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Abstract—Benefiting from the pay-as-you-go business model, cloud-based software applications are becoming more and more
popular. A composite cloud system can be constructed by integrating existing component cloud services available over the internet as
its system components. In order to fulfill the service-level agreements (SLAs), as well as users’ quality of experience (QoE), a stable
execution of the constructed system is desirable in the long term. To achieve this goal, system components at high risk of failing must
be identified and fault-tolerated. This is extremely challenging in the dynamic cloud environment that host the component cloud
services. However, existing approaches are constrained by their lack of modeling and analysis of system components’ fluctuating
reliability time series. To systematically address these issues, in this paper, we propose PARS, a perturbation-aware approach, for
measuring the reliability sensitivity of component cloud services. It first analyzes the negative perturbations in component cloud
services’ historical reliability time series. Then, it calculates the reliability sensitivity of the component cloud services by analyzing how
their reliability perturbations impact the reliability of the entire cloud system. Based on PARS, we propose a proactive adaptation
approach for constructing and operating composite cloud systems with 1-out-of-2 N-version Programming fault-tolerance. This
approach takes the reliability sensitivity of component cloud services estimated by PARS as input to assure the reliability of the cloud
system. The results of experiments conducted on two widely used datasets demonstrate the effectiveness and efficiency of the
proposed approaches in ensuring the reliability of composite cloud systems.

Index Terms—Cloud Service Selection, Perturbation, Proactive Adaptation, Reliability Sensitivity, Reliability Time Series

F

1 INTRODUCTION

TO support the creation and delivery of services, s-
tandardization bodies, such as the World Wide Web

Consortium (W3C) and the Organization for the Advance-
ment of Structured Information Standards (OASIS), have
made standardization efforts of Service-Oriented Architec-
ture (SOA) for implementing service-oriented systems [1].
Recently, cloud computing, based on a pay-as-you-go busi-
ness model, has significantly promoted the service comput-
ing techniques in real-world industrial applications. Besides
SOA, the development of big data analysis technologies,
including upper-level business modeling, management, and
analysis, and lower-level service data management and
analysis, enable us to build composite cloud systems and/or
mashup-based cloud service softwares [2], [3].

A composite cloud system is constructed by integrating
functionally independent system components based on Web
technologies and SOAP, JSON, or HTTP communication
protocols [4], [5]. As illustrated in Fig. 1, a fashion trend-
s prediction composite cloud system can be constructed
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through selecting open component cloud services [6], [7],
[8]. This system orchestrates 4 system components to predict
fashion trends for a design company. First, Sales data extrac-
tion and Review data extraction are executed in parallel to
collect sales data and consumers’ review data. Second, Data
integration merges the aforementioned data. Finally, Trends
prediction is executed to estimate the future fashion trends.
For each system component, service selection is performed
to select an optimal component cloud service (mostly in the
form of RESTful APIs) from a group of candidate compo-
nent cloud services. For each functionality, there are usually
many publicly available candidate component cloud ser-
vices published online with similar (or sometimes identical)
functionalities but different Quality of Service (QoS).
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Review data
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Data
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Trends
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Component
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Service
Selection

Component
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Fig. 1. A demonstrating example of composite cloud system.

To fulfill the service-level agreements (SLAs) and ensure
users’ quality of experience (QoE), the quality of the entire
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composite cloud system must be ensured, e.g., its response
time, reliability, etc. However, this is a challenging issue due
to the component services’ uncertain internal working status
and their volatile operating environment in the cloud [9]. To
guarantee the overall quality of the composite cloud system,
the cloud service selection problem has attracted a lot of
research attention [10], [11], [12]. Cloud service selection
should prioritize the reliability of important system com-
ponents in the composite cloud system for the long term.

Particular attention must be paid to system compo-
nents at high risk of failing in cloud system construction
and maintenance [13]. One of the fundamental issues in
system construction and maintenance is that we need to
evaluate the reliability sensitivity of each component cloud
service [14]. Here the reliability sensitivity refers to the
Importance (Sensitivity), and is measured by how the increase
or decrease in the reliability of an individual component
influences the reliability of the entire cloud system [15].

In the cloud computing environment, the reliability of a
component cloud service may be impacted by three main
factors: 1) the execution status of the component cloud
service, such as hardware failures, resource failures, over-
flow failures, CPU overload, memory exceptions, etc; 2)
the communication links between callers and the service,
e.g., network congestion, network failures, etc; and 3) the
real-time workloads on the component cloud service. These
events occur at runtime dynamically, impacting the relia-
bility of component cloud services also dynamically. This
results in a concept drifting probability distribution of each
component cloud service’s reliability time series [16]. In the
cloud environment, the evolution of reliability time series
for a component cloud service follows a continuous-time
homogeneous (or 1st-order) Markov chain evolution rule [9]
The fluctuations in a component cloud service’s reliability
time series are uncertain at neighboring time points. More-
over, the fluctuations in different component cloud services’
reliability time series are also different. An effective ap-
proach for reliability sensitivity measurement must be able
to evaluate the impacts of uncertain reliability fluctuations
of component cloud services on the entire composite cloud
system.

Measuring the reliability sensitivity of component cloud
services in a composite cloud system can help to find out the
system components whose reliability changes have higher
impacts (positive or negative) on the reliability of the entire
system [17], [18], [19]. Existing long-term reliability predic-
tion approaches are designed for build-time cloud service
selection [20]. They are used to predict the component cloud
services’ average reliability in the future without analyzing
their historical reliability. It is desired to ensure runtime
system reliability through reliability sensitivity analysis.
To guarantee that a composite cloud system can adapt to
the dynamics in the operating environment, the reliability
sensitivity of its system components reflects their real-time
impacts to the reliability of the composite system. At build-
time, proactive adaptation can be performed to update the
cloud service composition workflow. At runtime, when the
system reliability is identified to be deviating from the
SLA constraint and the risky component cloud services are
identified through reliability sensitivity analysis, proactive
adaptation can be performed to fault-tolerate the system.

Reliability sensitivity analysis is fundamentally different
from the relevant existing works on criticality measure in
service-oriented systems and traditional reliability sensitiv-
ity analysis in composite systems [17], [21], [22], [23]. For
example, criticality measure approaches in service-oriented
systems rank the components’ importance based on com-
posite system architecture analysis [21], [22]. The compo-
nent invocation relationship and frequency are analyzed to
identify the important components in a composite system.
The approaches for measuring the reliability sensitivity of
system components in traditional computer systems, e.g.,
those proposed in [17], [23], calculate a component’s sen-
sitivity (importance) with parametric sensitivity analysis.
The component’s reliability is expressed as an input pa-
rameter of a function to evaluate the output behavior of
the composite system. These approaches pinpoint the par-
ticular component that is the most influential in affecting
the reliability of the composite system. However, none of
the existing approaches has systematically considered the
uncertain temporal perturbations when measuring the re-
liability sensitivity system components identification based
on their historical reliability time series.

