
A partition approach to interpolate polygon sets for
animation

Alexandre Ribeiro Cajazeira Ramos, Emanuele Santos, Joaquim Bento Cavalcante Neto
Federal University of Ceara

Fortaleza - CE, Brazil

Email: alexandrecajazeira@alu.ufc.br, {emanuele, joaquimb}@dc.ufc.br

Abstract—The use of animation can be a good alternative to
static visualizations when communicating dynamic changes. Some
approaches already represent spatiotemporal phenomena using
a polygon set for each time instant. However, these representa-
tions are static and not general enough to be applied for the
interpolation of arbitrary polygons. Furthermore, the problem
of interpolating arbitrary polygons present a set of requirements
that are not satisfied by the currently available tools. For example,
the polygons are arbitrary, and the interpolation should be
smooth and fully automatic (not requiring user intervention).
To solve this problem, we present an approach to interpolate
arbitrary polygon sets that satisfy those requirements, and that
can be used to visualize temporal changes of different phenomena
as an animation. In the proposed approach, we appropriately
divide and identify correspondences between origin and target
polygon sets. Our approach is general enough so that different
polygon division techniques can be used. We also performed a
series of experiments comparing a few different techniques and
discuss the results.

I. INTRODUCTION

Geospatial phenomena, such as territorial disputes, agricul-

tural exploitation, urban occupation, climatic events, endemic

regions, concentration of crimes, can be represented and

analyzed through geographical maps constructed by different

techniques [1]–[3].

The visualization of these phenomena contributes to the

understanding of their characteristics and behavior over time.

In criminal analysis, for example, police agencies, analysts,

and public security managers are interested in understand-

ing how high-rate crime regions change over time [4], [5].

Currently, using the available tools, density maps representing

different periods are shown side by side [6] or superposed with

different colors [7]. If the number of time steps is large, these

visualization techniques might not be appropriate because of

the amount of screen space occupied by the images. On the

other hand, if the images are too small to fit all the time steps,

fewer details are visible, or if superposition is used, too many

colors are not distinguishable enough. Animations, although

controversial in the field of visualization [8], can be a powerful

storytelling medium and are sometimes a good alternative to

static maps when communicating dynamic changes [9].

Moreover, there exist situations in which the acquisition

of data and the mapping of these phenomena is a complex

and high-cost process [10], [11], being carried out at distant

intervals of time and hampering a consistent temporal analysis.

Considering this situation, Kim and Cova [10] present an

approach for visualizing the temporal evolution of forest

fires through interpolation, in a semi-automatic process with

constraints to optimize the representation of the real changes

in the studied phenomenon.
Other approaches also represent spatiotemporal phenomena

using a polygon set for each time instant [2], [7], [11].

However, the representations are static and not general enough

to be applied for the interpolation of arbitrary polygons.
Another constraint of the problem is that temporal changes

of many phenomena are not linear. At each time instant,

there can be a different number of regions that need to be

displayed [2], [3]. Therefore, there may occur the division of

a given region into other small regions as well as the merging

of regions into a single one. Regions can also appear or

disappear along the time. In the land-use context, for example,

an area eventually can be divided by new roads or negotiations

between owners [11].
In summary, we have identified the following requirements

for the 2D polygon interpolation problem:

R1 The polygons can be arbitrary (convex or concave) and

have any number of holes.

R2 The polygons may have a different number of vertices

between time steps.

R3 In each time step there can be a different number of

polygons (many-to-many interpolation).

R4 The interpolation should be smooth enough as to be

displayed as an animation and the polygons should not

intersect each other.

R5 The process should not require user intervention (fully

automatic).

