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Abstract—Ability to learn from a single instance is something
unique to the human species and One-shot learning algorithms
try to mimic this special capability. On the other hand, despite
the fantastic performance of Deep Learning-based methods
on various image classification problems, performance often
depends having on a huge number of annotated training samples
per class. This fact is certainly a hindrance in deploying deep
neural network-based systems in many real-life applications like
face recognition. Furthermore, an addition of a new class to the
system will require the need to re-train the whole system from
scratch. Nevertheless, the prowess of deep learned features could
also not be ignored. This research aims to combine the best
of deep learned features with a traditional One-Shot learning
framework. Results obtained on 2 publicly available datasets
are very encouraging achieving over 90% accuracy on 5-way
One-Shot tasks, and 84% on 50-way One-Shot problems.

Keywords-One-Shot Learning, Face recognition, Siamese Net-
works, Image Classification.

I. INTRODUCTION

Face recognition has been extensively explored over the last

several decades. Its value as a non-contact biometric authen-

tication and in a wide variety of other digital applications

like security, digital entertainment system, video analytics for

marketing, video indexing from a streaming video cannot

be ignored. Like any other image analysis problem, face

recognition in its early days relied mainly on hand-crafted

features like SIFT, SURF, Local Binary Pattern, Histogram of

Gradient, Fisher vectors, but with the advent of deep-learning

methodologies, there is a clear shift towards deep-learned

features. During those early days, research was focused on

improving the pre-processing stage, the introduction of local

descriptors and feature transformation, but such techniques

failed to counter the challenges of unconstrained face recogni-

tion. Hand-crafted feature-based methods were used to address

changes in lighting, pose, and expression but failed in real life

due to their inability to address more general pose challenges.

This has changed as the deep-learning methods have evolved.

ˆ Equal contribution by the authors

Deep learning methods learn multiple levels of representations

and abstractions by using a cascade of processing units for

feature extraction and transformation. This leads to forming a

hierarchy of abstraction/representation, and addresses changes

in face pose, illumination, and expression. Even though deep-

learning-based methods can tackle changes in lighting, pose,

and expression while performing face recognition, one disad-

vantage is its demand for a huge amount of annotated data

to train the system and the requirement of re-training when

a new class is added. While transfer learning techniques can

help mitigate such problems by freezing the first few layers

and tuning pre-trained weights from the last few layers on the

new data, it does not completely eradicate the problem.

One-shot algorithms, on the other hand, use a completely

different philosophy for classification. One-shot algorithms

are meant to perform classification seeing only a handful of

the training samples. Thus a clever amalgamation of those

two techniques could combine the best of both providing

a rich feature representation using deep learning techniques

and feeding those features to a One-Shot learning framework

for classification. A widely spread strategy to implement

One-Shot learning algorithms is to use a Siamese Neural

Network with a triplet loss function. Our work takes a Siamese

Neural Network-based approach to perform One-Shot learning

and consequent classification. Deep Neural Network-based

features from the “DLIB-ml machine learning toolkit” [1] are

used for feature representation for all face images.

The primary contribution of this research is that a novel

hybrid method combining a Siamese Neural Network with

Res-Net encoded features for One-Shot face recognition task

is being proposed. We also intend to publish our dataset with

unconstrained face images procured from “Indian Movie Faces

Database” in the near-future for One-Shot recognition task

performance evaluation and benchmarking.

II. RELATED WORK

Face detection and recognition methods have had significant

importance as an image analysis research problem for almost
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3 decades. One of the seminal articles in the early nineties

is [2], where the authors represent faces using a small set

2-D Eigenvectors. Face recognition methods can be broadly

divided into handcrafted features-based approaches and

later deep-learning technologies deep-learned features-based

approaches. The hand-crafted approaches focused mainly on

high-dimensional artificial feature extraction and the reduction

of features. The representative dimension reduction methods

are the subspace learning methods like Principal Component

Analysis [3], Linear Discriminant Analysis [4] and manifold

learning methods like like Locality preserving projection

[5]. With the advance of deep-learning, the representative

method was to learn the discriminative face representations

directly from the original image space. For example, Hu et

al. [6] introduced us to the convolutional neural network

applied to face recognition. It analyses the advantages and

disadvantages of this method and shows the developmental

roadmap in the future. This work is further explored and

state-of-the-art results are obtained in [7], [8], [9], [10]. Albeit

CNNs exceptional performance for some applications, such

algorithms struggle to deal with many real-world applications

that require learning or drawing inferences from small

amounts of data, class imbalance and adjusting to a constant

inflow of new class information. The problem of developing

an efficient, robust face recognition system at scale is also

not an exception in this context.