To address this above issue, this paper investigates com-
ponent cloud services’ evolution regularities in their up-to-
date reliability time series. The key idea is to systemati-
cally measure the reliability sensitivity of each component
cloud service by analyzing its negative influence on the
reliability of the entire composite cloud system. Since a
component cloud service’s reliability follows the 1st-order
Markov chain rule, the goal of the reliability analysis based
on historical time series is to achieve system adaptation
through identifying reliable system components (those with
low reliability sensitivity). As discussed above, the quality
of a cloud service is impacted by a variety of factors. It
is difficult, if not impossible, to analyze the impacts of
these different factors on the reliability of a cloud service
individually, let alone collectively. Thus, we appeal to relia-
bility analysis based on the cloud service’s historic reliability
time series data, which indicates the reliability of the cloud
service under different circumstances. In this way, we are
able to perform reliability analysis for cloud services in a
generic manner. The major contributions of this paper are
summarized as follows:

• We present a reliability evaluation method for a com-
ponent cloud service based on their failure probabili-
ty under continuous client-side invocation tests. The
reliability of a component cloud service during the
evaluation period is calculated based on its failure
rate and the exponential reliability equation.

• We adopt the 1st-order Markov Chain rule in this
paper to describe the evolution regularity of compo-
nent cloud services’ up-to-date reliability time series.
Reliability perturbation is defined in this paper to
note the changes in system components’ reliability at
consecutive time series points.

• We propose a perturbation-aware reliability sensitivi-
ty measurement approach (named PARS) for analyz-
ing the cumulative negative effects of system com-
ponents’ reliability perturbations to the composite
cloud system.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:25:14 UTC from IEEE Xplore.  Restrictions apply. 



1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3046360, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XX XXXX 3

• Based on PARS, we propose a proactive adaptation
approach for composite cloud systems’ execution
quality assurance.

• We conduct extensive experiments on two widely-
used public data sets to compare our approaches
against 4 representative approaches.

The rest of this paper is organized as follows. We in-
troduce the modeling approaches of reliability time times
and reliability evolution in Section 2. The proposed PARS
approach is described in detail in Section 3. We present the
proactive adaptation approach for a composite cloud system
based on PARS in Section 4. We give our implementation
of experiments in Section 5. We summarize the relevant
existing works in Section 6. In Section 7, we conclude the
paper and lay out some important future directions.

2 RELIABILITY MODELING

Section 2.1 introduces the formal model of reliability and a
component cloud service’s reliability time series. Section 2.2
presents the 1st-order Markov chain evolution rule for a
component cloud service’s reliability time series. The major
notations used in this paper are summarized in Table. 1.

TABLE 1
Major Notations Used in This Paper

Notations Descriptions
λ failure rate
λi component cloud service i’s failure rate
λk/n failure rate of a k-out-of-n composite cloud system
∆t the survival time for reliability evaluation
L the invocation result
RTmax the maximal response time constraint
r∆t
i reliability of component cloud service i
rTS
i component cloud service i’s reliability time series
m number of time points in a reliability time series
r
∆t(j)
i jth time point’s reliability value of r∆t

i
p(i, j) ith system component’s jth perturbation
p̂(i, j) normalized value of p(i, j)
Φ a composite cloud system
πj the sensitivity value of jth perturbation
αm−j the jth perturbation’s influencing factor parameter
IPARS(i) the sensitivity value of component cloud service i
r̂Φ the average reliability of composite cloud system Φ
rSLA
Φ required reliability for the composite cloud system Φ
sl the lth most sensitive component cloud service
OP (sl) the optimal candidate component cloud service for sl
U(l, j) utility function for sl’s jth candidate
k number of most sensitive component cloud services
SR success rate
ORE overall reliability enhancement

2.1 Reliability Time Series
A few metrics have been proposed for evaluating the relia-
bility of traditional software systems. To a few, there are the
Mean Time To Failure (MTTF), Mean Time Between Failures
(MTBF), hazard rate (the probability of system survives
till time t), PoFoD (Probability of Failure on Demand) and
exponential reliability [18].

The MTTF, MTBF, and hazard rate are suitable for system
failures that have a statistical regularity in time, such as
errors occuring in an average of 5 seconds. In the corre-
sponding exponential reliability calculation, the failure rate

parameter (i.e., λ) is a constant number with a period of
survival time.

A component cloud service (e.g., a cloud service API) is
invoked on demand by users or composite cloud systems.
Due to its uncertain internal working status and volatile op-
erating environment in the cloud, the time interval between
its occurrences of failures is uncertain. Thus, the above
existing reliability metrics cannot be directly employed to
evaluate the reliability of component cloud services.

Since we can collect the returned HTTP messages by
public component cloud service invocations and there are
many web testing tools (e.g., apache-JMeter1) for us to
implement, we employ the PoFoD metric [24] in this paper
to give a performance-aware reliability definition for com-
ponent cloud services.

We set a fixed time period ∆t as the survival time to
test the failure rate of a component cloud service through
continuously client-side invocation tests. The length of ∆t
is denoted as len(∆t). The invocation test is performed
every s seconds. We then collect the failure probability
from these n = len(∆t)

s times of Bernoulli trial results, i.e.,
with Pr(L = 0) for failed invocations. Since the composite
cloud systems delivered to users are usually constrained
by SLAs (concerning reliability, response time, etc.), we set
an acceptable maximal response time constraint RTmax for
the received responses. This way, we have the following
performance-aware failure probability evaluation result.

f(∆t) = Pr(L = 0), (1)

where L = 0 means that the client-side testing invocations
returned failures or did not respond within the time con-
straint RTmax.

We can obtain a rate value to estimate the ability of
a component cloud service to perform its required func-
tions within survival time of ∆t with s times continuously
Bernoulli trials. The rate value is expressed as the probabil-
ity of [1− f(∆t)]n.

For a specific component cloud service within the spe-
cific time interval of ∆t, the failure rate is a constant and
can be expressed by failure rate λ. The failure rate for the
component cloud service is

λ = 1− [1− f(∆t)]n. (2)

Using the exponential reliability expression, the reliabil-
ity of component cloud service i within the survival time of
interval ∆t is

r∆t
i = exp[−λ× len(∆t)]. (3)

Noting that we use the exponential reliability equation to
calculate the reliability of a component cloud service within
a specific time period, it does not mean that the reliability
of a component cloud service follows an exponential dis-
tribution. The length of time span len(∆t) is a constant
value. The exponential reliability function defined in this
paper does not decline with the increase in the survival time
value. We give the following justifications for the definition
of performance-aware exponential reliability equation. First,
the definition of reliability satisfies the IEEE STD-729-1991
standard for software reliability definition [25]. The IEEE

1. https://jmeter.apache.org/
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STD-729-1991 standard defines software reliability as “the
ability of a system or component to perform its required
functions under stated conditions for a specified period of
time.” In Eq. (3), λ is the probability that the system compo-
nent experiences a failure within the survival time constraint
with the length of len(∆t). Let t1, t2, · · · , tn represent the
time points with equal intervals in ∆t and f(∆t) represent
the failure probability of the system component at time tn.
According to the IEEE software reliability standard, r∆t

i is
the survival rate for the system component at time tn, i.e.,
the system will not fail till time tn. Let F (∆t) = 1 − r∆t

i ,
we have f(∆t) = F ′(∆t). Then, a differential equation
can be induced: λ = f(∆t)

r∆t
i

= F ′(∆t)
1−F (∆t) . The following

solution can be obtained by solving the differential equation:
F (∆t) = 1 − exp[−λ × len(∆t)]. Hence, Eq. (3) can be
induced. Second, the reliability values are normalized to the
range of [0,1]. A larger value indicates higher reliability of
the component cloud service.

