶ 30 and te ∶ 300 respectively.
Competition (an integer) of each partition is highlighted inside
the squares. In Figure 5, some partitions (X3,0,X3,1) have no
competitors because no other resource availability slots serve
in the same time span. So such partitions have to be shared
among all requests. On the other hand, other partitions have
competition higher than one. This implies that requests can be
distributed in such a way that resource starvation is minimized
as discussed in Equation 14.

4.1 ILP Formulation
As discussed earlier, Figure 5 visualizes one request layer.
To solve the problem for multiple requests we need to have
multiple such request layers. Decision variable Xijk shown in
Equation 15 represents whether ith resource’s jth vertex has
been used by the service request k. An edge Y kij→pq shown
in Equation 16 indicates whether there exists a hop from ith

resource’s jth vertex to pth resource’s qth vertex. Possible edges
in a request layer are shown in Figure 5.

Xijk = { 1 vertex i,j,k is used
0 otherwise

(15)

Y
k
ij→pq = { 1 hop from vertex i,j,k to vertex p,q,k

0 otherwise
(16)

Based on these decision variables we need to model our con-
straints such that we get a continuous path from the source

vertex to the destination vertex. For each request layer we have
a start vertex denoted by X0,0,k connected with all vertices with
star. To complete the path we have another vertex X−1,−1,k in
each layer that each ending vertex (marked with rhombus in
Figure 5) connects to. As we need connecting path in each
layer these two request vertices are always used as shown in
Equation 17.

X0,0,k = 1 ∀k X−1,−1,k = 1 ∀k (17)

To make our reservation path continuous we can use continuity
constraints which are very similar to ILP formulation of single
source single destination shortest path problem [11]. Equation
18 constraints that in-degree of all resource vertices will be same
as its out-degree. However for the request vertices shown in
Equation 17, there is no incoming edge for vertex X0,0,k and no
outgoing edge for vertex X−1,−1,k. As these two sets of vertices
are to be used in all layers, out degree of request start vertex
must be 1, and the same applies for in degree of request end
vertex of each layer as shown in Equation 18.

∑
p,q

Y
k
ij→pq = ∑

p,q

Y
k
pq→ij ∀i, j

∑
i,j

Y
k
0,0→ij = 1 ∀k

∑
p,q

Y
k
pq→−1,−1 = 1 ∀k

(18)

If an edge originated from vertex (i, j, k) is used it implies that
vertex (i, j, k) is used as shown in Equation 19.

Xijk = ∑
p,q

Y
k
ij→pq ∀p, q (19)

Competition constraint is applied on competing vertices as
shown in Equation 20 where j is the vertex id of ith resource’s
mth instance’s pth partition. It may be noted that all other
constraints operate at different layers whereas this constraint
is applied on the competeting vertices accross the layers. We
discuss more on this later in the next few sections.

∑
k

Xijk ≤ SHARE(i,m, p) (20)

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:32:12 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3022679, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING vii

Our objective is to maximize gain by selecting more appro-
priate vertices while minimizing number of hops as shown in
Equation 21. Ppqk and Hij→pq are the favourability of vertex
(p, q) and hopcost of migrating from vertex (i, j) → (p, q) w.r.t.
request k as shown in Equation 8 and Equation 9 respectively.

Max∑Y
k
ij→pq(Ppqk −Hij→pq) (21)

We solve the ILP with the above mentioned equations. A
visualization of the solution is presented on Figure 6. Selected
partitions are highlighted with red rectangles. Edges are high-
lighted with red arrows. As we have two requests, 2 layers
are visualized in our solution. First layer shown in Figure 6a
is the solution for the first request and Figure 6b displays the
solution for the second one. Due to the effect of Equation 20,
verticesX1,0 andX1,1 have been used in the first layer, however
in the second layer, vertices X2,0,X2,1 and X2,2 are used to
minimize dependency in that time frame. On the other hand
vertices X3,0,X3,1,X1,2,X1,3 have competition value of 1. As
these vertices have no competitors, all request layers use these
vertices.

However entry and exit positions of the edges are arbitrarily
drawn, as the equations we have presented so far are not suffi-
cient to determine that. Also this leads to a miscalculation of our
objective function. We assume that if a vertex is used it will be
used for its entire duration. Thus we multiply appropriateness
of a partition with its duration ∣Lij ∣ in Equation 9. But if we
check any hop shown in Figure 6a (e.g. X1,9 → X2,6), if edge
Y1,9,2,6,1 originates from the end of X1,9, vertex X2,6 is used
partially. Similarly if edge Y1,9,2,6,1 reaches X2,6 at the begin-
ning of that vertex, then vertex X1,9 is partially used. There will
be many possibilities based on the entry and exit positions of
the edges. Unless we address this issue the solution is actually
incomplete. So in the next few sections we try to reformulate
our problem differently so that we can also determine suitable
entry and exit positions for edges.

4.2 MINLP Formulation
Although we get a set of vertices and a set of edges selected
for each request layer, we cannot compute the entry and exit
position of the edges. Whenever a vertex is visited by an
edge our equations assume that the vertex has to be visited
completely till the partition ends. However the time span a
request stays on a vertex depends on its entry position of in-
edge and exit position of out-edge. In the subsequent sections
we try to provide a more precise problem formulation.

Let us have two variables apqk, bpqk ∈ R+ to determine the
destination position of in-edge and source position of out-edge
for a vertex (p, q, k). If in-edge of vertex (p, q, k) incidents on the
beginning of the partition, value of apqk = 0. Similarly if the out-
edge of vertex (p, q, k) originates from the end of that partition
we have bpqk = 1. So these two variables are bound within [0,1]
as shown in Equation 22. Though this way we can effectively
express entry and exit positions of the edges, we are not dealing
with only integers. The problem is now transformed to a mixed
integer problem as the variable a and b are real numbers.

