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Abstract—This paper explores Domain Specific Deep Learning
Architectures for GPU Computer Vision through a ”brain
storming” approach on selected hands-on topics in the area.
We intend to discuss Deep Neural Networks (DNNs) to image
classification problems through tools, frameworks and data
pipelines commonly used to train and deploy DNNs in GPUs
and Domain Specific Architectures (DSAs).

I. INTRODUCTION

Artificial Intelligence systems need the capacity to acquire

their knowledge through the extraction of patterns in the raw

data. Such an ability, defined as machine learning (ML), has

enabled the resolution of problems that appeared too subjective

including, for instance, filtering out SPAM messages from the

user’s mailboxes using the naive Bayes algorithm [9].

The performance of ML algorithms relies on the represen-

tation of data in much higher-level data features. A standard

approach is to manually perform the feature engineering which

often calls for close involvement of a domain expert. Manual

feature discovery is a complex task and depends on the expert

and designer intuition. To devise a predictive model capable

of assessing cardiopathies risks, for instance, the model de-

signer might use a set of patient-related data including blood

pressure, heart rate, family history, physical activity levels and

many others. The goal is then to discover a set of features that

is capable of maximising the discriminatory power of the orig-

inal patient data. Expert 1 might choose the mean of the heart

rate variable within a 5-sec time window. Expert 2 could well

select the mean, maximum and minimum for the same variable

and time window. Different groups of experts are likely to

choose different features. This methodology is used mainly in

methods of the so-called conventional machine learning (e.g.
SVM, naive Bayes, Logistic Regression, Random Forest and

many others).

A novel approach to feature engineering is to discover the

underlying data representation automatically. In other words,

the machine now accomplishes the process of feature dis-

covery. This new approach, called representational learning,

has achieved improved performance results given that the

model training encompasses feature discovery as part of a loss

function minimisation procedure.

Figure 1 contrasts conventional machine learning with rep-

resentational learning. Boxes in grey are elements that can

learn from data [9].

Fig. 1. Machine Learning: conventional versus representational learning [9].

Although this paper presents a few selected topics, it is not

meant to be a comprehensive survey on deep learning. On the

contrary, this paper is intended to offer a companion mate-

rial to the tutorial NVIDIA Deep Learning for Computer
Vision to be presented at SIBGRAPI 20191. The NIVIDA-

based course is structured into four sets of hands-on exercises

organised in GPU-based tasks as follows:

• GPU hands-on 1: training a DNN for image classifica-

tion; exploiting three key elements: deep neural networks,

GPU vector parallel processing and big data.

• GPU hands-on 2: model performance assessment, fine-
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tuning of hyperparameters, dataset preparation, network

architecture optimisations.

• GPU hands-on 3: deploying DNN models within real-

world applications, real-time inference, datacenter versus

edge computing.

For an in-depth discussion on deep learning, the readers are

encouraged to consult the Ian Goodfellow et al. textbook [9]

and the recently published literature surveys [41] [40].

This paper has the following structure. Sections I-IV pro-

vides the background information to briefly discuss a few

deep neural network architectures. Tools, frameworks and data

pipelines for image classification are discussed in Section V-

VI. Section VII elaborates on the Domain Specific Archi-

tectures (DSAs) that target deep neural network applications.

Section VII draws conclusions on the topic.

Deep Learning

Deep learning makes use of automated learning of data

representation as a means for the machine to suitably capture

complex concepts from simpler ones. In Deep Learning,

artificial neural networks (ANNs) are stacked in multiple

layers - hence the term deep. Such deep neural networks are

trained using highly parallel systems capable of auto-detecting

patterns in the original data.

The problem space of image classification has seen relevant

progress in the past few years due to emerging deep learning

techniques. Convolutional Neural Networks (CNNs) are con-

sidered high performing architectures for image classification

warranted by the significant decreases in error rates achieved in

the ILSVRC challenge2. Such neural networks, when applied

to image classification, are trained using a large image dataset.

The obtained low error rate suggests that similar results could

be achieved in other application domains.

II. DEEP LEARNING AND NEW PROCESSOR

ARCHITECTURES

A recent article in the MIT Technology Review (March

2019)3 describes deep learning pervasive throughout a grow-

ing number of applications such as processing photos in

Facebook, personalised Google ads and self-driving cars that

automatically discover the context in public roads. This article

also mentions that the recipients of the prestigious ACM
Turing Award in 2018, Geoffrey Hinton, Yann LeCun, and

Yoshua Bengio, persevere developing neural networks whereas

a significant fraction of the I.A research community focused

on symbolic approaches such as rules manually coded. The

breaktrough happened in 2012 when the Convolutional Neural

Network AlexNet [8] scored the first place in the LSVRC

Imagenet competition with a substantial difference in the com-

puted error compared to the runner-up entries. The AlexNet

original paper discusses three key performance factors: (i) the

depth of the neural network, (ii) the usage of highly paralleled

vector processors (e.g. general purpose GPUs) and (iii) a broad

2http://image-net.org/challenges/LSVRC/
3https://www.technologyreview.com/f/613233/the-pioneers-of-deep-

learning-win-the-turing-award

base of datasets made available for their CNN training. The

term big bang of the machine learning have been coined

because of these coupled factors.

A further front led by David Patterson and John Hennessy,

also recipients of a Turing Award (2017), brings a forward-

looking perspective whereby the design of modern computer

systems leverages domain-specific architectures (DSAs) and

open instruction set architectures (RISC-V4 [1]). Some propos-

als for deep learning specific processors have started to appear

in leading computer architecture conferences [10]–[12].