Currently, there are several approaches for interpolating 2D

polygon pairs [12]–[15], and for the static temporal analysis

of geospatial phenomena [2], [3], [10], [16], [17]. However,

to the best of our knowledge, none of the currently available

methods or tools are capable of performing automatic and

smooth transitions between 2D polygon sets satisfying the list

of requirements above. Veltman [12], in particular, proposed a

javascript library named Flubber that allows one-to-many and

many-to-one interpolations between sets of 2D polygons, using

a triangulation-based method for polygon division. This library

does not fully support many-to-many interpolations, only a

list of one-to-one interpolations, requiring users to specify

each interpolation pair explicitly. Flubber ensures a good

interpolation between polygon pairs, but its simple spatial

139

2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)

2377-5416/19/$31.00 ©2019 IEEE
DOI 10.1109/SIBGRAPI.2019.00027

Fig. 1. The proposed approach workflow. Given two sets of polygons (Origin and Target), first the correspondences between polygon sets are identified,
then we perform a spatial division to reduce the problem to a list of one-to-one interpolations; and, finally, we execute each interpolation pair, obtaining the
intermediate shapes to be animated from the origin set to the target set.

division method may result in polygon overlaps during the

transitions, jeopardizing a smooth animation.
To solve this problem, we present a partition approach to

interpolate 2D polygon sets that satisfies all the requirements

defined above and so can be used to visualize temporal

changes of different phenomena as an animation. As shown

in Figure 1, our approach is divided into three stages. First,

we identify the correspondences between polygon sets. We

then perform a spatial division to reduce the problem to

a list of one-to-one interpolations; and, finally, we execute

each interpolation pair, obtaining the intermediate shapes to

be animated. We only require as input two sets of polygons

(Origin and Target). Our approach is general enough that

different techniques to perform polygon division can be used.

We have also implemented and compared a few different

techniques and will discuss the results.
The remainder of this paper is organized as follows. In

Section II, we review the related work. In Section III, we

describe the proposed approach. In Section IV, we present

a few polygon division techniques that can be used in our

approach. In Section V, we discuss our results. Finally, in

Section VI, we present the conclusions of our work and the

directions for future work.

II. RELATED WORK

The problem of one-to-one interpolation is not new and is

already well studied in the literature [11], [13], [14], [18]. Most

of the works concentrated their efforts in 3D, considering it

solved in 2D.
Some approaches [13], [14] focus on the problem of shape

blending, especially for character animation, in which algo-

rithms based on a physical model are required. Sederberg

and Greenwood [13] propose an algorithm for the smooth

interpolation between two polygons, in which the intermediate

shapes are calculated with little user intervention. They present

good results, but their approach requires the initial and final

shapes to have an equivalent topology and generate undesired

polygon deformations during interpolation. In Sederberg et al.

[14], the definition of intermediate shapes is obtained by the

direct interpolation of the intrinsic representations (angles and

edge sizes) of the initial and final polygons, disregarding a

linear trajectory between vertices. This approach improves the

previous one [13] by smoothing the transitions and avoiding

the deformation of regions during the interpolation, but present

the same restrictions for the polygons (equivalent topology).

In [19]–[21], it is explored the deformation problem during

interpolations and animations of non-rigid 3D shapes (char-

acter animation, for example), expressed in mesh sequences.

These approaches present satisfactory results in reducing de-

formations, but the scope is different from our work, since

polygon division or correspondences identification, which are

crucial in our approach, are not addressed or do not have an

essential role in those applications. Also, some of them assume

that the connectivity is maintained, which is not the case in

our problem.

Shiao et al. [15] present a technique for interpolating

the contours of two slices of medical images based on the

interpolation of long-axis and vertex parameters of polygon

approximations for the slices’ contours. Although this tech-

nique produces natural results more quickly than other shape-

based techniques, it does not support many-to-many polygon

interpolation.

In 3D shape reconstruction from a set of cross-sectional

contours [22]–[24], we find correspondence problems (finding

the correct associations between the contours of adjacent

slices) and branching problems (when one contour in one slice

can correspond to more than one contour in an adjacent slice),

140

both of which are related to the problem addressed by our

approach. The main difference, however, is because their goal

is to reconstruct the original surface, and so they must follow

the physical constraints of the imaged object. Usually, they

require that the interslice spacing of the data be fine enough

to avoid certain types of topology. In our approach, on the

other hand, there are no such constraints.

There are also approaches applied directly to geospatial

visualization [10], [11]. Kim and Cova [10] present a semi-

automatic process, restricted to five cases of correspondences

between polygons for interpolation. The approach was applied

with success to a specific case, the Southern California Grand

Prix fire of 2003, but they support only a very limited set of

interpolations. Carbunescu and Wart [11] present a temporal

and interactive visualization tool to represent changes in land-

use over time through interpolation, but does not support the

division of polygons in the interpolation.