0 ≤ apqk, bpqk ≤ 1 (22)

Based on these two variables we can compute ∆pqk = bpqk−apqk
as the amount of stay in vertex (p, q, k). ∆pqk is also bound
within [0,1]. ∆pqk = 1 for a vertex (p, q, k) implies that the
vertex have been fully visited. Our objective function also
changes to incorporate these variables as shown in Equation 23.
As we can observe the objective function turns into an MINLP
(Mixed Integer Non Linear Problem) which is comparatively
more difficult to solve.

Max∑Y
k
ij→pq(∆pqkPpqk −Hij→pq)

⇒Max∑Y
k
ij→pq((bpqk − apqk)Ppqk −Hij→pq)

(23)

Fig. 7: Slicing Partitions of 3 resources,Legends in Table 3

For continuity of the hops we need the exit position from one
vertex to be at the same time as the entry position of that edge
in the next vertex as shown in Equation 24.

Y
k
ij→pq((bijkLij +Aij) − (apqkLij +Apq)) = 0

Aij = SPAN(Ri,m, p).begin
m,p are instance and partition of vertex j of Ri

(24)

Due to the inherent complexities of MINLP the solution of
the above problem is time consuming. Therefore, we process
the inputs differently and remodel the problem with another
ILP formulation. The newly formulated problem can be solved
in reasonable amount of time which is discussed in the next
section.

Remodeling with pre-processing of vertices
In the previous section, formulation of a mixed integer pro-
gramming problem is considered. However, if we can enforce
a hop to start at the end of a partition and end at the beginning
of another partition, all visited partitions will be fully utilized.
But ending position of a partition is rarely aligned with the
beginning position of the next partition as observed in Figures
5 and 6. So we slice the partitions in such a way that beginning
position of a slice of the reachable partitions is always aligned
with the ending position of a source slice as shown in Figure 7.

With this modification, instead of taking partitions as ver-
tices, the slices are considered as vertices. A hop is performed
from the ending position of a slice and leading to the starting
position of the destination vertex. So a slice is either fully visited
or not visited at all resulting to no partial visits.

Now we need to translate our decision variables shown in
Equations 15, 16 and 17 in terms of slices. Same applies for the
constraints and objective function shown before in Equations
18, 19, 20 and 21. The algorithms for slicing the partitions are
shown below. CREATERESOURCESLICES shown in Algorithm 2
slices resource partitions while using SLICERESOURCE shown
in Algorithm 3. Each such slice is represented as a vertex in
the graph. We create a directed edge between two slices iff the
ending position of the first one is same as the starting position
of the second one as shown in Figure 7. Now we explain the
algorithms shown below.

CREATERESOURCESLICES considers all resources(R) and re-
source requests(Q) and returns a matrix of ∣R∣ × ∣Q∣ dimension.
Each cell in that matrix is a vector that corresponds to resource
slices for an instance of the resource. As time span of requests
may vary, different resource instances may be appropriate for
different requests. Using OVERLAPSF we get a pair of instances
starting from a and ending on b. We iterate through a⋯b
and generate the resource slices of each instances by using
SLICERESOURCE.

SLICERESOURCE takes a resource Rr and the instance n
subjected to be sliced depending on the start and end positions
of other resources R. Each element Ni ∈ N corresponds to a
pair {ai, bi} denoting the begin and end instances of resource
Ri that are computed in CREATERESOURCESLICES. Beginning
and ending points of all partitions Lij ∈ Li (Li is the set of
all performance partitions of resource Ri) of all Ri ∈ R are

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:32:12 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3022679, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING viii

Algorithm 2 CREATERESOURCESLICES(R,Q)

1: V ← φ ▷ Matrix ∣R∣ × ∣Q∣
2: for i ∈ ∣R∣ do
3: for k ∈ ∣Q∣ do
4: N ← φ ▷ Vector ∣R∣
5: for l ∈ ∣R∣ do
6: rgn← OVERLAPSF(Rl(T),Qk(t))
7: Nl ← {rgn.a, rgn.b}
8: end for
9: for m ∈ Ni1⋯Ni2 do

10: S ← SLICERESOURCE(R,N, i,m)
11: INSERT(Vik,m,S)
12: end for
13: end for
14: end for
15: return V

Fig. 8: Slicing a Resource Instance

extracted in P. These points are shown in Figure 8 (black and
white squares).

←Ð
Lij and

Ð→
Lij are the begin and end points of jth

partition of resource Ri. Begin and end time of all partitions p
of resource Rr are stored in set E w.r.t. instance n shown by
the white squares in example Figure 8. As we are interested
in slicing resource Rr w.r.t. to other resources in R, we keep
only those points which lie within the time span of Rr . We
complement vector E from P ′ to exclude the begin and ending
points of partitions of Rr as shown by the black triangles in
Figure 8. The remaining values stored in Ep are the begin
and end points of other resources’ partitions that lie within a
partition of nth instance of Rr . Then we split the partitions in
Ep points and reshape the performance matrix in Eph.

We pre-process the partitions into slices using the above
mentioned algorithms. All possible directed edges are con-
structed between the reachable slices. Now we proceed to-
wards reformulating our ILP using these slices as vertices. Our
reformulation will not be much different from the previous
one shown using Equations 15. . . 21. However we use X̂ and
Ŷ instead of using using X and Y in our decision variable
names. X̂ and Ŷ shown in Equations 25 and 26 now represent
vertices and edges. Decision variable X̂ijk denotes whether jth

vertex(slice) of resource Ri is selected for request k. X̂0,0,k and
X̂−1,−1,k are the start and terminal request vertices which are to
be selected in order to satisfy request k. OUTDEGREE of the start
request vertex and INDEGREE of the terminal request vertex
are exactly 1 as shown in Equation 26. For any intermediate
resource slice, its OUT-DEGREE and IN-DEGREE are to be same
to retain continuity as shown in Equation 27. Similar to the
previous ILP formulation, if there exists an edge out going from
a vertex it is marked as used as shown in Equation 28.