In the past few years, there have been several works that

address this problem. To address the data imbalance problem

Guo et al. [11] proposed a novel underrepresented classes

promotion loss term which aligned the norms of weight

vectors of underrepresented classes and normal classes thus

giving the one-shot classes an equal weight-age. Work by

Wang et al. [12] proposes a framework based on CNN,

which deals with the deficient training data by using a

balancing regularizer and shifting the center regeneration

to regulate norms of weight vector into the same scale

and adjusts clustering center. Insufficient training data and

data imbalance, however, causes the network to perform

poorly. Ding et al. [13] proposed an approach to solve

the underrepresented class problem in one-shot learning,

by focusing on building generative models to build extra

examples. It proposed a generative model to synthesize data

for one-shot classes by adapting the data variances and

augmenting features from other normal classes. Another work

by Jhadav et al. [14] proposed the method of deep attribute

representation of faces for one-shot face recognition. They

used specific attributes of human faces such as the shape

of the face, hair, gender to fine-tune a deep CNN for face

recognition. Their experimental results on standard datasets

showed that deep attribute representations performed better

in case of two one-shot face recognition techniques such as

an exemplar SVM and one-shot similarity kernel. Wu et al.

[15] proposed a framework with hybrid classifiers using a

CNN and the nearest neighbor (NN) model. The work by

Hong et al. [16] proposes a domain adaptation network to

solve the One-shot task, the authors generated images in

various poses using a 3D face model to train the deep model.

Zhao et al. [17] proposed an enforced softmax that contains

optimal dropout, selective attenuation, L2 normalization and

model-level optimization which boosted the standard softmax

function to produce a better representation for low-shot

learning.

The concept of Siamese Networks was initially introduced

by Bromley et al. [18] for the signature verification problem

and further, the use of deep convolutional Siamese networks

for one-shot tasks with a significant accuracy has been show-

cased in [19]. Face recognition usually consists of face detec-

tion, feature extraction, and recognition. We use the dlib-ml [1]

toolkit which leverages image-driven neural networks to detect

and extract the faces in a given image and then use a resnet

based architecture to generate a feature vector to represent

each face. In this paper, we propose a method which integrates

the concept of Deep convolutional Siamese networks and a

transfer learning strategy to produce a robust face recognition

system which leverages the deep learned feature attributes.

III. METHODOLOGY

One-shot learning can be achieved in several ways. In

this research we have explored two approaches: (a) Siamese

Neural Network based approach; (b) a Deep-feature encoding

approach followed by the nearest neighbor classification of

those encoded features. We settled on a method by combin-

ing the two approaches. This improvised combined method

uses the encoded features generated out of a ResNet CNN

architecture as an input to the Siamese network, and the

Siamese network is being trained to discriminate between two

encoded feature vectors. In this combined approach a pre-

trained Deep convolutional neural network (ResNet) acts as

a feature extractor for a pair of an input image and then an

energy function Θ is used which ties the twin networks to

compute the similarity index. When the two encoded feature

vectors for the input face images are obtained, the Siamese

Network learns to score the similarity of those two encoded

feature vectors in a range of 0-1. Where 1 is assigned if both

the input images are of the same class.

A. Siamese Network

Siamese networks are a subset of deep neural network

architectures that contain two identical sub-networks working

in cohesion that use the same weights while taking two distinct

input vectors and are joined by a comparative function. Such

networks are used to determine the similarity between two

distinct inputs. It is important that not only the architectures

of the sub-networks are identical, but the weights are shared

among them as well for the network to be called ’Siamese’.

In this current study, the convolutional Siamese network is

designed to learn features of the input images regardless of

prior domain knowledge with very few samples from a given

distribution. This model was also adopted because the twin

networks share weights resulting in fewer parameters to train
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Fig. 1: Sibling of the Twin Siamese Network Architecture used in the experiment(twin network not depicted).

on and a lower tendency of over-fitting. For experiments, a

small labeled support set consisting of train-validation classes

and test classes were used. During training, the network takes

a pair of images as the input where it learns to discriminate

between two input images based on their class labels and

features. The task is achieved by generating probability scores

which aid in perceiving whether they belong to the same class

or different classes. For evaluation of n way one-shot tasks,

the network is provided with pairs of images consisting of a

reference image and one sample image from each of the n

unseen classes at each instance. The label from the pair with

the highest probability is then given to the reference image. A

pictorial diagram of our Siamese network is shown in Fig. 1.