Other researches are devoted to discussing issues related

to the spatiotemporal changes of polygons used in different

contexts. Robertson et al. [2] present STAMP - an approach

for the spatiotemporal analysis of polygons that are spatially

distinct and experience discrete changes through time. Abhar

et al. [3] explore the historical evolution of blowouts at Cape

Cod National Seashore with the STAMP method. Mizutani

[16], [25] presents an analytical framework for polygon-

based land use transitions to understand the processes of

changing regarding types of land uses and their shapes. Finally,

Salamat and Zahzah [17] present a fuzzy method to define

the spatiotemporal relations of objects. None of these works,

however, present a practical tool for visualization and analysis

of these temporal changes.

III. PROPOSED APPROACH

Our approach is an automatic solution for the smooth

interpolation between arbitrary polygons sets, allowing the

construction of visualizations to represent the temporal evo-

lution of several geospatial phenomena that are suitable for

animation.

As we mentioned before, Figure 1 illustrates the proposed

approach, in which it receives two sets of polygons, called

Origin and Target, and returns the intermediate shapes to

construct a smooth animation. To make this approach flexible

and general, we have divided it into three steps: correspon-

dence identification between sets (Section III-A), spatial divi-

sion (Section III-B) and interpolation between polygon pairs

(Section III-C).

A. Correspondence identification between polygon sets

The first step in our approach defines the relationships

between Origin and Target sets, a fundamental phase to

identify which polygons will appear or disappear throughout

the animation, as well as which polygons will be divided in

the spatial division step.

This step receives the two polygon sets and outputs a list

of many-to-many correspondences, in which, each polygon in

each set points to its corresponding list of polygons in the

other set. This double list will allow the correspondences to

be quickly accessed.
There can be many different ways to define correspon-

dences. To be general enough and so this approach can be

applied in many application domains, we define the correspon-

dences purely geometrically and as simple as possible. This

means there will be a correspondence between a polygon Oi

in the Origin set to another polygon Tj in the Target set (and

vice versa), if and only if Oi and Tj spatially intersect each

other. Notice that other more sophisticated functions can be

used to define the correspondences, such as using a tolerance

radius or by adding semantics based on other attributes of the

polygons or the environment.
Therefore, at the end of this step, each polygon can have

zero, one or many corresponding polygons. The three situa-

tions should be analyzed separately in the spatial division step.

B. Spatial division
The spatial division step is responsible for reducing the

list of correspondences to a list of one-to-one polygons to

be later interpolated. For that, it receives as input the Origin
and Target polygon sets and their respective correspondence

relations and outputs SPL - a shape pairs list.
Algorithm 1 performs the spatial division. Its input param-

eters are Origin and Target (the input polygon sets), CO and

CT (the correspondence lists for each polygon in Origin and

Target, respectively).
As mentioned earlier, each polygon’s correspondence list

may be empty or have one or more polygons from the other set.

When the list is empty, two different cases may occur: if the

polygon is in Origin, it will disappear during the interpolation

(lines 3 to 5); otherwise, if the polygon is in Target, it will

appear during the interpolation (lines 11 to 13). In both cases,

the centroid of the polygon will be used as the correspondence

shape (lines 4 and 12), that is, the polygon will collapse to its

centroid or the centroid will enlarge to become the polygon.
When the lists have more than one element, we divide the

polygon into a number of regions equivalent to the number

of polygons in the correspondence list (lines 7 and 15). This

process is done in two passes. The first pass defines the number

of divisions in each polygon. The second pass (lines 17 to 19)

defines the one-to-one correspondences between Origin’s and

Target’s divisions.
For performing the polygon divisions, different techniques

can be used (see Section IV). Independently of the technique

used, the Divide function receives a polygon P and a list of

corresponding polygons CP, resulting in the division of P in

the same number of sub-regions such that each of them is

paired to one element in CP. These pairs will be then added to

SPL. When the list has only one element, the Divide function

will do nothing, and the polygons will be added to SPL as

they are.