X̂ijk = { 1 Sijk is used
0 otherwise

X̂0,0,k = 1 ∀k X̂−1,−1,k = 1 ∀k
(25)

Algorithm 3 SLICERESOURCE(R,N,r,n)

1: P ← φ ▷ begin, end stamps of all partitions
2: for i ∈ 1 . . . ∣R∣ do
3: for j ∈ 1 . . . ∣Li∣ do ▷ Li is the partitions of Ri
4: for t ∈ ai . . . bi do ▷ instances Ni = {ai, bi}
5: P = P ∪ {si + tki +

←Ð
Lij , si + tki +

Ð→
Lij}

6: end for
7: end for
8: end for
9: E ← φ

10: for ρ ∈ 1 . . . ∣Lr ∣ do
11: E = E ∪ SPAN(Rr, n, ρ)
12: end for
13: P ′ ← {p ∈ P ∶ p ∈ [MIN(E),MAX(E)]}
14: Ep← P ′ ∖E
15: C ← φ
16: for h ∈ 1 . . . ∣Lr ∣ do
17: Eph← {p ∈ Ep ∶

←ÐÐ
Lrh < p <

ÐÐ→
Lrh}

18: for p ∈ Eph do
19: C ← C ∪ SPLITF(Lrh, p)
20: end for
21: end for
22: return C

Ŷ
k
ij→pq = { 1 hop Sijk Ð→ Spqk

0 otherwise

∑
i,j

Ŷ
k
0,0→ij = 1 ∀k ∑

p,q

Ŷ
k
pq→−1,−1 = 1 ∀k

(26)

∑
p,q

Ŷ
k
ij→pq = ∑

p,q

Ŷ
k
pq→ij ∀i, j

where Sijk ∈ IN(Spqk) ∀i, j
Spqk ∈ OUT(Sijk) ∀p, q

(27)

X̂ijk =∑
p,q

Ŷ
k
ij→pq ∀p, q

where Spkq ∈ OUT(Sijk) ∀p, q
(28)

We group the slices belonging to the same partition, and
label each partition with a tuple (i,m, p) where the label
consists of the resource id (i), instance (m) and partition (p).
Slices in each group Uimp ∈ U have the same sharing coef-
ficient determined by SHARE(i,m, p) shown in Equation 14.
As the minimum value of Cki (m,p) is 1, maximum value of
SHARE(i,m, p) is ∣Q∣. Previously in Equation 20 we were con-
straining usage of the same partition for multiple requests to be

Fig. 9: Problem Visualization with Slicing (Legends in Table 3)

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:32:12 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3022679, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING ix

Fig. 10: Solution Visualization with Slicing (ε = 200), Legends in Table 3

≤ SHARE(i,m, p). Now we are applying the constraint on usage
of all slices belonging to the same partition. As maximum value
of SHARE(i,m, p) is ∣Q∣, maximum value of ∣Lip∣SHARE(i,m, p)
is ∣Lip∣∣Q∣, where ∣Lip∣ is the length (time duration) of partition
p of resource Ri. The partition Lip is spit into multiple slices
Sijk, sum of size ∣Sijk ∣ of all slices will be same as ∣Lip∣ w.r.t.
request Qk ∈ Q. So now we constrain the total visited length of
all slices in Equation 29.

∑
k

∣Sijk ∣X̂ijk ≤ ∣Lip∣SHARE(i,m, p) ∀Sijk ∈ Uimp

where SHARE(i,m, p) =
⎡⎢⎢⎢⎢⎢
∑
k

1

Cki (m,p)

⎤⎥⎥⎥⎥⎥

(29)

In all other constraints from Equation 25 to 28 we are actually
enforcing a shortest path for each request, which can be solved
in polynomial time. However absence of this competition con-
straint of Equation 29 will lead to compaction in scheduling as
mentioned before in Section 2. So in Section 5.1 we simulate the
scheduling with or without this constraint to compare the two
approaches compation and balancing.

Our objective shown in Equation 30 is to maximize total
performance gained while minimizing cost of switch over from
one resource to the other. Sgpqk refers to the performance gain of
slice (i, j, k). Hij→pq is the hop cost for switching from slice Sij
to Spq .

Max∑(Sgpqk −Hij→pq)Ŷ
k
ij→pq (30)

A set of example resources are shown in Table 2 previously.
We now take two requests for the same set of capabilities,
however having different time slots {ts ∶ 20, te ∶ 100} and
{ts ∶ 60, te ∶ 200}. The problem can be visualized in Figure
9 where x axis corresponds to resource slices, y (height) axis
corresponds to resources and z (depth) axis corresponds to
the requests. Slices (shown as cuboids) belonging to the same
performance partition have the same color. Heights of these
slices are proportional to the weight of performance partition.
Each of the two gray tracks at the bottom braces the resource
slices feasible for that request. Possible hops are shown in
arrows originating from the source slice, heading towards the
target slice. Arrows are colored with the same color as its source
slice. Edges originate from the end position of the source slice
and reach its target slice on its starting position. However if the
start and end slice belong to the same resource end position
of source resource and start position of the target resource are
same. So for visualization we have drawn the edges originating

from the middle of the source and reaching the target on its
middle.

Now we solve the problem with the above mentioned
Equations 25, 26, 27, 28, 29 and 30 with ε = 200. The solution
has been visualized in Figure 10. Slices are labeled with their
vertex id which is shown on the cuboids. Selected slices are
highlighted with a thin red block on their head. Selected edges
are marked with red arrows. Competition groups spanning
multiple request layers are shown by thin layers floating on the
top of the slices belonging to the same partitions. We can see
in the visualization that slices S1,7,1, S1,7,2, S1,8,1, S1,8,2 (shown
in green) belong to the same partition which is competing with
slices S2,6,1, S2,6,2, S2,7,1, S2,7,2 (shown in yellow). Due to the
constraint shown in Equation 29 slices S1,7,1, S1,8,1 are selected
for request 1. But the same slices are not selected for request
2. Instead slices S2,6,2, S2,7,2 are selected to serve for request 2.
On the other hand as the slices S3,2,1, S3,2,2, S3,3,1, S3,3,2 have
no competitors they have been used for all requests.