Disjoint as it might look, this train of thoughts intersect to

make a coherent whole. New advances in new deep learning

algorithms and techniques capitalise on novel architectures

for parallel processing. The delivery of performance is not

only expected from HPC datacenters but also from A.I edge

computing. Edge-based applications include self-driving cars,

autonomous vessels, point-of-care clinical image analysis, IoT

sensors and many others.

This paper takes advantage of Hinton et al. and Patterson

et al. ideas to bring a hands-on approach to deep learning

for computer vision. The idea is to present and discuss tools,

frameworks and data pipelines commonly used for training and

validation of a deep neural network (DNN). This document

complements a tutorial material to cover: (i) steps to build and

deploy deep neural network models for image classification,

(ii) accuracy and performance improvements, and (iii) discus-

sion of recent results in the intersection of Deep Learning and

new Domain-Specific Architectures (DSAs). These issues are

related to a broader understanding of deep learning in GPU

parallel processors:

• To implement a data pipeline of commonly used deep

learning tasks;

• To experiment with datasets, fine-tuning of DNN training

parameters, improve the capacity and performance of a

neural network;

• To integrate and deploy neural networks with the primary

aim to solve a real-world problem.

The sections that follow present a brief description of the

main topics covered in the tutorial.

III. ELEMENTS OF THE STORM

Three events happened at nearly the same time that en-

abled disruptive advances in machine learning. We named the

combination as the Perfect Storm because these events have

given a huge shake to the industry. Perfect means the right

point in time to enable applications for speech recognition

(e.g. Google Assistant & Apple Siri), recommender systems

for personalised e-commerce, image classification and object

recognition in social media, and natural language processing

(NLP). The combination of these events is also called the Big
Bang in machine learning. The events are as follows:

1) Algorithms: improvements in the solvers and tech-

niques such as Convolutional Neural Networks (CNN)

4https://riscv.org/
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made the use of DNNs more tractable. Significant

progress started with the proposed AlexNet in 2012 [8].

2) Big Data: growth of data volume has provided the data

needed to build deep networks. Around 2.5 quintillion

bytes of data are produced each day. With the introduc-

tion of social media, there has been a proliferation of

data primarily image and text-based.

3) GPU: this graphics system has been providing the com-

putational power intended to solve DNNs in reasonable

amounts of time. GPUs empower Data Scientists to build

better models faster. A data scientist can run more ”trial

and errors” on GPUs which can be 2X to 10X faster

than CPUs.

A. Data Representational Learning

A key point for the traditional machine learning techniques

is the representation of data. Inadequate data representation

can lead to an unsuccessful handling of these techniques.

Feature engineering thus has become an important area of

machine learning research. Several techniques to extract raw

data features have been proposed in the literature over the

last 20 years. Such approaches accounted for the need of

domain-specific knowledge making it difficult to have generic

solutions, and in many cases, significant human efforts are

mandatory still.

In the computer vision context, the usage of data repre-

sentation resources is a critical strategy in obtaining high-

quality information from a high dimensional raw image data.

Several methods have been proposed to tackle this issue,

including Invariant Scale Resource Transformation (SIFT) [4],

Oriented Gradient Histogram (HOG) [5] and Word Bag (BoW)

[6]. Such feature-based methods have become popular and

performing well in pre-processing machine vision algorithms

and other domains such as speech recognition and natural

language processing.

Deep Neural Networks (DNNs) bring a new scheme to raw

data pre-processing. DNNs perform the extraction of essen-

tial data features with none human intervention [23]. These

algorithms include a layered data representation architecture

in which high-level information can be extracted from the last

network layers, while low-level information is obtained from

the lower layers.

The architecture of DNNs is inspired by the process of

the primary sensory areas of the human brain. These areas

automatically extract the representation of data from different

scenes. The input image sensitises the eyeball, and it travels

through different layers of neurons until their objects are cor-

rectly classified. The series of processing layers are mimicked

in the architecture of DNNs.

B. Data is King

DNN-based methods do not require explicit feature extrac-

tion algorithms to obtain relevant data characteristics auto-

matically. There is a shift in focus to the creation of training

datasets that encompass the diversity of the data samples. It is

safe to state that DNN-based algorithms crucially depend on

large-scale datasets in addition to the recent advances in new

digital processors.

The recent years have seen a steady increase in dataset

availability. ImageNet [25] is a large set of annotated im-

ages, used to train the most popular networks (AlexNet [43],

GoogleNet [47], VGGNet and ResNet). CIFAR10/100 [26] is

another important dataset explored in classification tasks. On

the other hand, datasets such as PASCAL VOC and Microsoft

COCO have been used in segmentation tasks. YouTube-8M

[24] is a relevant dataset for event detection, classification of

video, and many other applications.

IV. NEURAL NETWORK ARCHITECTURES

Recent research results [11] indicate that 95% of Google

datacentres inference demand for deep neural network ap-

plications employ the following network architectures: (i)

Multi-Layer Perceptrons (MLP): 29%, (ii) Convolutional Neu-

ral Networks (CNN): 5% and (iii) Recurrent Neural Net-

works (RNN): 29%. This document attempts to bridge the

gap between the algorithms and domain-specific architectures

(DSAs). This paper focuses on a set of popular network archi-

tectures including CNNs [33] which represent the beginning

of feasible deep neural networks [11]:

1) Multi-Layer Perceptrons (MLP): each new layer is a set

of nonlinear functions of the weighted sum of all outputs

(fully connected) from a prior one, which reuses the

weights.