C. Interpolation
The third step of our approach receives a list of shape pairs

- SPL and performs the interpolation of each pair separately,

generating the intermediate shapes for the animation.

141

Algorithm 1 Spatial division algorithm

Input: Origin, Target, CO and CT
Output: SPL

1: SPL ← ∅
2: for each Oi ∈ Origin do
3: if COi = ∅ then
4: c ← Centroid(Oi)

5: SPL.append([Oi, c])

6: else
7: Ri ← Divide(Oi, COi)

8: end if
9: end for

10: for each Tj ∈ Target do
11: if CTj = ∅ then
12: c ← Centroid(Tj)

13: SPL.append([c, Tj])

14: else
15: Rj ← Divide(Tj , CTj)

16: end if
17: end for
18: for each Tj ∈ Target do
19: for each Oi in CTj do
20: SPL.append([Rij , Rji])

21: end for
22: end for
23: return SPL

The interpolation of polygon pairs is based on the ap-

proaches proposed in [11]–[13] and is composed of the

following steps:

1) Make sure that both polygons have an equivalent topol-

ogy in the number of vertices by adding vertices to the

polygon with less vertices.

2) Identify the correspondences based on the minimization

of the trajectory cost, as proposed in [11].

3) Generate intermediate shapes through the interpolation

of the corresponding vertices, using the parametric equa-

tion of the line.

IV. POLYGON DIVISION

One of the goals of this research was to check whether the

technique used for polygon division impacted the results of

the interpolation. In particular, we would like to make sure

that requirement R4 was satisfied.

Thus, we implemented two types of approaches: a mesh-

based technique (Section IV-A), in which any meshing tech-

nique can be used; and a technique based on Voronoi decom-

position (Section IV-B). In this section we explain how the

techniques are used in our approach. We discuss their results

in Section V.

A. Mesh-based techniques

Polygon division is a classical problem of geometry pro-

cessing that can be associated with the generation of triangular

meshes [26]–[30]. Independently of the technique used, given

Fig. 2. Using mesh-based techniques for polygon division. (A) the input
polygon, (B) the corresponding polygons, (C) the generated mesh and (D)
the result after merging the cells with the same correspondence (identified by
the same color): the input polygon is finally divided into the same number of
regions as the number of polygons in the list of correspondences.

Fig. 3. Triangle classification into corresponding polygons.(A) The triangles
that intersect each corresponding polygon (shown in color) are classified
directly. Triangles not intersecting any polygon are shown in gray. (B) The
unclassified triangles are then classified according to the nearest corresponding
polygon.

a polygon P and a list of corresponding polygons CP, the

following steps are executed (see Figure 2):

1) Generate a mesh for polygon P (Figure 2C).

2) Identify which elements of the mesh correspond to each

polygon in the list of correspondences CP (Figure 2B).

3) Merge the elements with the same correspondence into

a single sub-region (Figure 2D).

For the element classification in step 2, we adopt the fol-

lowing criteria: we associate directly the elements intersecting

each corresponding polygon to that polygon, and associate

the elements not intersecting any polygon to the nearest one.

Figure 3 demonstrates how the classification was done for the

mesh in Figure 2C.

For achieving good visual results in the interpolation, it is

desirable that the final polygons are smooth. We implemented

different mesh-generation techniques to verify if the quality of

the underlying mesh impacted the smoothness of the resulting

polygons. We decided to use a good advancing-front method

[31], and we developed a method based on a quadtree and

templates [32]–[34]. Figure 4 illustrates the meshes generated

and a quality comparison considering these techniques.

The motivation to develop a quadtree and templates based

method was because it generated a more regular mesh and

the boundaries of the divided regions could be smoother than

the ones of the advancing-front mesh. This method consists of

building a quadtree, interactively classifying the cells as In -

142

Fig. 4. Mesh generation and quality comparison. The metric used was the
aspect ratio, the radius ratio of the circumscribed circle to the inscribed
circle of the mesh elements. (A) The mesh generated by the advancing-front
technique [31] and (B) the mesh generated by the quadtree- template method.
The metric ranges from 0 to 1, where 1 corresponds to the equilateral triangles.
The high-quality triangles (quality ≥ 0.8) are shown in green, while the low-
quality triangles (quality < 0.8) are shown in blue. In (A), 96% are high
quality triangles, while in (B) only 41% are high quality.