Now as the partitions are quantized into non-uniform slices
we may use some slices of a partition and then switch to
a different resource and again come back to some slice of
the previous resource’s partition. Though such events are rare
(depending on the hop cost), there will be more than one
entry and exit points for a partitions. However using these
informations we may also create a time table of allocation/de-
allocation/migration tasks that we need to perform to fulfill
the advanced reservation. A task is defined by a tuple of
{time(t), source → target}, where source and target are de-
fined by a resource id. Each row in the time table is indexed by
a time stamp (t). A sequence of such tasks are to be performed
for each request Qk ∈ Q. Source and target pair denotes the
transition from source Ru to target Rv . Transitions like φ→ Rv ,
Ru → φ denotes the initial allocation and final deallocation
while serving the request Qk. Task schedules deduced from
the solution shown in Figure 10 are shown in Table 4. Tables
4a and 4b shows the resource migration for request 1 and 2
respectively. Number of migrations depends on the hop cost
(ε). If we use a lower hop cost on the same set of resources
and requests we will have more number of migrations. Table 5
shows the tasks that we need to perform is ε = 150. Tasks that
we need to perform for requests 1 and 2 are shown in Tables 5a
and 5b.

4.3 Fault Tolerant Approach
In previous section we have discussed about two approaches to
solve our problem one through shortest path which compacts

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:32:12 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3022679, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING x

TABLE 4: Tasks (ε = 200)

(a) Request1

t Task
20 φ→ 2
70 2→ 3
90 3→ 1
105 1→ φ

(b) Request2

t Task
50 φ→ 1
70 1→ 3
90 3→ 1
135 1→ 2
170 2→ 1
205 1→ φ

TABLE 5: Tasks (ε = 150)

(a) Request1

t Task
20 φ→ 2
30 2→ 1
35 1→ 2
70 2→ 3
90 3→ 1
105 1→ φ

(b) Request2

t Task
50 φ→ 1
70 1→ 3
90 3→ 1
135 1→ 2
170 2→ 1
205 1→ φ

requests into fewer number of resources and another one bal-
ances by imposing capacity constraints. The second approach
minimizes the overall consumer impact if one resource inter-
rupts in service. However as sensors are resource constrained
devices there is still a chance of a subset of request being
disturbed if some resource performs poorly. In this section
we move towards a hybrid approach by using both of these
approaches and with some minor modification we provide a
solution which balances while making the overall service fault
tolerant.

To achieve that we select a set of secondary resources along
with the primary resource selected with the above mentioned
balanced method. To provide p fault tolerence (i.e. System
remains unaffected if ≤ p resources are down at a given time)
we transform the requestsQ in input space toQ′ by duplicating
itself p times as shown below (∣∣ is the concatenation operator).

Q
′ = ∣∣

p

(Q) = Q ∣∣Q ∣∣⋯ ∣∣Q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p times

where {a} ∣∣{b} = {a, b}

So every Qk and Qk+∣Q∣ is actually the same request. The
continuity constraints on Equation 27 are applied on all re-
source vertices. However the capacity constraints shown on
Equation 29 is applied on vertices Xi,j,k only where 1 ≤ k ≤ ∣Q∣.
However for any resource slice if its competition Cijk ≤ p then
requested p tolerance cannot be provided for that slice. Also we
don’t want the primary and secondary resource to be the same
we impose Equation 31.

p−1
∑
i=0

Xi,j,k+i∣Q∣ ≤ 1 ∀(i, j, k) (31)

After we solve this transformed problem we get a pair of
schedules for each request Qk. One for Qk which is solved
while imposing the capacity constraints and the other forQk+∣Q∣
which is actually the second request. So whenever the primary
resource serving request Qk doesn’t serve as promised we may
switch to the secondary resource which is allocated for Qk+∣Q∣
thus feasible to serve Qk for that time. Thus we achieve fault
tolerance with degree k with a minor modification to the ILP.
In Section 5 we contrast these three approaches.

5 EXPERIMENTAL RESULTS
We have implemented our algorithms in Mathematica [12]. To
provide the inputs to the solver and for representation we
have used Qt framework. We have also created a C++ library,
Mathematica++ [13] to bridge between C++ and Mathematica
over WSTP [12] connection.

For our simulation, resources having varying availability
patterns and non uniform performance partitions are used.
These resources are requested for different time spans. The
experiments are conducted using different scheduling strate-
gies to contrast the effectiveness of these strategies on the basis
of (i) service performance (ii) resource migration (iii) resource
sharing and (iv) resource utilization. Number of requests and
resource capabilities required by the requests are varied in
different experiments to test consistency of the results as the

Fig. 11: Availability of resource in Table 6

system is scaled up. We have also conducted experiments
to relate hop cost (ε) introduced in this paper with resource
migration. For all requests we consider a time span of 360
minutes to serve all requests. We call it operational time. To
quantify resource sharing and resource utilization we use the
three metrics u(Ri), c(Ri) and s(Ri) as described below.
u(Ri) is measured as ratio of total working time a resource Ri

has served and operational time. e.g. a resource is sched-
uled for total 1 hour out of 360 minutes and thereafter by
one request for 45 minutes has u(Ri) = 60/360 = 1.167

c(Ri) is total service time of resourceRi consumed by multiple
requests. e.g. a resource is scheduled for total 1 hour and
consumed (shared) by 2 requests for 15 minutes s(Ri) =
2 ∗ (15/360) + 1 ∗ (45/360) + 0 ∗ (300/360) = 0.2083

s(Ri) is measured as c(Ri)/u(Ri) which indicates sharing of
that resource.

Increase in s(Ri) implies fewer resources serving large number
of requests, thus making multiple requests dependent on fewer
number of resources. Increase and decrease in u(Ri) implies
resource utilization and starvation respectively.