The unstable communication links fluctuate the response
time of a component cloud service over time. For example,
as illustrated in Fig. 2, we use apache-JMeter to collect the
response time of Baidu’s map cloud service. Here, we set
RTmax = 1000ms, the responses taking more than 1000ms
are regarded as delayed responses (i.e., L = 0). We send
an HTTP GET invocation request to Baidu map every 10
seconds. If we send 10 continuous invocation requests to
evaluate the reliability of Baidu map, the survival time for
the reliability evaluation period is 100

60 minutes. Within the
time period of ∆t(m − 1), there are 4 delayed responses.
Accordingly, there is λ = 1 − (1 − 0.4)10 = 0.99395. Then,
there is r∆t

i = exp(−0.99395× 100
60 ) = 0.19.

∆t(1) ∆t(2) ... ... ∆t(m) 

RTmax

∆t(1) ∆t(2) ... ... ∆t(m) 

RTmax

∆t(j) ∆t(1) ∆t(2) ... ... ∆t(m) 

RTmax

∆t(j) ∆t(m-1) 

Fig. 2. Schematic view of time series.

We represent the survival time intervals as
∆t(1),∆t(2), · · · ,∆t(m − 1),∆t(m). There is a reliability
evaluation value within each time period. We have
component cloud service i’s reliability time series as
follows:

rTS
i = r

∆t(1)
i , r

∆t(2)
i , · · · , r∆t(m)

i . (4)

2.2 Markov Chain Rule
To evaluate the uncertainty in component cloud services’
reliability, the evolution feature of consecutive values in a
reliability time series can be modeled as a continuous-time
homogeneous Markov chain [9], [26].

As illustrated in Fig. 3, for component cloud service i,
the reliability evaluation within a time period can reflect its
execution status. We assume that the reliability under the
up-to-date execution status is r∆t(j)

i . Within the next time
period, the component cloud service will be transformed to
the future execution status; resulting in the reliability value

of r∆t(j+1)
i . Many events can lead to this transformation,

such as fluctuations of server and/or client-side network
changes in server load, usages of CPU and memory, invo-
cations of functions during the service execution, etc. The
occurrences of these events are uncertain at runtime.

up-to-date
time period

to-date
period

1st-order Markov 
chain rule

earlier
time period

future time 
period

( )t j

i
r
D ( +1)t j

i
r
D( -1)t j

i
r
D

Fig. 3. Markov chain evolution rule of reliability time series.

Based on the above execution evolution feature, the
reliability value during the future time period (i.e., r∆t(j+1)

i )
is only depend on the up-to-date reliability (i.e., r∆t(j)

i )
and the specific event. For the uncertainty of the events to
come, the reliability value during the future time period is
irrelevant with the reliability during the earlier time period
(i.e., r∆t(j−1)

i and earlier reliability values). This memory-
less evolution satisfies the 1st-order Markov Chain rule.
The time-homogeneous reliability evolution gives us more
insights to analyze the single-step transition of reliability.
Since single one-step transition is triggered by uncertain
events, the statistics of multiple one-step ahead transitions
can reflect the long-term execution evolution regulation of
the component cloud services’ reliability.

3 PARS APPROACH

In this section, we present the proposed PARS approach
which analyzes how multiple one-step ahead transitions
of a component cloud service’s reliability influences the
composite cloud system’s reliability. Section 3.1 describes
the perturbation function for the single-step transition com-
ponent cloud service’s reliability. Section 3.2 states how to
aggregate the system component’s reliability in a composite
cloud system to calculate the composite system reliability.
Section 3.3 presents our perturbation-aware approach for
reliability sensitivity measurement.

3.1 Time-homogeneous Reliability Perturbations
In a composite cloud system, each system component se-
lects and binds an optimal component cloud service. The
reliability of the bound component cloud service determines
the reliability of the system component. When a component
cloud service is running under a specific execution status
during a time period with the reliability of r∆t(j)

i , let the
reliability for the component cloud service during the next
time interval be r

∆t(j+1)
i . In a reliability time series, the

time-homogeneous reliability perturbation is defined as the
difference in the reliability values for a single-step ahead
transition.

In a reliability time series with m values, there are m− 1
perturbations and each one can be regarded as a 1st-order
Markov Chain evolution. For any j ∈ [1,m − 1], the ith
system component’s jth perturbation can be defined as:

p(i, j) = r
∆t(j+1)
i − r∆t(j)

i . (5)
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By a one-step transition, the reliability value of a com-
ponent cloud service may become greater or smaller. The
p(i, j) may be a positive or negative values. We need to
identify the system components at high risk of failing. Given
a composite cloud system, if we assume the reliability of all
its component cloud services except i remain unchanged,
the increase in the reliability of i will increase the composite
cloud system reliability. In contrast, the decrease in compo-
nent cloud service i’s reliability will decrease the composite
cloud system’s reliability. Existing works analyzed the pos-
itive and negative sensitivity of a system component in a
composite system, respectively [15].

To guarantee the dependability of composite cloud sys-
tems, we need to identify the reliability perturbations of
each component cloud service which have negative influ-
ences on the composite cloud system reliability. A larger
negative perturbation of a component cloud service has a
higher negative influence. We perform the following min-
max normalization for the perturbations [27], [28].

p̂(i, j) =


p(i)max − p(i, j)
p(i)max − p(i)min

, if p(i)max 6= p(i)min

1 , if p(i)max = p(i)min,
(6)

where
p(i)max = max

j∈[1,m−1]
p(i, j), (7)

and
p(i)min = min

j∈[1,m−1]
p(i, j). (8)

Let p(Φ, j) be the jth perturbation of the composite
cloud system, we can obtain the normalized p̂(Φ, j) for the
composite system through a similar min-max normalization
process.

3.2 Reliability of Composite Cloud Systems

In a composite cloud system, when the failure rate values
(i.e., λ) of the component cloud services are evaluated
through the method presented in Section 2.1, we can cal-
culate the failure rate value of the composite cloud system
according to the composite system execution workflow.

Many software reliability engineering books have exam-
ined the aggregation functions for a composite system under
different composition structures [19], [29], [30], [31], [32]. We
present the following lessons learned for the aggregation
functions for sequence, parallel, branch, loop, and k-out-of-
n composite cloud system structures.