2) Convolutional Neural Networks (CNN): each inner layer

is a set of nonlinear functions of weighted sums of

spatially nearby subsets of outputs from the prior layer,

which also reuses the weights.

3) Recurrent Neural Networks (RNN): each subsequent

layer is a collection of nonlinear functions of weighted

sums of outputs and the previous state. The most popular

RNN is the Long Short-Term Memory (LSTM) which

decides what data should be forgotten and what should

be passed on as a state to the next layer. The weights

are reused across multiple time steps.

A. Classic CNN architectures

Multi-Layer Perceptron (MLP) is a classic neural network.

It functions by receiving input data that propagates through

connected processing elements based on values of weight

parameters. MLPs employ fully connected (FC) neurons so

that learnt weights build a suitable mapping function from the

network input to its output. The MLP bioinspiration trace back

to how the network of the brain’s neurons establish synaptic

connections.

Deep neural networks have their genesis in convolutional

neural networks (CNNs) [33] [34] where the inner structure re-

sembles the mammalian visual cortex with a complex sequence

of cells [27]. CNNs are capable of taking a two-dimensional

input data structure (e.g. an image). Local connections and

shared weights convolve over this 2-D data structure.

Using shared instead of individual weights between highly

connected neurons results in a network with fewer weights
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to learn, which makes the network faster and easier to train.

This operation is similar to cells of the visual cortex. Such

neurons operate over small parts of a scene rather than the

entire image resulting in local filters with the ability to extract

spatial correlations from the data.

Although CNNs share similarities with MLPs in the learning

process, the convolution layers bring more efficiency through

data summarization going from low to high-level data repre-

sentations.

A CNN is composed of layers through which information

will flow. The input data will go through several convolutional
layers followed by pooling layers (subsampling) and, in the

final stages, through fully connected layers.

Convolutional Layer: the image classification task has ben-

efited tremendously from a convolutional neural network.

Suppose an image I of dimension n×n and r colour channels

(e.g. r = 3 for an RGB image). This image is propagated

through convolutional layers formed by k core filters of size

m × m × p. Notice that m must be smaller than the input

image, but p may be smaller or the same size as r. Local

filters share equal Wk weights and are convoluted over the

input image, generating feature maps (hk). Each feature map

has size n−m− 1. Similarly to MLPs, a convolutional layer

calculates the inner product between the weights and their

inputs. The difference is that the input is now a portion of

the original data entry. An activation or non-linear function is

applied to the inner product producing the convolutional layer

output, hk.

Pooling Layer: subsampling layers reduce the dimension-

ality of feature maps. This operation not only speeds up the

model training but also control the network to avoid over-

fitting. Functions such as mean, maximum and minimum can

be applied to a q × q region for all feature maps where q is

the filter size.

Fully Connected Layer: the last-stage layers are usually

fully connected ones as also used in MLPs. Such layers rely

on previous computed lower-level features to generate high-

level abstractions from the data. A final layer in the network

can still be used to create a ranking where each rank score is

a probability associated with a specific classification category

for a given data input instance. Softmax and SVM are function

examples of this type of layer [28].

B. Generative adversarial networks (GAN)

First introduced in [32], GANs have become well known

for their ability to synthesise realistic images. This technique

learns how to generate new data with the same statistics as the

training set. Specifically, a GAN is a framework for training

generative parametric models. The core idea is to build two

adversary networks: i) a generator G capable of generating

data such as text, images, or even music and, ii) a discriminator

D which informs whether a given input represents real data.

Both G and D are trained simultaneously while the generator

attempts to produce convincing fakes to fool the discriminator.

The latter’s job is to catch such fake data. Once the training

is accomplished, the expected outcome is that the generator is

so specialised in producing fake data that the discriminator is

unable to classify which data is fake or real. For example, a

GAN trained on dog images can generate new images that look

at least superficially authentic to human observers, keeping

many realistic characteristics.

C. LSTM

Recurrent Neural Networks (RNN) [29] is another approach

widely used in applications that depend on sequential data.

The main feature of this type of network is to capture the

information present in data series. For example, a scene in

a video to be analysed requires the capturing of contextual

information. Unlike traditional neural networks, an RNN uses

as its input a sequence of data that propagates through short-

term memory units coupled with an input layer x, a hidden

layer (state), and an output layer y.

Long Short-term memory (LSTM) [30] networks provide

memory blocks in their recurring connections. Each memory

block incorporates cells that are stored in temporary network

states. Also, LSTMs include structures that direct data propa-

gation by improving information flow control.

V. DEEP LEARNING PRINCIPLE

(a) Cat 1 (b) Cat 2 (c) Cat 3

(d) Dog 1 (”Luna”) (e) Dog 2 (”Bono”) (f) Dog 3 (”Flor”)

Fig. 2. Samples of the Imagenet dataset [25]: Cats and German Shepherd
Dogs.

The way the machine learns patterns through deep learning

has similarities to human learning. Figure 2 shows six images

of cats and carefully named dogs. Suppose that goal is to

teach a potential learner to recognise German Shepherd dogs.

The learning method for a human could be to present each

ImageNet5 sample image in Figure 2 and ask the learner to

say from a scale of 1 to 10 how confident the learner is that

that image is a German Shepherd. This confidence rating is

then used to adjust the overall error, which is the distance

between the learner guess and the actual animal in the image.