5.1 Comparison of The Proposed Approaches
Table 6 shows the availability pattern (s, δ, κ) of each resource.
Each of these resources start service on 1st January 2018
(UTC+05:30) on the time given in the start column in hh:mm
format. We calculate time stamps in minutes (minutes passed
since unix epoch). The non-uniform performance partitions of
all resources are shown in Table 9. LCM of recurrences of the
availability of resources in Table 6 is 6 hours (360 minutes).
Figure 11 shows availability of the 7 resources for 6 hours
(00 ∶ 00 → 06 ∶ 00). Height of each slice corresponds to the
expected throughput of each performance partition as shown
in the fourth column of Table 9. Slices belonging to the same
partition are filled with the same color. We have used three
strategies, (i) compaction, where competition constraints in
Equation 29 are omitted, (ii) balanced, where competition con-
straints are used, and (iii) random, where a randomly chosen
feasible schedule is used. We have conducted the following
experiments in this paper. In the first two experiments we
contrast the schedules obtained by different scheduling strate-
gies and compare the quality of results obtained, on the basis
of the parameters mentioned previously in Section 5. In the
first experiment these 7 periodically available resources are
homogeneous (only in terms of type and capabilities) and are
scheduled for 2 requests. In the next experiment resources are
heterogeneous (having varying capabilities) and are scheduled
to 10 requests. Objective of the second experiment is to val-
idate whether the comparative analysis obtained by the first

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:32:12 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3022679, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING xi

TABLE 6: Resource Availability Pattern

start(s) duration(δ) recurrence(κ)
1 00:00 (25245750) 02:00 (120) 06:00 (360)
2 00:00 (25245750) 00:30 (30) 02:00 (120)
3 04:00 (15777990) 02:00 (120) 12:00 (720)
4 02:00 (25245870) 03:00 (180) 12:00 (720)
5 00:00 (25245750) 01:00 (60) 03:00 (180)
6 02:00 (25245870) 01:00 (60) 03:00 (180)
7 01:00 (25245810) 01:00 (60) 03:00 (180)

TABLE 7: Resource Requests

start (ts) end (te)
1 00:00 (25245750) 04:00 (25245990)
2 01:00 (25245810) 05:00 (25246050)
3 00:00 (25245750) 01:00 (25245810)
4 00:00 (25245750) 05:00 (25246050)
5 02:00 (25245870) 06:00 (25246110)
6 01:00 (25245810) 03:00 (25245930)
7 00:00 (25245750) 03:00 (25245930)
8 00:00 (25245750) 06:00 (25246110)
9 01:00 (25245810) 06:00 (25246110)

10 05:00 (25246050) 06:00 (25246110)

experiment is consistent with heterogeneity while increasing
the number of requests. Maximum hop cost (ε in Equation 8)
is set to 200 for both experiments. Then we relate hop cost and
number of hops by gradually increasing hop cost in the same
experiment.

Resources with Uniform Capabilities
The requests described in Table 8 are used in the first experi-
ment. In this experiment we assume that the capabilities of all
resources are same, all resources are feasible for all requests. But
the resources show varying performances thereby contributing
to varying appropriateness. Fault tolerance has been set to 1,
i.e. maximum 1 backup resource slice will be selected for each
selected primary resource slice. Figure 12a and 12b show the
schedule obtained through compact, balanced and random ap-
proaches. The resource slices selected in compact, balanced and
random approaches are marked with thick blue, red and green
overlines respectively. The blue, red and green paths show the
allocation and migration with compact, balanced, and random
approaches. The secondary (first backup) resources which are
supposed to be used if primary resources fail are marked with a
circle inside the resource slice. The expected performance vary-
ing with time for both of these requests are shown in the Figures
13a and 13b. Number of migrations for different approaches are
marked with arrows. The horizontal lines depicts the average
performance observed in each approaches. It is observed that
number of migrations in random approach (Q1 ∶ 26,Q2 ∶ 32)
is too high as compared to both compact (Q1 ∶ 5,Q2 ∶ 6) and
balanced approaches (Q1 ∶ 6,Q2 ∶ 7). Average performance of
random approach is also the lowest. So the random approach
can only be used if all the resources perform uniformly over
time and hop cost is 0, which is rare in real life scenario. Two
requests overlap for 120 minutes (02:00 → 04:00). During this
period compact approach produces nearly the same schedule
for both requests (blue line), however with balanced approach
(red dashed line) it differs, as observed in Figure 12a and 12b.
Hence, if R4 fails between 02:00 and 04:00 then both requests
will be affected when scheduled with the compaction approach.
But with balanced approach this impact will be less as differ-
ent resources are allocated for different requests. Number of
requests served by each resources are shown in Figures 14a to

TABLE 8: Resource Requests

start(ts) end(te)
1 00:00 (25245750) 04:00 (25245990)
2 02:00 (25245870) 06:00 (25246110)

TABLE 9: Performance Partitions

←Ð
Lij

Ð→
Lij ∣Lij ∣ L̂i,j

L11 0 6 6 47
L12 6 26 20 120
L13 26 53 27 97
L14 53 87 34 108
L15 87 103 16 95
L16 103 120 17 78
L22 0 15 15 100
L23 15 30 15 115
L31 0 14 14 73
L32 14 44 30 91
L33 44 82 38 83
L34 82 120 38 92
L41 0 22 22 47
L42 22 48 26 81
L43 48 62 14 120
L44 62 75 13 96
L45 75 85 10 84
L46 85 96 11 77
L47 96 109 13 66
L48 109 125 16 104
L49 125 143 18 88
L410 143 161 18 66
L411 161 180 19 99
L51 0 14 14 37
L52 14 37 23 49
L53 37 60 23 69
L61 0 7 7 68
L62 7 22 15 120
L63 22 41 19 78
L64 41 60 19 92
L71 0 3 3 78
L72 3 13 10 120
L73 13 27 14 106
L74 27 43 16 93
L75 43 51 8 81
L76 51 60 9 108