1) Learning Details: A constant learning rate ηj is opted

for all the layers whilst following a step-based decay method

decaying at a uniform rate of 1% at every 500 iterations.

The Validation accuracy metric is calculated after every 1000

iterations and the model with the best accuracy is saved

during training. The model is trained for a maximum for

100,000 iterations. An early stopping condition was included

in case the validation accuracy does not show improvement

over 10,000 iterations. The momentum for each layer evolves

with a predefined linear slope until it attains a final value of

0.9 and it is initialized with a value of 0.5 at the beginning.

The model is trained with a batch size of 8, along with a

linearly evolving layer-wise momentum μj for the jth layer,

and L2 regularization penalization, weights for each iteration

N. So the weight update rule for iteration N is:

WN
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i
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where ΔWkj is the partial derivative with respect to the weight

between the jth neuron in a given layer and the kth neuron

in the next layer.

2) Weights: The weight initialization in all the layers in

the network is done using the Glorot uniform initializer. The

initializer draws samples from the uniform distribution of

[−g, g]where g is given by the equation

g = sqrt(
6

(fanin + fanout)
) (2)

Here, fanin is the number of input units in the weight

tensor and fanout is the number of output units in the weight

tensor [20]. The biases were initialized using the default setting

of zeros in all the layers.

3) Loss function: The model error for the Siamese network

during training is computed using a regularized cross entropy

loss function. The cross-entropy function equation is as fol-

lows

L(xi
1, x

i
2) = y(xi

1, x
i
2)logP (xi

1, x
i
2)

+(1− y(xi
1, x

i
2))log(1− P (xi

1, x
i
2))

+λN |W |2
(3)

Here i denotes the ith index of the current batch , y(xi
1, x

i
2) is

a vector of length M consisting of labels. It is assumed that it

equals 1 in case of same class and 0 in case of different class

for iteration N.

B. ResNet

The ResNet architecture was developed to address some

issues observed in its predecessor, the VGG-Net. One thing

lacking in VGG-Net was it tends to lose generalization ca-

pability with an increase in the network depth. The other

problem that ResNet deals with is countering the “vanishing

gradient” issue which is often a problem with deeper networks.

This is because gradients from the outer most layer easily

shrink to zero after several applications of the chain rule,

hence no weight updates are performed in the network. ResNet

introduced the “skip connection” concept and by virtue of that

gradients can flow directly backward from deeper layers to

initial filters skipping intermediate layers. The Resnet used

here is a pruned version of ResNet-34 [21].

In a pre-processing step, a CNN generates the bounding box

information of a face along with a set of 68 face Landmark

points [1] from an input image. The ResNet is fed with the

bounding box information of the face and those set of 68

activations points inside the face region. In order to save time
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Fig. 2: Pruned ResNet Architecture used in the experiment.

and computational resources, we have used pre-trained weights

from the initial layers of this network. Those weights were

obtained while this network was trained from scratch on a

dataset of about 3 million faces. At that time the training

dataset was composed of 7845 individual face images procured

from multiple sources such as the ”face scrub dataset, the VGG

dataset and a large number of images scraped from the internet.

This network in the 29th layer generates a 128-dimensional

encoded feature for an input face image, and later that 128-

dimensional encoded feature is being used for classification.

This network learns the weights using a loss function called

“Triplet Loss”. The pruned network architecture is shown in

Fig. 2.

1) Loss function: In this current study, the ResNet archi-

tecture is uses a “Triplet Loss” function, governing by the

following equation:

L = max(D(a, p)−D(a, n) +margin, 0)) (4)

The objective behind training this pruned ResNet is to

generate optimal weights such that 128-dimensional feature

embedding of an anchor image and positive image should be

similar and feature embedding of anchor image and negative

image should be much further apart. While using the “Triplet

Loss” function to train the network, the 128-dimensional

feature embedding from an anchor image is compared with the

128-dimensional feature embedding of both a positive sample

and a negative sample. The objective here is to decrease

dissimilarity between the anchor image and positive image

and increase dissimilarity between the anchor image and the

negative image. Here ’a’ denotes an anchor image, ’p’ denotes

a positive image and ’n’ denotes a negative image. Another

hyperparameter variable called margin is being added to the

loss equation, that defines how far away the dissimilarities

should be. For example, if the margin = 0.4 and d(a,p) = 0.3

then d(a,n) should at least be equal to 0.7.

C. A Combined Hybrid Approach

The proposed combined approach is depicted in Fig. 3.