For instance, a 10-points confidence of a human learner on a

dog image yields a zero error for such an instance. As any

good learner, the more the human sees the images, the better

they get in providing the confidence scales. At the end of the

5http://www.image-net.org/
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learning process, the overall error should be minimum for a

good learner. In machine learning, a similar task called image

classification, trains a neural network to be able to separate

images into groups or classes. In this case, the two classes of

interest are:

1) Dogs
2) Not Dogs
Although the power of deep learning lies in operating over

massive datasets, the small dataset presented in Figure 2 can

still be useful to exemplify the learning principles. Such a

dataset contains six labelled images of German Shepherd dogs

and cats, three images each respectively. A neural network

designed specifically for image classification can be used.

For instance, AlexNet was architected after the human visual

cortex and offer capabilities to application developers to focus

on the model training process instead of understanding the

structure of the brain. Frameworks such as Caffe, Theano and

Tensorflow can be used to train this specific neural network

for the dog recognition. Tools that provide intuitive user

bring together software libraries and frameworks in a visual

development environment (e.g. NVIDIA DIGITS and Jupyter

Notebooks). The user manages the deep learning workflow

with no need for error-prone coding or even command-line

input.

Figure 3 shows a simplified version of a deep neural

network. In this example, the inputs at the bottom of the

diagram represent each pixel value of an image instance.

Ideally, this network should be trained using the full ImageNet

dataset.

On the top, the network generates an output that in this

example is the probability the image contains a dog. On the left

side, the output that should have been generated is presented

as labelled data instances. In this case, if the image was a dog,

the output should have been 100%.

Fig. 3. Learning Step 1.

The learning process feeds each image through the network

to generate a prediction which at first will be wrong. In this

case, the guess is 5 units away from what it should have been

(error = 5). As a result, the network is changed slightly to

adapt to the current error calculation.

The weights represent the values which have changed.

Weights are the multipliers associated with each operation.

Fig. 4. Learning Step 2.

Figure 4 shows a slightly bigger weight represented as a

thicker line at the top left side. This weight adjustment has

made the error to increase with the new output (error = 15

units). The change made to the weight during the Step 1 could

have been smaller.

Fig. 5. Learning Step 3.

The goal is to adjust each weight by a small amount in the

gradient direction that decreases the overall error (Figure 5. It

is important to note that this is one of hundreds of thousands

or millions of weights in a deep neural network. Although it

has been presented in a very simplified manner, this process

of iterative error function minimisation is at the core of the

Stochastic Gradient Descent method [9].

VI. DEEP LEARNING PIPELINE IN PRACTICAL TERMS

A. Model Training

Deep Neural Networks are flexible algorithms inspired by

the human brain that allow practitioners to use training strate-

gies inspired by human learning. Figure 6 presents the training

process of deep neural networks in a practical situation. The

input data, e.g. an image, is passed through the network and

an error (or loss) is computed. This step is called forward
propagation. The loss information is passed back through the

network to adjust each weight value by a small amount. Such

adjustments are made towards the direction that reduces the
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loss. This is called backward propagation. This process is

repeated for a large number of iterations with thousands of

pieces of data. The end-goal is to learn a function that takes

an input and generates an output that is close as possible to

the target labelled data (Figures 3-5).

Fig. 6. Training a Deep Neural Network. The forward propagation yields an
inferred label for each training image. The loss function is used to calculate
the difference between known label and predicted label for each image. The
weights are adjusted during the backward propagation step. This process is
repeated over and over until it converges to an acceptable minimum error.

It is important to note that although trained DNN models

are complex internally, at their core, they are simply functions

where for each distinct input they will generate a specific

output (Figure 7). In image classification problems, the input

and output images follow specific rules in terms of data format

and image size.

Fig. 7. Expected Inputs and Useful Outputs.

B. Model Validation

The data that a neural network is exposed to during training

is the only guidance it has about the world. When a human

learns how to identify a German Shepherd Dog, they begin

with an understanding of not only dogs but even of features

that might differentiate between dogs (colour, size, etc.) A

neural network still interprets data as data, so has to discover

which features are useful.

Successfully training a neural network to perform well on

new data requires enough data to demonstrate the diversity of

the environment where the network should be active. Fitting

an untrained neural network to a small dataset of sample

images such as the cats and dogs in Figure 2 will lead to

highly specialised networks that have overfit, i.e. it is only

useful on the exact images that it was exposed to during

training. In case the network receives an unseen dog image

with different characteristics (e.g. dog is facing a different

direction, a different amount of light, or even with a different

age), the network has no indication that those still fall under

the category of a dog. Essentially, instead of ”learning” the

difference between dogs, the network has ”memorised” which

image in the training dataset belongs to which class.

The issue of overfitting can be assessed during the model

validation process. The validation dataset is typically used to

assess performance on new data using an approach that a

human might find difficult to follow. Validation data is fed

through the network to generate an output. In this case, the

network does not learn anything from the data. Differently

from the model training, the loss is reported, but the model

itself is unchanged (Figure 8). The same validation dataset can

be used to assess the model performance on new data over and

over again while continuing to treat it as new data.

Fig. 8. Model Validation: Forward Propagation only.

Figure 9 shows a typical plot for model performance evalu-

ation. This one has been generated using DIGITS6 - NVIDIA

visual tool for deep learning workflow.

Fig. 9. Performance Evaluation.

The blue curve is the loss or error of the network while it

is learning from the data. The green curve is the loss of the

network on data that it is NOT used for learning. Datasets

6https://developer.nvidia.com/digits
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are usually split as fractions, say 75% and 25%, for training

and validation respectively. The validation part is set aside

to be used to check whether the network is learning about

the differences between ALL dogs and cats, and not just

the ones that are used for training. The orange curve is the

accuracy which measures how often the prediction made from

the validation set is correct. Other performance metrics which

characterise the individual classes could be calculated (e.g.

precision and recall).