Let Φ be a composite cloud system, {λ1, λ2, · · · , λn} be
the failure rate values of the n system components which
compose Φ. We use bi to denote the probability that the ith
branch in the composite cloud system is executed, and li to
denote the probability that the loop is executed for i times,
in which

∑n
i=1 bi = 1 and

∑n
i=0 li = 1. We define λΦ as the

failure rate value for the composite cloud system Φ within a
unified survival time for all the involved component cloud
services (i.e, ∆t).

In practice, the composite cloud system may contain
more than just one structure. We can treat the graph of the
whole service execution flow as a semi-Markov process. The
failure rate values for restricted branches can be calculated

respectively. Hence, we obtain the measures for the failure
rate value for the whole composite structure. We present
the following aggregation functions for calculating λΦ for
sequence, parallel, branch, and loop structures of composite
cloud system workflows [20].

For sequence and parallel structures, the aggregation
function is

λΦ = 1−
n∏

i=1

(1− λi). (9)

As for branch structure,

λΦ = 1−
∑n

i=1
bi(1− λi). (10)

And the loops structure can be treated by

λΦ = 1−
∑n

i=0
li(1− λ1)

i
. (11)

To guarantee the execution reliability of a composite
cloud system, fault tolerance techniques, such as N-version
programming (or NVP) [29], [33], are usually used. Let
1 ≤ k ≤ n, a composite cloud system fault-tolerated by NVP
Φ functions as long as at least k of the n system components
function properly. An NVP-based composite system can be
modeled as a k-out-of-n composite system.

As for a composite cloud system, the reliability of each
its component cloud service might be different. In this
heterogeneous case, we cannot simply estimate the failure
rate of the composite cloud system by a permutation and
combination approach. The following recursive function
can be used to estimate the failure rate of the k-out-of-n
composite cloud system [19].

λΦ = λk/n = λn × λk/n−1 + (1− λn)× λk−1/n−1,

λ0/n = 0,

λj/i = 1, when j > i,

(12)

where λk/n represents the failure rate of the k-out-of-n
composite cloud system, λn represents the failure rate of
the nth system component, λk/n−1 represents the system’s
conditional failure probability in the situation where the nth
system component fails.

For example, let’s consider a non-identical two-out-of-
three system, we have:

λ2/3 = λ3 × λ2/2 + (1− λ3)× λ1/2,

λ2/2 = λ2 × λ2/1 + (1− λ2)× λ1/1,

λ2/1 = 1,

λ1/1 = λ1 × λ1/0 + (1− λ1)× λ0/0 = λ1,

λ1/2 = λ2 × λ1/1 + (1− λ2)× λ0/1 = λ1λ2,

λ2/2 = λ2 × λ2/1 + (1− λ2)× λ1/1 = λ2 + (1− λ2)× λ1

= λ2 + λ1 − λ1λ2.

Therefore, we have

λ2/3 = λ3 × (λ2 + λ1 − λ1λ2) + (1− λ3)× λ1λ2

= λ2λ3 + λ1λ3 − λ1λ2λ3 + λ1λ2 − λ1λ2λ3

= λ1λ2 + λ1λ3 + λ2λ3 − 2λ1λ2λ3.

Plugging λΦ into Eq. (3), we can estimate the reliability
of the composite cloud system. Using Eq. (5) and (6), we can
obtain the jth perturbation value p(Φ, j) for the composite
cloud system Φ and the normalized jth perturbation value
p̂(Φ, j), respectively.
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3.3 Reliability Sensitivity for Component Cloud Ser-
vices
To identify the system components at high risk of failing, we
need to measure the reliability sensitivity of each component
cloud service in the composite cloud system. The traditional
reliability measures cannot be directly used, as discussed
above in Section 2.1.

By considering the probability of occurrence and the
Shannon decomposition rule, the Birnbaum importance in-
dex [17] for a system component can be calculated as

IB(i) =
Pr(LΦ = 0, Li = 1)

1− λi
− Pr(LΦ = 0, Li = 0)

λi
, (13)

where LΦ represents the Bernoulli trial result for the com-
posite cloud system Φ, and Li represents the Bernoulli trial
result for component cloud service i, respectively, λi is the
failure rate of component cloud service i.

Since it is difficult to estimate the joint probability of
Pr(LΦ = 0, Li = 1) and Pr(LΦ = 0, Li = 0) for
composite cloud systems. We propose PARS, a perturbation-
aware approach for measuring the reliability sensitivity of
component cloud services, which considers the negative
perturbations and their cumulative effects.

To measure the negative influences of system componen-
t’s reliability perturbation on the composite cloud system,
when the composite system’s reliability perturbation is a
positive value, we make the normalized reliability pertur-
bation of the composite system 0. For each j ∈ [1,m − 1],

p̂(Φ, j) =

{
0 , if P (Φ, j) > 0

p̂(Φ, j) , if P (Φ, j) ≤ 0.
(14)

The sensitivity of component cloud service i measured by
each perturbation j is calculated as

πj =
p̂(Φ, j)

p̂(i, j)
. (15)

There arem−1 times of perturbations in a reliability time
series. We consider the cumulative effect and define an influ-
encing factor parameter α ∈ [0, 1] for the perturbations. For
the Markov chain evolution feature of the component cloud
service’s reliability time series, perturbations are mutually
independent. Multiple times of perturbations in the 1st-
order Markov evolutionary reliability time series can reflect
the cumulative effects. A nearer perturbation indicates more
accurate execution state of the composite cloud system, such
as service load, network status, etc. As illustrated in Fig. 4,
the influencing factor parameter for the first perturbation
and (m − 1)th perturbation are αm−1 and α, respectively.
The jth perturbation’s influencing factor parameter is αm−j .

1

1 2

m 1

m 1

mm 1

Fig. 4. Influencing factor parameter values.

The sensitivity value of component cloud service i by
PARS approach is

IPARS(i) =
1

m− 1

∑m−1

j=1
αm−jπj . (16)

We present the following example to further illustrate
the PARS approach. Table 2 gives the evaluation results of
the normalized perturbation values of a component cloud
service and its composite cloud system.

TABLE 2
Normalized Perturbation Values

Examples p̂ j = 1 j = 2 j = 3 j = 4

Example 1 p̂(i, j) 0.8 0.8 0.2 0.3
p̂(Φ, j) 0 0.6 0 0.7

Example 2 p̂(i, j) 0.8 0.8 0.2 0.3
p̂(Φ, j) 0.7 0.6 0.5 0.7

Example 3 p̂(i, j) 0.8 0.8 0.2 0.3
p̂(Φ, j) 0 0.6 0.7 0.8

If we set α = 0.8, the sensitivity value IPARS(i) for
component cloud service i in the above 3 examples calculat-
ed with Eq. (16) are 0.5627, 1.0523 and 1.1893, respectively.
Comparing examples 1 vs. 2, we will find that the normal-
ized p values for composite cloud system Φ in example 2
at the first and the third columns are larger than those in
example 1. This indicates that component cloud service i in
example 2 has a higher negative impact than that in example
1. Similar situations can be found in comparing example 1
vs. example 3, and example 2 vs. example 3.