Fig. 5. The use of a quadtree and templates for mesh generation. (A) to (D)
show levels one, two, three and four of the quadtree, respectively. The In
cells, with template-based mesh are shown in green, and the clipped On cells
based on the intersected polygon are shown in blue.

Internal to the polygon, On - Intersecting the border, and Out
- External to the polygon. Provided a quadtree with a specific

depth, the following steps are executed:

1) Obtain the area of interest for mesh generation: ignore

the area outside the polygon by discarding Out cells and

clipping On cells (Figure 5).

2) Generate the mesh: use templates for In cells, and

Delaunay triangulation for the clipped On cells (Figure

4B).

The template used in this process, a rectangle divided into

4 triangles, is shown in Figure 5C and Figure 5D.

B. Voronoi-based technique

Although the use of meshes can facilitate some of the

required computation, they do not produce the smoothest

partition of the input polygon (depending on the size of the

elements in the mesh, the borders of the sub-regions can be

jagged). An alternative approach is to use a Voronoi diagram

[35] to divide the input polygon. This approach consists of the

following steps (see Figure 6):

1) Build the Voronoi diagram using, as seeds, one vertex

from each corresponding polygon.

2) Identify the intersecting area between the polygon to be

divided and each cell of the Voronoi diagram built in

the previous step.

Fig. 6. Division based on a Voronoi diagram. (A) The input polygon, (B)
the corresponding polygons with the vertices used to generate the Voronoi
diagram indicated in red, (C) the Voronoi Diagram, and (D) the result of
dividing the input polygon according to the Voronoi diagram.

The diagram generated in step 1 will have the same number

of cells as the number of corresponding polygons (see Figure

6C). At first we used the centroid of each corresponding

polygon as seeds but this generated overlaps in a few cases.

To avoid these overlaps, we chose as seed the position of the

vertex closest to the centroid of the polygon to be divided.

V. RESULTS

To verify that our approach satisfies all the requirements

defined in the Introduction, we implemented it in JavaScript

and performed a series of experiments. Their results are

discussed in the following subsections.

A. Experiment 1: Interpolation between arbitrary polygon
pairs

The main goal of this simple experiment is to show that our

approach satisfies requirements R1 and R2. Furthermore, one-

to-one interpolation is the basic type of interpolation used in

our approach: all the other operations culminate in a series of

one-to-one interpolations. Figure 7 illustrates three examples

of interpolating the same polygon to other three different

polygons with arbitrary geometry.

B. Experiment 2: Comparison of polygon division techniques

As we briefly mentioned in Section IV, one of our concerns

about satisfying requirement R4 was with the technique used

for dividing the polygons. We used two mesh-based and

a Voronoi-based techniques described in Sections IV-A and

IV-B.

In this experiment, we performed a comparative analysis

of these approaches. Figure 8 illustrates applying the three

techniques for interpolating the same polygon. By looking at

the zoomed-in regions in the last row of Figure 8, we can

notice a jagged pattern on the boundaries of the polygons

divided by the mesh-based techniques (the advancing-front

technique being slightly better) while the Voronoi’s boundaries

are much smoother.

When comparing the quality of the generated meshes of

the two mesh-based techniques in the example of Figure 8,

143

Fig. 7. Interpolation between arbitrary polygon pairs satisfying requirements
R1 and R2. The same Origin polygon (A1, B1 and C1) is interpolated to three
other polygons with arbitrary geometry (A5, B5 and C5). The intermediate
shapes of each interpolation are displayed in the middle frames (A2-A4, B2-
B4 and C2-C4).

the advancing-front technique [31] generated a higher quality

mesh (96% good triangles) than the quadtree + template

technique (41% good triangles). More details are available in

Figure 4.

In several of our tests, the meshes generated by the

advancing-front technique [31] produced satisfactory results.

However, in some cases, we observed that the spatial orga-

nization of the triangles would influence the division results,

compromising sufficiently smooth transitions.

The developed mesh-based method using quadtree and

templates maximized the area generated with templates and

reduced the unstructured area (see Figure 5).