C. Deployment, Tools and Frameworks

The inference is the process of making decisions based

on what has been learnt. The power of a DNN, say image

classification, is that under a certain performance threshold,

it can classify unlabelled images. Figure 10 shows the online

inference whereby the trained model is exploited in a real-

world application to make predictions from new unseen data.

The best-trained model is then used in an application running

in a production environment (e.g. datacentre, a vehicle, or a

user smartphone). For some applications, such as autonomous

vehicles, the inference is carried out in real-time and therefore,

high throughput and low response time are critical.

Fig. 10. Model Training and Deployment.

Figure 10 shows an example of a DNN training and deploy-

ment. Since the network is adequately trained, it can be used

to deploy functionalities in several real-world applications.

This process is used when unseen images are inputted into

the network, and the correct class is expected as the outcome

of the classification inference.

There are two distinct tasks of a deep learning workflow

worthwhile mentioning: (i) model training and validation, (ii)

and model deployment in real-world scenarios. Often the

model is part of a more prominent application software. A

model can identify whether dogs or cats are present in an

image. A complete software could use this model to build

an application to prevent a cat from coming into the house

through the main entrance door.

Deployment involves system-related skills which merge

deep learning with traditional programming. The traditional

programming builds the easy-to-use software solution for the

users. The application is created using the trained neural

network model.

The model deployment needs to overcome several practi-

cal issues including data pre/post-processing, model weights

and network architecture specs of software and potentially

hardware environments (e.g. GPU edge-computing) - to cite a

few. The deployment can also be regarded as the process of

packaging a few components, including the developed models,

databases and scripts in a container-like package. The end-

goal of the deployment is to provide online inference services.

Model training (or readjustment) is also possible, and it is get-

ting more traction in recent years with new application-specific

architectures (DSAs). Such components can be packaged in a

container format (e.g. Docker or Kubernetes 7. This model-

based container for a real-world application is also called a

data-product.
The regular training and inference cycle is depicted in

Figure 11. The deployment tackles application questions such

as: (i) how an image classifier can be deployed to an iPhone

app that can tell the user whether or not a plant is poisonous?

How can a pedestrian detection model be deployed to a self-

driving vehicle in order to adjust the cars speed? How can a

speech recognition tool be deployed to a piece of hardware

that can authorise customer purchases?

Fig. 11. How to Deploy a Model.

VII. DOMAIN SPECIFIC ARCHITECTURES (DSAS)

This section explores the deep learning problem space

of where DSAs can bring significant benefits in terms of

performance in the training, validation and real-time inference

within the application domain. Performance, in this case, has

a broad definition that comprises model deployment perfor-

mance (application time response, processing throughput) and

overall model quality (e.g. accuracy). In deployed applications,

a balance should be reached between performance and model

output accuracy while functionality transfers from resourceful

data centres to edge computing devices (e.g. DNNs running

on a self-navigating vessel, or users’ smartphones).

Moore’s law led to an expected performance delivery for

modern CPUs whereby the number of transistors on a silicon

chip doubles roughly every two years. Such a performance

7https://www.docker.com/ and https://kubernetes.io/
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delivery has given a signal of stagnation over the past ten

years. Dennard scaling law states that as transistors get smaller,

their power density stays constant in proportion with the

silicon area. Dennard law has shown signs of breakdown as

of 2016. Currently, high temperatures of transistors in large

scale integration pose a real system challenge. Cooling down

the transistors takes more energy than the amount of energy

that already passes through the transistors. This scenario has

limited the performance delivery in terms clock frequency,

where for instance, it remains at around 3 GHz. This law

collapse has been referred to as the ”Moore’s law hit a wall”.

However, Moore’s law in the last decades enabled many

computer system design innovation. Most new system design

address the question on how bottlenecks at higher levels

of abstraction can be detected and overcome in delivering

the main low-level characteristic of large scale transistor

integration. Pursuit of parallelism in all levels in a modern

computer architecture started with deep memory hierarchy

and instruction-level parallelism with deep pipelines. These

examples of inner CPU system optimisations helped to deliver

performance to application up to the point when other forms of

parallelism had to be introduced. Performance and low power

consumption started to be delivered through multiprocessor

units where the potential of a capped CPU clock frequency

could now be leveraged in a parallel multicore architecture.

Deep neural networks (DNNs) need intensive processing

and data transfer capabilities for such tasks as building, testing

and deploying a model to the real-world applications. Such

issues have been satisfactorily tackled using general-purpose

graphical processing units (GPGPUs) where the nature of

parallel arithmetic operations in GPUs matches the DNNs

development workflow. A few companies target deep learning

through their existing GPU offering. For instance, NVIDIA

and AMD have created a custom system design for deep

learning data pipelines (e.g. Tesla V100 and Radeon Instinct,

respectively).

A. Beyond CPUs and GPUs

DNN model training for large datasets is a complex optimi-

sation problem that seeks minimise an objective loss function.

It often takes a significant number of operations for algorithms

such as the stochastic gradient descent (SGD) to converge

into a global minimum solution. High-performance GPUs can

speed up the training task with a cut in the training time

from months to days for some workloads. The search for

improved performance has led to several recent proposals

on domain-specific architectures (DSAs) that embrace deep

neural networks [10]–[12]. The argument here is that for DNN

workloads a factor of 100 in improvements (no. operations per

instruction) is highly desirable in accomplishing faster model

training and inference. A possible direction is to implement

the necessary functionality in ASICs and FPGAs accelerators

leading to a higher performance/watt ratio. However, the R&D

costs cannot be efficiently amortised over large volumes in

case of ASIC specific design, and FPGAs are less efficient

than ASICs [44].