Please note that in Eq. (16), πj measures how much
component cloud service i’s jth reliability perturbation im-
pacts the entire composite cloud system Φ’s reliability, i.e.,
the reliability sensitivity of service i measured based on a
separate perturbation. Parameter α is used to reflect the
cumulative effects of continuous reliability perturbations.
For the uncertain evolution regularities of component cloud
service’s reliability time series, Eq. (16) calculates the com-
ponent cloud service’s reliability sensitivity over a period
of time based on parameter α. In general, for a specific
application, the value of α should be a constant value.
A component cloud service’s reliability sensitivity changes
with the length of time series and the value of α. The
proper values of α and the length of time series should be
determined based on an application-specific experimental
analysis.

4 PROACTIVE ADAPTATION APPROACH

In this section, we propose a proactive adaptation approach
for a composite cloud system based on PARS. To guarantee
the quality of a service-oriented system (e.g., response time,
reliability, etc.), proactive adaptation aims at removing the
risks of system execution quality declines, such as online
faults, before a failure occurs. In the FP7 S-Cube project2,
a proactive adaptation architecture for service-oriented sys-
tems was proposed based on the reliability prediction mech-
anism [34]. We have also investigated the prediction-based
proactive adaptation approach for service-oriented system-
s [9], [35]. In this paper, the proactive adaptation approach
is fundamentally different from the previous works. In a
composite cloud system, the reliability of each component
cloud service dynamically changes over time. There may be
seasonal fluctuations in their reliability time series. Changes,

2. https://www.s-cube-network.eu
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gradual or sudden, may cause concept drifts in the distribu-
tion of their reliability time series. Traditional reliability time
series prediction approaches suffer from low performance
because they seldom cover these concept drifts training data
in the historical data for constructing prediction models.
PARS identifies system components at high risks of failing
with a reliability sensitivity analysis based on up-to-date re-
liability time series. It can be used for adaptive cloud service
selection for the proactive adaptation of the composite cloud
system in the dynamic cloud environment.

4.1 The Approach
As illustrated in Fig. 5, PARS can pinpoint the potential
risky (sensitive) system components in the composite cloud
system. A proactive adaptation action will be triggered
when the composite cloud system’s reliability deviates from
the SLA constraint. System reliability enhancement action-
s could be performed based on the reliability-sensitivity-
aware proactive service selection to guarantee the quality
of the composite cloud system. We present the steps taken
by the proactive adaptation approach below. The proactive
adaptation for a composite cloud system based on PARS is
named PA-PARS and is summarized in Algorithm 1.

Step 1, risky system component identification. We use
PARS to evaluate the reliability sensitivity for each com-
ponent cloud service in the composite cloud system’s ex-
ecution plan. If a component cloud service’s cumulative
temporal reliability perturbations impact the reliability of
composite cloud system significantly, it is considered a
highly risky and a higher IPARS value is assigned to the
component cloud service. Such system components will risk
the reliability of the composite cloud system.

Step 2, adaptation trigger. Let the average reliability of
the composite cloud system be

r̂Φ =
1

m

∑m

j=1
r

∆t(j)
Φ , (17)

where r∆t(j)
Φ represents the jth reliability value in the com-

posite cloud system’s nearest historical reliability time series
(also known as data window time reliability time series). Let
the required reliability for the composite cloud system Φ be
rSLA
Φ . In the situation when

r̂Φ < rSLA
Φ , (18)

a proactive adaptation for the composite cloud system is
triggered.

Step 3, candidate component cloud service selection.
We select the top-k component cloud services with the
highest reliability sensitivity in the composite cloud system.
Suppose that IPARS(1), IPARS(2), · · · , IPARS(k) represent
the top-k reliability sensitivity values for the component
cloud services in the composite cloud system workflow. For
l ∈ [1, k], sl represents lth identified top-k component cloud
services. We calculate the reliability sensitivity for each of
sl’s candidate component cloud services. For any j ∈ [1, n],
let slj represents the jth candidate component cloud service
of sl, we replace sl by slj and remain other component
cloud services unchanged in the composite cloud system.
We calculate the reliability sensitivity of slj as IPARS(l, j).
Let the price and average reliability for slj be Price(l, j)

and r̂(l,j), respectively. Since the price is not a normal-
ized value and a lower value of price indicates a better
candidate component cloud service, we perform min-max
normalization for Price(l, j) similar to Eq. (6) and obtain
the normalized price value Price′(l, j) for slj . The optimal
candidate component cloud service for sl is:

OP (sl) = arg max
j

U(l, j), (19)

where

U(l, j) = Price′(l, j) + r̂(l,j) − IPARS(l, j). (20)

Step 4, NVP-based system construction as the proactive
adaptation for the composite cloud system. For each of the
top-k sensitive component cloud services sl, OP (sl) will be
bound as the redundant component for sl. We will form a
1-out-of-2 system for each risky system component.

Input: rTS
i for i ∈ [1, n], rTS

Φ , rSLA
Φ , α, k, number of

component cloud services n, Price(l, j), r̂(l,j)

Output: OP (s1), · · · , OP (sk)
1: for each i ∈ [1, n] do
2: Calculate IPARS(i) by solving Eq. (16);
3: end for
4: Calculate r̂Φ by solving Eq. (17);
5: if Eq. (18) holds then
6: for each l ∈ [1, k] do
7: l = arg max

i
(IPARS(i));

8: Delete IPARS(i);
9: for each j do

10: Calculate Price′(l, j);
11: Calculate r̂(l,j);
12: Calculate IPARS(l, j) by solving Eq. (16);
13: end for
14: Determine OP (sl) by solving Eq. (19);
15: end for
16: end if
17: return OP (s1), · · · , OP (sk);

Algorithm 1: PA-PARS.

It is worth noting that, we do not just simply replace
the risky component cloud services. Instead, we continue
to have the original component cloud service and form
a 1-out-of-2 system. By this 1-out-of-2 system, when at
least one component cloud service could return a correct
result, the whole 1-out-of-2 system functions. This is a basic
cost-effective consideration. Cloud services are generally
rented. When the contract for the original component cloud
service has not expire, abandoning the rented cloud services
(although the performance is not very good) would usually
cause significant resource wastes. When the contract expires,
a decision can be made based on the utility function of
Eq. (20). If the newly selected redundant component cloud
service is still optimal, we can directly remove the original
component cloud service from the composite cloud system.

4.2 Reifying Through Application
The proposed PARS and proactive adaptation approaches
can be used in the design and execution maintenance stages
for composite cloud systems.
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Fig. 5. The application for composite cloud system proactive adaptation.