We also noticed that the computational cost of the mesh-

based techniques was too high and that their results did not

produce smooth transitions for animation (R4). The results of

polygon division approach based on Voronoi diagrams (see

Section IV-B) show that using the edges of the diagram pro-

duced smooth and continuous divisions, which represent the

closest regions to the corresponding polygon. This approach

also avoided overlaps and generated the divisions fast enough

to be animated in a interactive tool (R4).

C. Experiment 3: Interpolation between arbitrary sets of poly-
gons

In this experiment, we performed one-to-many and many-to-

one as well as many-to-many polygon interpolations to verify

that our approach satisfies all the requirements R1 to R5. The

results showed in the section already use the Voronoi-based

approach for polygon division (Section IV-B).

In Figure 9, we show the results of a one-to-many in-

terpolation comparison between Flubber and our approach.

Notice the presence of overlaps in the interpolation generated

by Flubber in Figure 9 (A2-A4). This is because its spatial

division method does not take into consideration the relative

position of the corresponding polygons (it performs a simple

triangulation of the polygon). Our approach does not generate

overlaps (Figure 9 (B2-B4)).

Figures 10 and 11 illustrate other examples including many-

to-many interpolations with arbitrary geometry. Figure 11

shows how our approach can be used to visualize temporal

changes of crime hotspots (regions where there was crime

above a certain threshold) as an animation. Figure 11 (A1)

displays the hotspots statically using superposition of polygons

with two different colors. Each color represents a different

time period. In Figure 11 (B2-B5) we show the animated

interpolation of the hotspots from one time period to the

other, keeping the Origin polygon set as a reference during all

interpolation steps. This final example demonstrates that the

proposed approach generates smooth transitions of arbitrary

polygon sets without overlapping, satisfying all the established

requirements R1 to R5. It also illustrates the potential of our

approach to be used for visualizing geospatial phenomena

represented as polygon sets.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed an approach for automatic

interpolation between arbitrary sets of polygons. We showed

that the approach was flexible and general enough to be used

in many application domains. Our approach can be used with

different spatial division techniques, and we found out that

using a Voronoi-based approach for polygon division provided

the best solution that satisfied the set of requirements of the

interpolation problem. We validated the approach with a series

of experiments with several types of interpolation.

There are a few areas of future work that we would like

to pursue. First and foremost, we would like to integrate our

approach into a visualization tool and perform a design study

[36]. We are particularly interested in comparing static and

dynamic visualizations of temporal changes. We also plan

to explore using more sophisticated functions for generating

the corresponding polygons instead of simple geometric in-

tersections. These sophisticated functions can be dependent

on the application domain. We would also like to investigate

what kind of semantic information can we extract from the

interpolation and use to automatically annotate the polygons

during the interpolation. For example, we could detect when

regions of interest contracted, expanded, divided or moved to

another location. That could help users to better understand

the temporal changes.

ACKNOWLEDGMENT

Our work has been funded by FUNCAP under the SPI grant.

REFERENCES

[1] M.-J. Kraak and F. Ormeling, Cartography: Visualization of Geospatial
Data, 3rd ed. Prentice-Hall, 2010.

[2] C. Robertson, T. A. Nelson, B. Boots, and M. A. Wulder, “STAMP:
spatial–temporal analysis of moving polygons,” Journal of Geographical
Systems, vol. 9, no. 3, pp. 207–227, Sep 2007.

[3] K. C. Abhar, I. J. Walker, P. A. Hesp, and P. A. Gares, “Spatialtemporal
evolution of aeolian blowout dunes at Cape Cod,” Geomorphology, vol.
236, pp. 148 – 162, 2015.

[4] R. B. Santos, Crime Analysis With Crime Mapping, 3rd ed. Los
Angeles, California: SAGE Publications, 2013.

144

Fig. 8. Comparison of three different techniques for polygon division during interpolation. Line A1 - A5 illustrates the interpolation steps for the advancing-front
technique [31]. In line B1 - B5 it was used the method based on a quadtree and templates, and in line C1 - C5 it was used a Voronoi-based technique.