TABLE 10: capabilities

R sensitivity accuracy
1 0→ 100 ±2
2 0→ 80 ±5
3 0→ 50 ±2
4 0→ 50 ±2
5 0→ 100 ±2
6 0→ 50 ±5
7 0→ 100 ±5
Q sensitivity accuracy
1 0→ 50 ±5
2 0→ 50 ±2
3 0→ 80 ±5
4 0→ 50 ±2
5 0→ 80 ±5
6 0→ 50 ±5
7 0→ 50 ±5
8 0→ 50 ±2
9 0→ 50 ±5
10 0→ 50 ±5

TABLE 11: Feasibility
(∎ feasible,2 infeasible)

qr 1 2 3 4 5 6 7
1 ∎ ∎ 2 2 ∎ 2 ∎

2 ∎ 2 ∎ ∎ ∎ 2 2
3 ∎ ∎ 2 2 ∎ 2 ∎

4 ∎ 2 ∎ ∎ ∎ 2 2
5 2 ∎ ∎ ∎ ∎ ∎ ∎

6 ∎ ∎ 2 ∎ 2 ∎ ∎

7 ∎ ∎ 2 ∎ ∎ ∎ ∎

8 ∎ ∎ ∎ ∎ ∎ ∎ ∎

9 ∎ ∎ ∎ ∎ ∎ ∎ ∎

10 2 2 ∎ 2 2 ∎ 2

14g. We can see that R2 serves 2 requests for a short period with
compact approach (blue), whereas with balanced approach it
serves 1 request, thus decreasing the impact of failure as shown
in Figure 14b. Total length of time R2 is used has also increased
in balanced approach, thereby decreasing resource starvation.
Similar effects can be observed for resource 3, 4, and 6 shown
in Figures 14c, 14d and 14f respectively.

s(Ri) and u(Ri) of the 7 resources are shown in Figures 15a
and 15b with colored marks. The average s(Ri) and u(Ri) of all
resources are shown as colored horizontal lines. It is observed
that although compact approach achieves marginally increased
amount of sharing (s(Ri)) balanced approach results significant
amount of increase in resource utilization (u(Ri)).

Resources with Non-Uniform Capabilities
Next we experiment with larger set of requests as shown in
Table 7 and simulate a scenario when all resources are not
feasible for all requests. We assume all the resources are of
same type and requests are also for same type of resource.
But unlike the previous experiment the capabilities the re-
sources vary contributing to a more heterogeneous inventory.
Availability pattern of the resources are same as the previous
experiment. We have used two capability parameters, sensitivity
and accuracy out of which accuracy is a restrictive parameter.
The availability values of resources, and requests are shown
in Table 10. In Table 10 the first 7 rows are the capabilities
of resources and next 10 rows are capability requirements of
requests. The feasibility matrix is shown in Table 11. Each cell
(k, i) in this table denotes whether ith resource is feasible for
kth request. A black square denotes that the resource is feasible
for the request and a white square denotes the resource is
infeasible.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:32:12 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3022679, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING xii

(a) Schedule for Request 1 (b) Schedule for Request 2

Fig. 12: Schedule for requests in Table 8 Using Compact and Balanced Strategies, Legends in Table 3

(a) Schedule for Request 1 (b) Schedule for Request 2

Fig. 13: Performance for requests in Table 8 Using Compact, Balanced and random Strategies

In this experiment we observe that the average performance
achieved using compact approach is marginally better than
the balanced approach for all 7 resources as observed in the
previous experiment.† Average hops for these 10 requests for
compact and balanced approaches are 4.1 and 4.3 respectively.
s(Ri) and u(Ri) of the 7 resources in this experiment are
shown in Figures 15c and 15d with colored marks. We observe
a similar trend in sharing as well as utilization in this scaled
up experiment as well. Similar to the previous experiment the
compact approach achieves increased sharing (s(Ri)) whereas
the balanced approach results to significant amount of increase
in resource utilization (u(Ri)). So our results suggest that the
balanced approach provides better resource utilization while
marginally affecting the performance, resource migration and
sharing, when compared with the compact approach.

Relation between hop cost and number of migration

We have previously modeled resource migration with a metric
hopcost as a function of ε in Equation 8. ε is used as maximum
cost for resource migration. So far we have simulated with
ε = 200. Now we increase ε and check how that affects the num-
ber of migrations using the same set of resources and requests
as used previously. Figure 16 shows number of migrations each

†. Please see Figures 18, 19 in Appendix A for schedule and perfor-
mance for each request respectively and Figure 20 for dependency and
utilization of resources in this experiment.

request will encounter individually for a given ε value. Total‡

number of migrations (including migrations of all resources) is
shown in Figure 17. We can observe in Figure 16 that although
increasing ε may causes overall decrease in resource migration,
it may result in increase of number of migration for some
requests. For example, when we increase ε from 300 to 400,
number of migrations for Q6 increases although total number
of migrations performed by all requests are actually decreased
from 53 to 45. We can also observe that as we keep increasing
the value of ε, decrease in total number of migrations slows
down and moves towards a saturation point.

6 RELATED WORKS
Sensors in varying application domains, like health care [14],
smart cities [15], environment monitoring [16] are integrated
with applications hosted on cloud. However, in most cases, the
sensors are dedicated for particular applications. In this context,
Lim et al mentioned that “The tight coupling between a net-
work and application limits the usability of sensor data” [17].
They proposed an SCI to overcome such limitations. Other
researchers have also come up with proposals for SCI. Surveys
on sensor-cloud architecture and applications are presented
in [18] [19]. Bose et al propose an architecture of SCI to support
sensor-aware applications [2] for heterogeneous devices using
virtualisation of sensors that lays the foundation of this paper.