Fig. 12. CPU Design: Latency Oriented [48]

Fig. 13. GPU Design: Throughput Oriented [48]

CPUs are designed to reduce operation latency with pow-

erful arithmetic logic units (ALUs) (Figure 12). Large and

fast cache memory convert remote memory access to short-

latency cache accesses. Sophisticated control is used to drive

a complex system with techniques such as prediction for

reduced branch latency. CPUs are optimised for sequential

parts of code where latency is of prime importance. CPUs

can be 10X+ faster than GPUs for sequential code. In con-

trast, GPUs is designed for high throughput operations with

small caches to boost memory throughput (Figure 13). The

control is simplified with no branch prediction. Many ALUs

in GPUs lead to long latency, but they are heavily pipelined for

high throughput. GPUs systems require a massive number of

threads to tolerate latencies with threading logic and thread

state management. Figure 13 shows the architecture of a

typical GPU system.

Deep neural networks have been successfully exploiting

the GPUs data-level SIMD parallelism. Software frameworks

(e.g Caffe and Tensorflow) take advantage of the underlying

system architecture often optimising parts of the code that

are best suitable for running on a CPU (sequential) and GPU

(parallel). The latter includes all the arithmetic matrix and

vector operations performed in model training and validation.

Novel parallel stochastic gradient descent algorithms have

been recently proposed to train more efficiently DNNs in

parallel systems such as clusters of GPUs [15]–[17].
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Fig. 14. CPU-GPU Interplay.

B. CPU-GPU Interplay Problem

Deep learning software frameworks specify in a given

format the network architectures and linked hyperparameters.

Also, networks learn differently in terms of training rates,

methods, and other aspects. The analogy here is that different

learners learn differently. High-level tools include Keras, Ten-

sorboard, or APIs with conventional programming languages.

The software attempts to build a processing graph of opera-

tions. A small portion of this runs in the CPU, but the majority

should run in GPUs. Figure 14 shows the interplay between the

CPU and GPU in commonly implemented DNNs. The code

listed is a straw-man implementation of two vectors addition

in CUDA8. This is a typical simple operation employed in the

computing tasks associated with deep neural networks. The

performance bottleneck is illustrated through the data transfers

between CPU (host) and GPU (device). Parts 1-3 shown in

Figure 14 demonstrate such a memory issue.

Listing 1. CPU-GPU Interplay

# i n c l u d e <cuda . h>
void vecAdd ( f l o a t ∗h A , f l o a t ∗h B , . . .

f l o a t ∗h C , i n t n )

{
i n t s i z e = n∗ s i z e o f ( f l o a t ) ;

f l o a t ∗d A , ∗d B , ∗d C ;

/ / Par t 1
/ / A l l o c a t e GPU memory f o r A , B , and C
/ / Copy A and B t o GPU memory

/ / Par t 2
/ / K e r n e l l a u n c h code
/ / The GPU p e r f o r m s t h e a d d i t i o n

/ / Par t 3
/ / Copy C from t h e GPU memory
/ / Free GPU v e c t o r s

}

C. Domain Specific Architectures (DSAs)

A few application domains have recently benefited from

DSAs. The task of mining in decentralised cryptocurrency

systems has escalated the processing power from CPUs in

8https://developer.nvidia.com/cuda-zone

the early stage of cryptocurrency blockchain lifetime to more

customised architectures based on custom ASICs (latest gen-

eration from 2014 onwards). Such architectures deliver signif-

icant performance-power (0.07 W per Giga-hash/sec) leading

to 8K+ times more energy efficiency over standard GPUs

[45]. In many applications, the non-recurring engineering costs

turn ASIC design prohibitive. DSAs in other domains include

wearable edge-computing to accelerate multimedia and sensor

data analysis. Stitch [3] is a many-core architecture where tiny,

heterogeneous, configurable and fusible accelerators, called

polymorphic patches are effectively enmeshed with the cores.

Evaluation results across wearable applications show an aver-

age of 2.3X enhancement in run-time compared to many-core

processor baseline at a modest area and power overhead.

D. DSA Design Issues

We present a few proposals for DSAs built for deep learning

applications. These proposals are contrasted using the follow-

ing guidelines [44]:

1) Dedicated memories: data movement can create sig-

nificant bottlenecks in the system. Dedicated memories

placed as close as possible to the processing units can

improve the system performance.

2) Larger arithmetic units: data processing benefits from

more arithmetic units or bigger memories.

3) Easy parallelism: exploits the parallelism that matches

the application domain.

4) Smaller data size: reduce data size and type to the

simplest form needed for the application.

5) Domain-specific language: capitalise on the program-

ming language and framework specifically used for the

application development.

The design issues listed above provide a baseline for deep

learning systems aiming at a speedup of 100 times for the tasks

of model training and real-time inference. The performance-

power metric has been used to benchmarking new design for

applications either running in data centres (cloud-based tasks)

or edge devices (edge-computing tasks).

E. Deep Neural Networks (DNNs) on DSAs

DSAs have emerged as promising accelerator systems to

the tasks commonly explored in a deep learning data pipeline.

Every year new DSA design proposals are put forward into

the academic and industrial communities. This section focuses

on a small sample of this space by briefly discussing recent

proposals: (i) Brainwave Neural Processing Unit (NPU) and

(ii) Tensor Processing Unit (TPU) for cloud-based model

training and inference. A summary of these proposals already

aligned to the DSA design issues is presented in Table I.