Fig. 9. Comparison of our approach with the Flubber library [12] on one-to-many interpolation. In this example the state of Pennsylvania is interpolated to
the state of Hawaii. Line A1-A5 was generated with Flubber and Line B1-B5 was generated with our approach.

[5] K. J. Bowers, S. D. Johnson, and K. Pease, “Prospective Hot-Spotting:
The Future of Crime Mapping?” The British Journal of Criminology,
vol. 44, pp. 641–658, 2004.

[6] A. Malik, R. Maciejewski, E. Hodgess, and D. S. Ebert, “Describing
Temporal Correlation Spatially in a Visual Analytics Environment,” In
Proceedings of the Hawaii International Conference on System Sciences,
pp. 1–8, 2011.

[7] J. F. Queiroz, Neto, E. M. d. Santos, and C. A. Vidal, “MSKDE:
Using Marching Squares to Quickly Make High Quality Crime Hotspot
Maps,” in SIBGRAPI Conference on Graphics, Patterns and Images
(SIBGRAPI), 2016, pp. 305–312.

[8] B. Tversky, J. B. Morrison, and M. Betrancourt, “Animation: can it
facilitate?” International journal of human-computer studies, vol. 57,
no. 4, pp. 247–262, 2002.

[9] B. Lee, N. H. Riche, P. Isenberg, and S. Carpendale, “More Than
Telling a Story: Transforming Data into Visually Shared Stories,” IEEE

Computer Graphics and Applications, vol. 35, no. 5, pp. 84–90, Sep.
2015.

[10] T. H. Kim and T. J. Cova, “Tweening Grammars: Deformation Rules for
Representing change between Discrete Geographic Entities,” Computers,
Environment and Urban Systems, vol. 31, pp. 317–336, 2007.

[11] R. C. Carbunescu and S. V. Wart, “Polygon Vertex Set Matching
Algorithm for Shapefile Tweening,” http://vis.berkeley.edu/courses/
cs294-10-fa08/wiki/images/d/d3/Finalpaper rc sv.pdf, University of
California at Berkeley, 2008.

[12] N. Veltman, “Flubber: Tools for smoother shape animations,” https://
github.com/veltman/flubber, 2017.

[13] T. W. Sederberg and E. Greenwood, “A Physically Based Approach to
2-D Shape Blending,” in SIGGRAPH ’92 Proceedings of the 19th annual
conference on Computer graphics and interactive techniques, vol. 26.
ACM New York, 1992, pp. 25–34.

[14] T. W. Sederberg, P. Gao, G. Wang, and H. Mu, “2-D Shape Blending:

145

Fig. 10. Examples of many-to-many polygon interpolation using our approach with the Voronoi-based polygon division. A1 is the Origin polygon set, A5 is
the Target polygon set. A2 to A4 are the intermediate shapes of the interpolation.

Fig. 11. Using our approach to visualize, as an animation, temporal changes of crime hotspots (regions where there was crime above a certain threshold).
(A1) the hotspots are superposed polygons with two different colors (green and blue). Each color represents a different time period. (A2-A5) The animated
interpolation of the hotspots showing the Origin time period (in green) as a reference during the animation.

An Intrinsic Solution to the Vertex Path Problem,” in SIGGRAPH ’93
Proceedings of the 20th annual conference on Computer graphics and
interactive techniques. ACM Nwe York, 1993, pp. 15–18.

[15] Y.-H. Shiao, K.-S. Chuang, T.-J. Chen, and C.-Y. Chen, “Polygon inter-
polation for serial cross sections,” Computers in Biology and Medicine,
vol. 37, pp. 1241–1251, 2007.

[16] C. Mizutani, “Land use transition process analysis using polygon events
and polygon status: A case study of Tsukuba Science City,” in 2009
17th International Conference on Geoinformatics, Aug 2009, pp. 1–6.

[17] N. Salamat and E. Zahzah, “Fuzzy Spatio-temporal Relations Analysis,”
in 2010 Seventh International Conference on Information Technology:
New Generations, April 2010, pp. 301–306.

[18] M. Alexa, “Recent Advances in Mesh Morphing,” Computer Graphics
forum, vol. 21, pp. 173–197, 2002.