‡. initial allocation and request completion are included as migration
from nothing and to nothing respectively.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:32:12 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3022679, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING xiii

(a) Dependency R1 (b) Dependency R2 (c) Dependency R3 (d) Dependency R4

(e) Dependency R5 (f) Dependency R6 (g) Dependency R7 (h) Utilization R

Fig. 14: Resource Dependency and utilization w.r.t. time for requests in Table 8 (— compact — balanced — random)

1 2 3 4 5 6 7
0

1

2

3

compact balanced

(a) s(Ri) in Experiment 1

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

compact balanced

(b) u(Ri) in Experiment 1

1 2 3 4 5 6 7
0

2

4

6

8

10

compact balanced

(c) s(Ri) in Experiment 2

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

compact balanced

(d) u(Ri) in Experiment 2

Fig. 15: Resource sharing and utilization in Experiment 1 and 2

Rachkidi points out [20] that there can be two different
approaches to support a ’pay as you go’ business model in
IoT (Internet of Things) frameworks — one is a data centric ap-
proach [21], and the other is a device centric [2] approach. Data
centric approaches are used in [22] where sensing resources are
exposed as data sources through APIs. On the other hand, in [2]
remotely located sensors are exposed as virtual devices to the
Virtual Machines (VM) in cloud’s computing infrastructure. It
has been shown that use of virtual sensors allow loose coupling
between applications and sensing resources, thereby enabling
sharing the sensors on demand basis.

As pointed out earlier, when sensors are available in
a market-place for consumption by different applications,
scheduling of sensors become a complex problem. Scheduling
of transmission of data from sensing devices has been inves-
tigated in contemporary literature. Wireless sensor networks
have been used in industrial process monitoring applications
using WirelessHART [23] network. In their system, real time
transmission scheduling for sensors to actuators for a set of
periodic data flows has been addressed in [24]. Here, a heuristic
based approach is proposed towards the deadline sensitive
transmission scheduling problem. TDMA based scheduling
schemes are proposed in [25] to schedule sensing tasks in
WSN. As the sensing devices are energy constrained resources,
in [26] availability of resources are temporally scheduled to
maximize the spatial coverage and lifetime of a set of ho-
mogeneous sensors. In [8] [27] spatio-temporal phenomenon
modeling is used to predict the phenomenon on unobserved
locations by observing a small subset of locations. However
such algorithms do not deal with the complexities encoun-
tered while scheduling a set of heterogeneous sensors which
are available periodically. The problem of finding optimum
offsets to minimize periodic spikes when multiple sensors
transmit simultaneously is addressed in [28]. In [29], periodic-
task based high-performance scheduling models are proposed
with a cloud-supported caching mechanism for multisensor
gateway. Load balancing schemes for LEO satellite networks
for IoT communications have been proposed in [30]. Though

1 2 3 4 5 6 7 8 9 10
0

2
3
4
5
6
7
8
9

10
11
12

14

Request(Qi)

100 200 300 400 500

600 700 800 900 1000

Fig. 16: Number of migration for different ε in (Equation 8)

100 200 300 400 500 600 700 800 900 1,000
30
40
50
60
70

Maximum switch over cost ε

Total number of migrations

Fig. 17: Total migrations as we change ε of Equation 8

these papers deal with periodic properties of resources, they
do not handle scheduling between several applications in an
open system scenario. With periodic availability, it is required
to schedule the service time of multiple resources appropriately.
Ignoring periodic nature while scheduling these resources will
lead to sensing holes and even infeasible schedules. So we
model periodic availability as recurrence pattern and incorpo-
rate that into the optimization problem.

In [31] [32] algorithms have been proposed for selecting a
subset from a pool of available homogeneous sensors. Schedul-
ing computational tasks on edge devices are proposed in [33]
[34]. Geographic location is treated as an important property
of resources and requests in [35] [36]. Sensing requests are

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:32:12 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3022679, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING xiv

modeled as circular and rectangular geo-fences respectively in
[35] and [36]. In [35] a Gossip based algorithm is proposed
that discovers feasible resources through communicating in the
sensor network. In contrast to the above research works, this
paper assumes that the heterogeneous sensing resources are
periodically available and sensing performance is time varying.

7 CONCLUSION
This paper is focused on scheduling sensing resources in sensor
cloud infrastructure. Primarily different approaches have been
proposed that consider the availability, appropriateness and
performance of the sensors while mapping them to the applica-
tion requests. An evaluation has also been made among these
approaches. This work can be extended to many other variants
of scheduling problems, including generic job scheduling with
heterogeneous resources having repetitive appearance pattern
and predictive performance w.r.t. time. Additional constraints
may be imposed on the problem. So far we did not consider
resource buckets. However consumer requests may constrain
requested resources to be allocated from the same bucket or
from different buckets. Our proposed algorithm can be ex-
tended to solve this problem.

ACKNOWLEDGMENTS
This work is supported by Information Technology Research
Academy (ITRA), Government of India under, ITRA-Mobile
grant ITRA/15(59)/Mobile/RemoteHealth/01.

REFERENCES

[1] S. Bose et al., “A Framework for Heterogeneous Resource Allo-
cation in Sensor-Cloud Environment,” Wirel. Pers. Commun., apr
2019.

[2] S. Bose and N. Mukherjee, “SensIaas: A Sensor-Cloud Infrastruc-
ture with Sensor Virtualization,” in 3rd Int. Conf. Cyber Secur. Cloud
Comput. IEEE, 2016.

[3] A. Mandal et al., “Impact of Mobility on Community Sensing
with Environment Sensors,” in 13th Int. Conf. Signal-Image Technol.
Internet-Based Syst. IEEE, 2017.

[4] S. C. Shah and S. Korea, “NETWORK AWARE RESOURCE
SCHEDULING IN SENSOR CLOUD,” J. Theor. Appl. Inf. Technol.,
vol. 95, no. 2, 2017.

[5] B. Faltings et al., “Incentive Mechanisms for Community Sensing,”
IEEE Trans. Comput., vol. 63, no. 1, 2014.

[6] S. Bose and N. Mukherjee, “PrIOR: A prime number based I/O
redirection algorithm for sensor-cloud infrastructure,” in 2016 Int.
Conf. High Perform. Comput. Simul. Innsbruck: IEEE, 2016.

[7] A. Samba et al., “Instantaneous throughput prediction in cellular
networks: Which information is needed?” in IFIP/IEEE Symp.
Integr. Netw. Serv. Manag. IEEE, 2017.