First, in the design phase, PARS can provide importan-
t references for Web and/or Cloud service selection. As
demonstrated in Fig. 1, during the construction of a compos-
ite cloud system, there are usually multiple candidate cloud
services for each of the system components. By calculating
the reliability sensitivity value for each candidate cloud ser-
vice, we can evaluate the candidate cloud services and select
the most reliable ones. In this example, Dell’s Boomi API has
the lowest reliability sensitivity and it will be selected as the
component cloud service to perform data integration for the
composite cloud system. It is worth noting that, to guarantee
the long-term execution of the constructed composite cloud
system, the reliability sensitivity measurement for cloud
service selection should consider the long-term reliability
problem [36]. In this case, the number of perturbations (i.e.,
the valuem in Eq. (16)) in the historical reliability time series
should be larger. We could also note the average perturba-
tion from a long-term evaluation of each component cloud
service. Then, we can calculate the reliability sensitivity of
the component cloud service.

Second, in the dynamic cloud environment, a component
cloud service’s reliability time series follows the 1st-order
Markov Chain evaluation rule. This makes the reliability
of each system component different during the construc-
tion and operation phases. During the execution of the
composite cloud system, we need to calculate the real-
time reliability sensitivity of each system component to be
executed based on the reliability time series during the up-
to-date data window time. And the proactive adaptation for
the composite cloud system can be executed based on the
calculated real-time reliability sensitivity and cloud service
selection decision. By implementing NVP fault tolerance,
the reliability of the risky component cloud services that
may generate a failure during the execution is improved in
advance to guarantee the stable execution of the composite
cloud system.

If 1-out-of-2 fault tolerance [37] is deployed for a running
component cloud service, service downtime is inevitable
when service adaptation is needed at runtime. In practice,
it is more cost-effective to employ PARS to analyse the
reliability sensitivity of the component cloud service which
is about to be executed in the workflow of a composite
cloud system. If an execution risk is identified, 1-out-of-2
fault tolerance can be deployed before the execution. If a
service failure occurs at runtime, trade-off decisions can be
made between the impact of reliability and the adaptation
cost.

5 EXPERIMENTAL STUDY

A set of experiments were conducted to investigate the
effectiveness of the proposed approach. We compared our
method with 4 representative approaches on two pub-
licly available popular large-scale QoS datasets including
QWS v2 (with 2507 Web services) [38] and ICWS2012 (with
1770 Web services and at least 28 weeks’ QoS data for each
Web service) [39]. The experiments were implemented in
Java on a PC equipped with Windows 7 x86 Enterprise
Edition OS, and Intel(R) Core(TM) i7 2600 CPU, 12GB RAM,
Seagate 1TB HDD.

5.1 Approaches Under Comparison
As discussed in Sections 1 and 6, existing criticality mea-
surement approaches for service-oriented systems rely on
the system architecture or QoS analysis [14], [21], [22], [23],
[28], [40]. To facilitate the comparison, we adapted three
representative approaches for reliability sensitivity mea-
surement. The proactive adaptation was performed based
on the results obtained by each of the criticality measure-
ment approaches. Specifically, PARS is compared against the
following four approaches:

• QoSranking: This approach identifies the critical
component cloud services by the ranking of their
average historical reliability [28]. We use min-max
normalization to the average value of each compo-
nent cloud service’s reliability. Let the normalized
reliability value be r̃(i), the critical value for the
service i would be IQoSranking(i) = 1− r̃(i).

• ROCloud: Inspired by Google’s PageRank algorith-
m, ROCloud [21], [22] calculates component cloud
services’ criticality values by incorporating software
system structure information, system component
failure rate, and the probability of the system com-
ponent to cause application failures.

• Sensitivity-only: This approach only considers the
cumulative perturbations for each component cloud
service and set α = 1 in Eq. (16) to measure the
reliability sensitivity [14].

• Random: This approach randomly identifies the crit-
ical component cloud services in a composite cloud
system. The criticality value for each component
cloud service is assigned by a random value in the
range of [0, 1].

QoSranking is used to identify system components with
low average reliability because they are likely to lead to sys-
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tem reliability bottleneck. To deal with the dynamic cloud
environment, ROCloud and sensitivity-only approaches cal-
culate the probability of a component causing application
failures or the impact of system component’s continuous
perturbations on system performance.

5.2 Setup
The experiments were conducted through the following
steps. First, we preprocessed to the datasets. We first ran-
domly assign a price value in the range of [0,1] for each
service in each dataset. As for the QWS dataset, we directly
use the reliability values of each service. To simulate a
service’s reliability time series, we randomly generated a
random value in the range of [0,1] for the service. Let the
baseline reliability rb for service i be rb(i), the random
number be η, the upper bound for the perturbations for i
is:

ru(i) = [100− rb(i)]× η + rb(i), (21)

and the lower bound is:

rl(i) = η × rb(i). (22)

We randomly simulate the reliability perturbations at
service i’s each time series point by a random value function
rand() (in the range of [0,1]) as

r
∆t(j)
i = rl(i) + [ru(i)− rl(i)]× rand(). (23)

For the ICWS2012 dataset, 28 weeks data of 1770 re-
al SOAP-based and RESTful Web services in QoSwsdl,
QoSwadl, and QoStext are extracted. As for each We-
b service, we set the maximal response time constraint
RTmax = 1000ms. Using Eq. (3), 4 continuously time slots’
successability, and response time parameters are used together
with the RTmax constraint to calculate the value at a specific
reliability time series point. Consequently, we obtained the
values at 7 (= 28/4) reliability time series points for each
service. Like the preprocessing of QWS dataset, we also
increase the length of reliability time series by simulation.
We set ru(i) and rl(i) as the maximal and the minimal
values of the 7 time series points for service i, respectively.
Then, Eq. (23) was used to generate the simulation reliability
values for the subsequent time series points.

Second, we generated directed scale-free random net-
work graphs to simulate the composite cloud systems. The
widely used program package for analyzing and visualizing
large networks, namely Pajek3, was used for the simulation.
Using a dataset, we randomly assigned a component cloud
service to each of the nodes in the random network graph.
The arcs in the graph indicates the system components’
invocation relationships. Let r∆t(i)

j denote a component
cloud service j’s ith reliability value in the time series. The
failure rate is calculated as

λij = − ln
r

∆t(i)
j

len(∆t)
. (24)

The failure rate and the system composite structure were
used to calculate the composite cloud system’s failure rate
based on the flowQoS algorithm proposed in [41] and Eq.

3. http://vlado.fmf.uni-lj.si/pub/networks/pajek/

(9) to (12). The composite cloud system’s reliability can then
be calculated in a similar way as Eq. (3).

Finally, PARS and other representative approaches were
used to calculate the reliability sensitivity of each compo-
nent cloud service under the above simulated historical
reliability time series in different datasets. The proactive
adaptation algorithm PA-PARS with different reliability sen-
sitivity measurement approaches was employed for the
system components with high reliability sensitivity values.
To investigate the effectiveness of PARS, we simulated each
component cloud service’s near-future reliability time series
with the above approaches. The accuracy of the reliability
sensitivity measurement and the effectiveness of the proac-
tive adaptation approach were investigated and compared
under the near future reliability time series. The operation
of random assignment of the system components was re-
peated 200 times in each experiment and the results were
averaged. During the experiments, the SLAs for composite
cloud system for the system reliability is set as 60%.