[19] T. Cashman and K. Hormann, “A continuous, editable representation
for deforming mesh sequences with separate signals for time, pose and
shape,” Computer Graphics Forum, vol. 31, pp. 735–744, 05 2012.

[20] P. von Radziewsky, E. Eisemann, H.-P. Seidel, and K. Hildebrandt,
“Optimized subspaces for deformation-based modeling and shape inter-
polation,” Computers & Graphics, vol. 58, pp. 128 – 138, 2016, shape
Modeling International 2016.

[21] C. Brandt, C. von Tycowicz, and K. Hildebrandt, “Geometric Flows of
Curves in Shape Space for Processing Motion of Deformable Objects,”
Computer Graphics Forum, vol. 35, no. 2, pp. 295–305, 2016.

[22] C. L. Bajaj, E. J. Coyle, and K.-N. Lin, “Arbitrary Topology Shape
Reconstruction from Planar Cross Sections,” Graphical Models and
Image Processing, vol. 58, no. 6, pp. 524 – 543, 1996.

[23] J.-D. Boissonnat, “Shape reconstruction from planar cross sections,”
Computer Vision, Graphics, and Image Processing, vol. 44, no. 1, pp.
1 – 29, 1988.

[24] C. Giertsen, A. Halvorsen, and P. R. Flood, “Graph-directed modelling
from serial sections,” The Visual Computer, vol. 6, no. 5, pp. 284–290,
Sep 1990.

[25] C. Mizutani, “Construction of an analytical framework for polygon-
based land use transition analyses,” Computers, Environment and Urban
Systems, vol. 36, no. 3, pp. 270 – 280, 2012.

[26] M. Berg, M. v. Kreveld, M. Overmars, and O. Schwarzkopf, Computa-
tional Geometry: Algorithms and Applications. Springer-Verlag, 1997.

[27] F. P. Preparata and M. I. Shamos, Computational Geometry: an Intro-
duction. Springer-Verlag, 1985.

[28] A. El-Hamalawi, “A 2d combined advancing front-delaunay mesh
generation scheme,” Finite Elements in Analysis and Design, pp. 967–
989, 2004.

[29] D. J. Mavriplis, “An advancing front Delaunay triangulation algorithm
designed for robustness,” Journal of Computational Physics, pp. 90–101,
1995.

[30] J. R. Shewchuk, “Delaunay refinement algorithms for triangular mesh
generation,” Computational Geometry, vol. 22, no. 1, pp. 21 – 74, 2002,
16th ACM Symposium on Computational Geometry.

[31] A. C. Miranda, J. B. Cavalcante Neto, and L. F. Martha, “An algorithm
for two-dimensional mesh generation for arbitrary regions with cracks,”
SIBGRAPI 99: proceedings of the XII Brazilian symposium on computer
graphics and image processing, pp. 29–38, 1999.

[32] A. Tabarraei and N. Sukumar, “Adaptive computations on conforming
quadtree meshes,” Finite Elements in Analysis and Design, vol. 41,
no. 7, pp. 686 – 702, 2005, the Sixteenth Annual Robert J. Melosh
Competition.

[33] E. Ooi, H. Man, S. Natarajan, and C. Song, “Adaptation of quadtree
meshes in the scaled boundary finite element method for crack propa-
gation modelling,” Engineering Fracture Mechanics, vol. 144, pp. 101
– 117, 2015.

[34] A. Tabarraei and N. Sukumar, “Extended finite element method on
polygonal and quadtree meshes,” Computer Methods in Applied Me-
chanics and Engineering, vol. 197, no. 5, pp. 425 – 438, 2008, enriched
Simulation Methods and Related Topics.

[35] F. Aurenhammer, “Voronoi Diagrams - a Survey of a Fundamental
Geometric Data Structure,” ACM Comput. Surv., vol. 23, no. 3, pp. 345–
405, Sep. 1991.

[36] M. Sedlmair, M. Meyer, and T. Munzner, “Design Study Methodology:
Reflections from the Trenches and the Stacks,” IEEE Trans. Visualization
and Computer Graphics (Proc. InfoVis), vol. 18, no. 12, pp. 2431–2440,
2012.

146