F. Brainwave Neural Processing Unit (NPU)

Real-time interactive applications started using deep neural

networks (DNNs) for voice and image recognition. Low-

latency and the ability to process small data are requirements

to achieve a smooth user experience and data efficiency

(power and cost effective issues). High data throughput GPUs
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TABLE I
DESIGN ISSUES FOR DOMAIN SPECIFIC ARCHITECTURES (DSAS)

Brainwave NPU PROMISE NPU TPU
Design target Data centre ASIC/FPGA Data centre ASIC/edge de-

vice
Data centre ASIC

1. Dedicated memories DNN model weights in dis-
tributed on-chip SRAM

Single-bank with 512×256
bit-cell SRAM (single vec-
tor 128 elements). Multiple
banks support multiple vec-
tors of 128 elements

24 MiB Unified Buffer, 4
MiB Accumulators

2. Larger arithmetic
unit

Up to 96,000 multiply-
accumulator units

64 KiB Multiply-
accumulators

3. Easy parallelism Pipeline and SIMD Single-threaded, SIMD Single-threaded, SIMD
4. Smaller data size Narrow precision data

types (BFP FPs)
8-bit integer size 8-bit, 16-bit integer size

5. Domain specific lan-
guage/framework

TensorFlow Caffe/TensorFlow on Julia TensorFlow

can explore large batches of data. Neural processing units

(NPUs) have emerged as an alternative for real-time small-data

applications. The problem is the extent a system is sufficiently

flexible to support various types of DNNs with low-latency

exploiting the parallelism inherently present in the individual

requests in cloud-based real-time applications.

The Brainwave NPU [12] is a large scale production system

for real-time A.I applications. The main system architecture

features are: (i) soft processor with the logic synthesis in

FPGAs, (ii) single-thread with SIMD parallelism, (iii) focus

on the vector-matrix multiplication operation, (iv) DNN model

embedded with weights stored in distributed on-chip SRAM.

The proposed implemented microarchitecture explores multi-

functional units (MFU) and matrix-vector multipliers, as de-

picted in Figure 15.

Different FPGA systems were used to implement the Brain-

wave NPU. Parameters were adjusted to select the most

suitable system among the ones tested, namely Stratix V D5,

Arria 10 1150 and Stratix 10 280.

1) Performance on RNNs: The Brainwave NPU was im-

plemented on the 40-lanes FPGA model Stratix 10 280 that

reaches a peak of 48 TFLOPS. DeepBench benchmarking [35]

is a set of benchmarks that comprise representative layers

from popular DNN architectures including LSTMs (h = hidden

dimension and t = time steps). The validation focused on

inference at small batch sizes. The Brainwave NPU FPGA

implementation (termed BW S10) was compared to a modern

NVIDIA Titan Xp GPU in terms of latency and computing

throughput.

Table in Figure 16 shows the raw TFLOPS and the ex-

ecution latency of each DeepBench benchmark. The BW

NPU can run all DeepBench benchmarks at under 0.425ms,

achieving 22.6 effective TFLOPS for an LSTM with 2048

hidden dimensions and 25-time steps. This represents orders

of magnitude advantage over the Titan Xp. Such a performance

is in part attributed to the BW NPUs high peak TFLOPS at

narrow precision, but more significantly, this is due to better

hardware utilisation [12].

Fig. 15. Brainwave NPU Microarchitecture [12].

2) Performance on CNNs: Validation results obtained on a

BW NPU variant customised to CNNs running a production-

grade ResNet-50 image-based featuriser [36].

Table in Figure 17 compares the latency and throughput to

run the ResNet-50-based featuriser standalone on a BW NPU

hosted on an Arria 10 1150 against a high-end NVIDIA P40

GPU. The BW NPU achieves 555 inferences per second (IPS),

a slightly higher performance compared to the high-end P40

using INT8 precision. On an unloaded system, the BW NPU

serves a single instance of the model in 1.8 ms, while the

P40 takes 2.17 ms. These results show that the BW NPU is a
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Fig. 16. LSTM Benchmarking Results [12].

Fig. 17. CNNs Benchmarking Results [12].

capable architecture for a single batch, low latency alternative

to a high-end, newer generation GPUs on compute-intensive

CNNs and orders of magnitude faster on RNNs [12].

G. Tensor Processing Unit (TPU)

TPU is Google’s DSA based on a custom ASIC specifically

designed for the tasks of deep neural networks training and

online inference. The system was designed and validated in

a variety of workloads including MLP, CNN and LSTM,

which represent 95% of Google datacenter neural network

application workloads [11]. The original goal was to improve

cost-performance by 10X over general-purpose GPUs. The

TPU system was designed, built and deployed in datacenters

in record time (just within 15 months). The original TPU

comprised a 256 x 256 8-bit MAC matrix multiply unit

providing a peak throughput of 92 TeraOps/second (TOPS).

Large software-managed on-chip memory (28 MiB) and a co-

processor design allow the TPU to plug into existing servers

just as GPU does. The host server sends TPU instructions

for it to execute rather than fetching them itself. The in-

structions were custom defined for deep neural network data

pipelines. The TPU instruction set architecture (ISA) includes

instructions for host/memory data transfer, DNN weights man-

agement, matrix-matrix multiply and convolve operations and

instruction for computing activation function. Table II presents

the instructions specified in the TPU ISA.