5.3 Metrics
We employ the success rate and the overall reliability enhance-
ment to evaluate the performance of the approaches.

Let NSLA deviation be the number of composite cloud sys-
tems, which were not fault-tolerated with NVP, that meet
with SLA deviation (i.e., ∃j ∈ [1,m], s.t. r∆t(j)

Φ < rSLA
Φ )

under the historical reliability time series, Nsuccessfully recovered
be the number of fault-tolerated composite cloud systems
that successfully avoided system failures under the near-
future reliability time series. The success rate (or SR) is
defined as:

SR = (
Nsuccessfully recovered�NSLA deviation )× 100%. (25)

And the overall reliability enhancement (or ORE) is defined as:

ORE = [(r̂
′
Φ−r̂Φ)�̂rΦ ]× 100%, (26)

where r̂Φ represents average reliability of the composite
cloud system’s historical reliability time series, and r̂

′

Φ rep-
resents the composite cloud system’s near-future reliability
time series, which is fault-tolerated with NVP.

5.4 Impact of α
This experiment investigates how parameter α influences
the performance of PARS. We generated a random net-
work graph with 120 nodes and 140 arcs to simulate the
workflows of composite cloud systems. The lengths of the
historical and the near-future reliability time series are all set
as 30. The k value for the top-k high-risk component cloud
services number is set as 10. We vary the α value from 0.1
to 1, in steps of 0.1, and execute the reliability sensitivity
measurement and proactive adaptation on the generated
composite cloud systems. The results of success rate and
overall reliability enhancement are averaged and compared.

As can be seen from Fig. 6, when the value of α is
near 0.5, the success rates and the overall reliability en-
hancements by PARS are the highest. This indicates the
effectiveness of the use of α in the reliability sensitivity
measurement. It is worth noting that, the fluctuations in the
reliability time series in this experiment follow a normal
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distribution. If PARS is used in cases where the time series
follow other distributions, the optimal α value may be
different, and it should be experimentally determined.
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Fig. 6. Impact of the influencing factor parameter α.

5.5 Impact of k
This experiment examines how the k value of top-k most
sensitive component cloud services impacts the perfor-
mance of PARS. The nodes and arcs in the composite cloud
systems’ workflows are set as 300 and 360, respectively. The
length of historical time series and near-future time series
both all set as 30. We fix α = 0.5 and vary the k value
from 10 to 60, in steps of 10. The results are averaged and
compared in Fig. 7.

As can be seen from the results, both SR and ORE
increase with the increase in the value of k on two different
datasets. PARS achieves the best performance, followed
by ROCloud, QoSranking, Sensitivity-only, and Random.
When k >= 40, the increasing trends of PARS’s SR and
ORE slow down. Since a larger value of k would include
more redundant component cloud services and increase the
total rental cost and system load. As for the composite cloud
systems with higher reliability requirements, the k value
should be large. Otherwise, the value can be set lower.
Eventually, this should meet the requirements specified in
the SLAs.

5.6 Impact of System Size
This experiment investigates how the size of composite
cloud system influences the performance of PARS. We fix
α = 0.5, k = 20, the lengths of historical reliability time
series, at 30, and vary the number of nodes in the composite
cloud system workflows from 60 to 260, in steps of 40. For
each workflow, we set the number of arcs as the 1.2 times as
the corresponding nodes number. The SR and ORE achieved
on two different datasets are shown in Fig. 8.

As can be seen from the results, PARS achieves better
performance than other approaches. For all the approaches,
the SR and ORE all gradually decline with the increase in
the system size. The downward trend is more obvious when
the node number reaches 140. In the case of large-scale
composite cloud systems, we should increase the k value,
so that more sensitive component cloud services could be
fault-tolerated with NVP.

5.7 Impact of Time Series Length
To investigate how the length of historical reliability time
series influences the performance of PARS, we varied the

length of history and near future reliability time series for
from 10 to 60, in steps of 10. We fixed the number of the
nodes and arcs in the composite cloud system as 120 and
140, respectively, the value of k as 30, and the α as 0.5.

As can be seen in Fig. 9, PARS’s ORE is obviously higher
than other approaches. This suggests the effectiveness of
PARS. The SR and ORE for PARS, QoSranking, ROCloud,
and Sensitivity-only approaches increase with the increase
in the length of historical reliability time series. When the
length reaches 30 time points, a further extended length
of the time series has little impact on SR and ORE. This
indicates that a sufficient length of data window time for
collecting the historical reliability time series is necessary
for guaranteeing the performance of PARS.

5.8 Discussion

Now, let us discuss the findings in the experiments.
First, PARS can measure the reliability sensitivity of

the component cloud services in a composite cloud system
by considering the cumulative effects of temporal pertur-
bations based on the up-to-date historical reliability time
series. Service selection and proactive adaptive mechanism
for composite cloud system are performed based on PARS.
PARS can be used for online operation and maintenance of
composite cloud systems, which are helpful to improve their
system quality and users’ QoE.

Second, the experimental results verify the effectiveness
of PARS. In the case of increasing the length of historical
reliability time series, the performance of PARS improves.
PARS is more suitable for measuring short-term reliability
sensitivity of component cloud services. It can be used to
solve the problem of adaptive service selection for proactive
execution quality assurance of composite cloud systems.

Finally, considering the concept drifting nature of com-
ponent cloud services’ reliability, the optimal value of in-
fluencing factor parameter α for a component cloud service
may change over time. The SR of PARS is also influenced
by the length of the historical reliability time series. In
practice, when size of the window for reliability time series
is set properly, we can select multiple samples of historical
reliability time series during different time periods and
adopt a clustering algorithm to classify the classes of the
samples. For each class of the reliability time series, we can
determine the optimal α value experimentally. When PARS
is used to measure the reliability sensitivity for component
cloud services, we can first determine the class of the up-to-
date reliability time series, and then set the optimal α value
which was identified earlier for the corresponding class.
This helps to deal with the uncertain evolution problem
of component cloud service’s reliability time series and
improve the performance of PARS.

6 RELATED WORK

In this section, we briefly review the related works that
are relevant with our proposed PARS approach, including
the needs of execution quality assurance for composite
cloud systems, PageRank-based system component critical-
ity measure approaches and reliability sensitivity analysis
approaches used for traditional computer systems.
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Fig. 7. Impact of the number of top sensitive component cloud services.
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Fig. 8. Impact of the size of composite cloud systems.
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Fig. 9. Impact of the length of historical reliability time series.

Differing from the traditional component-based system,
each component cloud service in a composite cloud system
is usually rented from a third-party vendor. By invoking the
interfaces of the component cloud services through Internet
protocols, a cloud service execution engine composes differ-
ent system components to create a composite cloud system.
Therefore, operating in the dynamic cloud environment,
the system components of a cloud system are much more
loosely coupled than simple in-house software [42].