[8] A. Krause et al., “Toward Community Sensing,” in Int. Conf. Inf.
Process. Sens. Networks. IEEE, 2008.

[9] Q. He et al., “On the predictability of large transfer TCP through-
put,” Comput. Networks, vol. 51, no. 14, 2007.

[10] J. Yao et al., “An empirical study of bandwidth predictability in
mobile computing,” Proc. third ACM Int. Work. Wirel. Netw. testbeds,
Exp. Eval. Charact. - WiNTECH ’08, 2008.

[11] R. K. Ahuja et al., Network flows : theory, algorithms, and applications.
Prentice Hall, 1993.

[12] I. Wolfram Research, “Mathematica, Version 11.3.”
[13] S. Bose, “https://gitlab.com/neel.basu/mathematicapp/.”
[14] N. Mukherjee et al., “Virtual sensors in remote healthcare delivery:

Some case studies,” in BIOSTEC 2016, 2016.
[15] N. Mitton et al., “Combining Cloud and sensors in a smart city

environment,” EURASIP J. Wirel. Commun. Netw., vol. 2012, no. 1,
2012.

[16] S. Bose et al., “Environment Monitoring in Smart Cities Using
Virtual Sensors,” in 2016 IEEE 4th International Conference on Future
Internet of Things and Cloud (FiCloud). IEEE, 2016.

[17] Y. Lim and J. Park, “Sensor Resource Sharing Approaches in
Sensor-Cloud Infrastructure,” Int. J. Distrib. Sens. Networks, vol. 10,
no. 4, 2014.

[18] A. Alamri et al., “A Survey on Sensor-Cloud: Architecture, Ap-
plications, and Approaches,” Int. J. Distrib. Sens. Networks, vol. 9,
no. 2, 2013.

[19] A. Botta et al., “Integration of Cloud computing and Internet of
Things: A survey,” Futur. Gener. Comput. Syst., vol. 56, 2016.

[20] E. Rachkidi, “Modelling and placement optimization of com-
pound services in a converged infrastructure of cloud computing
and internet of things,” Netw. Internet Archit. [cs.NI]. Univ. Paris-
Saclay; Univ. d’Evry-Val-d’Essonne, 2017.

[21] J. Soldatos et al., “OpenIoT: Open Source Internet-of-Things in the
Cloud.” Springer, Cham, 2015.

[22] S. Alam et al., “SenaaS: An event-driven sensor virtualization
approach for internet of things cloud,” IEEE Int. Conf. Networked
Embed. Syst. Enterp. Appl. NESEA, 2010.

[23] D. Chen et al., “Why WirelessHART,” in WirelessHART™. Boston,
MA: Springer US, 2010.

[24] A. Saifullah et al., “Real-time scheduling for WirelessHART net-
works,” Proc. - Real-Time Syst. Symp., 2010.

[25] R. Dalvi and S. K. Madria, “Energy Efficient Scheduling of Fine-
Granularity Tasks in a Sensor Cloud.” Springer, Cham, 2015.

[26] C. Han et al., “An Energy Efficiency Node Scheduling Model for
Spatial-Temporal Coverage Optimization in 3D Directional Sensor
Networks,” IEEE Access, vol. 4, 2016.

[27] A. Krause et al., “Simultaneous optimization of sensor placements
and balanced schedules,” IEEE Trans. Automat. Contr., vol. 56,
no. 10, 2011.

[28] S. Oh and J. W. Jang, “A scheme to smooth aggregated traffic from
sensors with periodic reports,” Sensors (Switzerland), vol. 2017,
no. 3, 2017.

[29] Y. Lyu et al., “High-performance scheduling model for multisensor
gateway of cloud sensor system-based smart-living,” Inf. Fusion,
vol. 21, 2015.

[30] Z. Liu et al., “HGL : A hybrid global-local load balancing routing
scheme for the Internet of Things through satellite networks,” Int.
J. Distrib. Sens. Networks, vol. 13, no. 10, 2017.

[31] S. Joshi and S. Boyd, “Sensor Selection via Convex Optimization,”
IEEE Trans. Signal Process., vol. 57, no. 2, 2009.

[32] R. J. Caverly, “Optimal linear combination of sensors and actuators
to enforce an interior conic open-loop system,” Int. J. Robust
Nonlinear Control, vol. 29, no. 17, 2019.

[33] S. R. Sarangi et al., “Energy efficient scheduling in IoT networks,”
in Proceedings of the 33rd Annual ACM Symposium on Applied
Computing - SAC ’18. ACM Press, 2018.

[34] G. Li et al., “Methods of Resource Scheduling Based on Optimized
Fuzzy Clustering in Fog Computing,” Sensors, vol. 19, no. 9, 2019.

[35] S. Abdelwahab et al., “Cloud of Things for Sensing-as-a-Service:
Architecture, Algorithms, and Use Case,” IEEE Internet Things J.,
vol. 4662, no. c, 2016.

[36] S. Misra et al., “On Theoretical Modeling of Sensor Cloud: A
Paradigm Shift From Wireless Sensor Network,” IEEE Systems
Journal, vol. 11, no. 2, 2017.

Sunanda Bose is working as a Senior Research
Fellow under RUSA 2.0 in Dept. of CSE, Ja-
davpur University, India. His current research in-
terest is Resource Management in Sensor Cloud
Infrastructure. He has worked in the project “Re-
mote Health: A Framework for Healthcare Ser-
vices using Mobile and Sensor-Cloud Technolo-
gies” funded by Ministry of Electronics and Infor-
mation Technology, Govt. of India.

Nandini Mukherjee received Ph.D. degree in
computer science from the University of Manch-
ester, UK. Currently she is a professor in Dept. of
Computer Science and Engineering in Jadavpur
University, India. She served as the Director of
School of Mobile Computing and Communica-
tion, Jadavpur University. Her current research
interests are in the areas of High Performance
Computing and Wireless Sensor Networks.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:32:12 UTC from IEEE Xplore. Restrictions apply.