A key feature of the TPU design is to keep the data as

much as possible inside the system. Commonly used data

transformers of the DNN data pipeline are implemented inside

the TPU. Figure 18 shows the block diagram of the TPU

system. The control and data paths can be summarised as

Fig. 18. TPU Design: Block Diagrams customised to DNNs [11].

follows: (i) the TPU instructions (Table II) are sent from

the host CPU to the TPU instruction buffer via the PCIe

Gen3 x16 bus (left side of Figure 18), (ii) the specific data

transformers of the datapath start in the upper-right corner

of Figure 18. The Matrix Multiply is the core unit of the

system that contains 256x256 MACs (8-bit multiply-and-adds)

capable of operating on signed or unsigned integers. (iii) The

16-bit products are collected in the 4 MiB (4096, 256-element)

32-bit Accumulators below the matrix unit. The matrix unit

produces one 256-element partial sum per clock cycle. (iv)

the Matrix Unit reads and writes 256 values per clock cycle

and can perform either a matrix multiply or a convolution

when using a mix of 8-bit weights and 16-bit activations (or

vice-versa). (v) Finally, the weights for the matrix unit are fed

into the on-chip Weight FIFO that reads from an off-chip 8

GiB DRAM called Weight Memory (for inference, weights

are read-only; 8 GiB supports many simultaneously active

models). The intermediate results are held in the 24 MiB on-

chip Unified Buffer, which can serve as inputs to the Matrix

Unit. A programmable DMA controller transfers data to or

from CPU Host memory and the Unified Buffer.

Fig. 19. TPU Inference Performance for six DNN applications [11].

1) TPU System Validation: The workload was coded in

the high-level TensorFlow framework. Six production neural

network applications that represent 95% of Google’s data-

centers neural network inference demand (MLPs, CNNs, and

LSTMs) have been used for the system validation (Figure

20). One DNN is RankBrain [37]; one LSTM is a subset of

GNM Translate [38]; one CNN is Inception, and the other

CNN is DeepMind AlphaGo [39]. The systems for comparison

reasons used in the TPU validation include a mix of processing
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TABLE II
TPU INSTRUCTION SET ARCHITECTURE (ISA) [11].

Instruction Description
Read Host Memory Reads data from the CPU memory into the TPU unified buffer
Read Weights Reads weights from the Weight Memory unit into the Weight FIFO

as input to the Matrix Multiply Unit
MatrixMatrixMultiply/Convolve Perform a matrix-matrix multiply, an element-wise matrix multiply, an

element-wise vector multiply, a vector-matrix multiply, or a convolu-
tion from the Unified Buffer into the accumulators

Activate Computes the non-linear function of the artificial neuron with options
for ReLu, Sigmoid and others. It can also perform the pooling
operations needed for convolutions using the dedicated hardware on
the die, as it is connected to non-linear function logic.

Write Host Memory Writes resulting data from the unified buffer into CPU host memory

power in configured servers: Intel Haswell (E5-2699 v3) CPU,

NVIDIA K80 GPU and TPUs. Haswell has 18 cores, and the

K80 has 13 SMX processors.

Fig. 20. Neural Network Applications [11].

Table in Figure 19 provides the relative inference perfor-

mance per system, including the host server overhead for

the two accelerators versus the CPU system. The next-to-last

column shows the geometric mean of the relative performance

for the six applications, which suggests the K80 is 1.1X the

speed of a Haswell system, that the TPU is 14.5 times as fast,

and thus the TPU is 13.2 times as fast as the GPU system.

Fig. 21. TPU Inference Performance for six DNN applications [11].

2) Performance/Watt: Figure 21 shows the geometric (GM)

and weighted mean (WM) performance/Watt for the K80

GPU and TPU relative to the Haswell CPU. Two different

calculations of performance/Watt were done. The first (total)

includes the power consumed by the host CPU server when

calculating performance/Watt for the GPU and TPU. The

second (incremental) subtracts the host CPU server power

from the GPU and TPU beforehand.

For total-performance/Watt, the K80 GPU server is 1.2 -

2.1X Haswell CPU. For incremental-performance/Watt, when

Haswell CPU server power is omitted, the K80 GPU server

is 1.7- 2.9X. The TPU server has 17 to 34 times better total-

performance/Watt than Haswell, which makes the TPU server

14 to 16 times the performance/Watt of the K80 GPU server.

The relative incremental-performance/Watt which was the

TPU’s designers justification for a custom ASIC is 41 to

83 for the TPU, which lifts the TPU to 25 to 29 times the

performance/Watt of the GPU.

Overall, the authors of [11] claim that a TPU is on average

about 15X - 30X faster than its contemporary GPU or CPU,

with TOPS/Watt about 30X - 80X higher. Moreover, using

the GPUs GDDR5 memory in the TPU would triple achieved

TOPS and raise TOPS/Watt to nearly 70X the GPU and 200X

the CPU.

The results presented in the previous sections suggest that

Domain-Specific Architectures (DSAs) are promising system

design to fulfil the high demand for neural networks applica-

tions for both model training and online inference.

VIII. CONCLUSION

This paper is intended to offer a companion material to the

tutorial NVIDIA Deep Learning for Computer Vision, SIB-
GRAPI 2019. It introduced a few selected topics in the field

of deep learning for computer vision exploring the software

and hardware interface for deep neural network applications.

Systems used in GPUs and new DSAs are discussed with

the perspective of advancing novel deep neural networks. The

course is targeted to an audience who have not yet fully expe-

rienced deep learning in a practical computing environment.

This should perhaps their first opportunity to train and validate

deep neural networks for image-based classification and object

detection. The set of tasks structured in customised Jupyter

Notebooks9 explore the deep learning workflows in NVIDIA

GPUs.
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