In the cloud service industry, Service Level Agreements
(SLAs) management has already been included in service
management suites to deal with the concept drifting proba-
bility distribution component cloud services’ reliability time
series, e.g., IBM Integrated Service Management/ISM, Ser-
viceNow, and so on [43]. Research works have investigated
on how to guarantee correct and continuous operations for
composite cloud systems in the presence of faulty com-
ponents [44], [45]. Based on DevOps, the AIOps project
in Microsoft also plans to develop intelligent methods for
improving service quality and customer satisfaction [46].

Traditional software engineering methodologies have
obtained some insights about system reliability by analyz-
ing software architectures. By analyzing the dependencies
among system components, Bayesian networks or Palladio
Component Model are employed to predict the online fail-
ure of a software by combining component failure predic-

tions with software architectural knowledge [24], [47], [48].

To identify critical system components in a service-
oriented system workflow and design an effective service
fault-tolerance (FT) strategy, Z. Zheng et al. [49] proposed an
architecture-based PageRank-like approach (i.e., FTCloud).
By analyzing the system components’ invocation relation-
s and frequencies based on the composite system archi-
tecture information, top 20% critical system components
were identified. The FT strategy was deployed on these
top 20% critical components based on the known 80/20
principle. This approach was extended by integrating the
system component failure rates and reliability properties in
ROCloud [22].

Reliability sensitivity analysis approaches have already
been used for traditional computer systems. The B-reliability
importance [17] and FV-reliability importance [50], [51] mea-
sures are the representative early works. These approaches
consider how much a system component’s execution fail-
ures influence the whole system’s reliability.

To design cost-effective cloud systems, reliability sensi-
tivity analysis approach has been used to identify critical
component cloud services in a composite cloud system.
In [14], a Quality Degradation Coefficient was defined to
indicate the maximum QoS degradation level. Multiple
iterations of Quality Degradation Coefficient for a system
component was noted and divided by their original values.
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The results were then summed and averaged.
Existing PageRank-based system component criticali-

ty measurement approaches aim to identify frequently-
invoked component cloud services through analyzing the
historical composite cloud systems’ workflow structures.
Critical system components provide important references
for constructing stable composite cloud systems. Faults
in those system components threaten the stable execution
of the composite cloud systems. Hence, such approaches
are designed for determining the critical components that
should be particularly maintained in the cloud. Moreover,
the ROCloud approach also considers the probability of
system components causing application failures when mea-
suring component criticality. In the dynamic cloud envi-
ronment, where a composite cloud system operates, it is
critical to analyze the reliability sensitivity of its system
components. However, this is ignored by PageRank-based
approaches. To guarantee the stable operation of the com-
posite cloud system in real-time, PARS analyzes the impacts
of individual system component’s reliability perturbations
on the runtime reliability of the composite could system.

In this paper, we propose PARS, a temporal-perturbation
aware approach for measuring the reliability sensitivity of
component cloud services, which analyzes the cumulative
negative impacts in their up-to-date reliability time series.
The proposed approach can identify the root cause to system
performance anomalies in system component level in a
composite cloud system. The results can provide guidance
for adaptive cloud service selection for building composite
cloud systems and assuring execution quality; henceforth
introducing a new way for our proactive adaptation of
composite cloud systems.

7 CONCLUSION AND FUTURE WORK

To ensure the quality of composite cloud systems in the dy-
namic cloud environment, this paper proposed a composite
cloud system proactive adaptation approach based on reli-
ability sensitivity assessment for component cloud services.
We proposed an approach named PARS for Perturbation-
aware Reliability Sensitivity measurement which considers
up-to-date window for component cloud services’ reliability
time series. The time-homogeneous reliability perturbation
and the cumulative effects of historical reliability pertur-
bations are particularity employed by PARS for reliability
sensitivity calculation. The 1-out-of-2 system NVP fault
tolerance mechanism is implemented on the identified top-
k most risky system components. The experimental results
demonstrate the effectiveness of PARS.

We identify the following research directions for the
proactive adaptation of composite cloud systems. First, for
the top-k sensitive component cloud services, the online
reliability prediction approach can be investigated and in-
tegrated with PARS. Second, online reliability sensitivity
prediction approaches will be investigated based on PARS
to improve our proactive adaptation approach for composite
cloud systems. Third, different fault-tolerance and service
replacement approaches will be investigated and leveraged
to allow PARS to handle more sophisticated scenarios.
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[16] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation,” ACM Comput. Surv.,
vol. 46, no. 4, p. 44, 2014.

[17] Z. BIRNBAUM, “On the importance of different components in
a multicomponent system,” Multivariate Analysis-II, pp. 581–592,
1969.

[18] M. R. Lyu, Handbook of software reliability engineering. IEEE
computer society press and McGraw-Hill Book Company, 1996.

[19] K. S. Trivedi and A. Bobbio, Reliability and availability engineering :
modeling, analysis, and applications, 1st ed. Cambridge University
Press, 2017.

[20] Z. Zheng and M. R. Lyu, “Collaborative reliability prediction of
service-oriented systems,” in Proc. 32nd ACM/IEEE Int. Conf. Softw.
Eng., 2010, pp. 35–44.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2021 at 21:25:14 UTC from IEEE Xplore.  Restrictions apply. 



1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3046360, IEEE
Transactions on Services Computing

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, XX XXXX 13

[21] Z. Zheng, T. C. Zhou, M. R. Lyu, and I. King, “Component
ranking for fault-tolerant cloud applications,” IEEE Trans. Services
Computing, vol. 5, no. 4, pp. 540–550, 2012.

[22] W. Qiu, Z. Zheng, X. Wang, X. Yang, and M. R. Lyu, “Reliability-
based design optimization for cloud migration,” IEEE Trans. Ser-
vices Computing, vol. 7, no. 2, pp. 223–236, 2014.

[23] W. Kuo and X. Zhu, Importance measures in reliability, risk, and
optimization: principles and applications. John Wiley & Sons, 2012.

[24] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner,
“Architecture-based reliability prediction with the palladio com-
ponent model,” IEEE Trans. Software Eng., vol. 38, no. 6, pp. 1319–
1339, 2012.

[25] ANSI/IEEE, “Ieee standard glossary of software engineering ter-
minology,” ANSI/IEEE STD-729-1991, 1991.

[26] D. Koller and N. Friedman, Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[27] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “Qos-aware middleware for web services composition,”
IEEE Trans. Software Eng., vol. 30, no. 5, pp. 311–327, 2004.

[28] H. Wang, C. Yu, L. Wang, and Q. Yu, “Effective bigdata-space
service selection over trust and heterogeneous qos preferences,”
IEEE Trans. Serv. Comput., vol. 11, no. 4, pp. 644–657, 2018.

[29] M. R. Lyu, Software fault tolerance. John Wiley & Sons, Inc., 1995.
[30] J. D. Musa, Software reliability engineering: more reliable software,

faster and cheaper. Tata McGraw-Hill Education, 2004.
[31] J. Knight, Fundamentals of Dependable Computing for Software Engi-

neers. Chapman and Hall/CRC, 2012.
[32] S. Yamada, Software reliability modeling: fundamentals and applica-

tions. Springer, 2014.
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