The Siamese network is taking as input the deep-learned

encoded features those were generated by the pruned Res-

Net CNN and learns its own set of weights intending to lower

its cross-entropy loss function.To optimize the weights for our

datasets, the weights of the initial convolutional layers were

kept constant and the update weights are carried on the final

few layers of the network with our training samples. Note

that the Res-Net CNN is has its own set of weights and its

corresponding loss function as well.

IV. EXPERIMENTAL PROTOCOL

We used an N-way one-shot task performed on ’N’ “support

classes” in a disjoint set each time for evaluating the perfor-

mance in the evaluation set. For our experiments, we use 4

values of N pertaining to the set of 5,10,20,50. The efficacy

of such algorithms is measured based on its performance on

N-way tasks. During testing for a query sample image, a

support class set S is provided consisting of ’n’ examples each

from ’N’ different unseen classes. The algorithm then has to

determine which of the support set classes the query sample

belongs to. Two draws producing n samples each are taken,

and each one of the samples produced in the first draw is taken

as test images and compared against all samples of the second

draw. This process was done twice for each evaluation set of

n classes. We therefore perform 2N different one-shot tasks.

We also observe the individual set accuracy and a mean global

accuracy for the model has been reported.

A. Dataset

The experiments were conducted on two publicly available

large-scale datasets: “Labeled Faces in the Wild”(LFW) [22]

and “Indian Movie Face database” (IMFDB) [23]. Another

popular dataset “MS-Celeb Low-Shot dataset” has not been

included in the experiment for two reasons. First, some of

the image samples of the dataset has been used to train the

Res-Net based face recognition system, hence it would be

unfair to use that database while evaluating the proposed

system, Second, the dataset is unfortunately no longer publicly

available. The reason for choosing “LFW” is that it is the

most common dataset used for performance benchmarking

of a face recognition system, and this dataset is a curated

dataset with proper alignment and proper annotation. The

“IMFDB” consists of unconstrained type images with much

greater variability in terms of pose, illumination, and color.

This variability is the reason for using IMFDB dataset in

our experiments. The two datasets are complementary to each
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Fig. 3: Combined hybrid architecture used in the experiment.

other in that sense. The details of the respective datasets are

given below.

1) LFW: - This database consists of 13,000 images of faces

collected from the web. Each face has been labeled with the

name of the person pictured. In this dataset, 1680 people

have two or more distinct photos in the data set. To maintain

the consistency and to ensure robustness we have various

images for different facial positions. Further to accommodate

slight variations such as facial hair and obstructions such as

headgear, eyewear, we include a few samples of such images

as well. Finally, for each class, we end up taking 15 images

in total and due to this constraint, we remove all the classes

which have 15 images or less. After this, we are left with a

total of 96 classes. We use a deep funneling method to align

the faces [24].

2) IMFDB: - This is a large unconstrained face database

consisting of 34512 images of 100 Indian actors collected

from more than 100 videos [23]. All the images are manually

selected and cropped from the video frames resulting in a

high degree of variability in terms of scale, pose, expression,

illumination, age, resolution, occlusion, and makeup. Videos

collected from the last two decades contain large diversity

in age variations compared to the images collected from the

Internet through a search query. IMFDB is the first face

database that provides detailed annotation of every image in

terms of age, pose, gender, expression and type of occlusion

that may help others face-related applications. This dataset

exhibits a huge degree of intra-class variability as well (Fig. 4).

Fig. 4: Example of intra class variability in IMFDB dataset.

To maintain the variability and to ensure robustness we

have various images with different facial positions. Further

to accommodate slight variations such as facial hair and

obstructions such as headgear, eyewear we include a few

samples of such images as well. For each class, we considered

20 images in total. We have a total of 100 classes. To keep

the train and test set completely disjoint and to exclude any

overlap in the classes we removed 6 classes which were

common to IMFDB and the dataset used to train the ResNet.

V. RESULTS & DISCUSSIONS

While conducting experiments with three different ap-

proaches, the input test and train set for each fold were same

for all three experiments. This was done purposely to compare

the efficacy of three approaches fairly.

For our experiments, the subset of the LFW database

consisting of 96-face classes with 15 samples in each class

was used. Those 96 classes were selected since the rest of the

other classes have less than 15 samples. For the evaluation in

face recognition we perform 3 different one-shot tasks i.e. 5,

10 and 20 way tasks so the new dataset was split into either 91-

5/ 81-10 or 71-20 train-validation & evaluation classes, where

the train set was further split according to an 80-20% split

resulting in 72, 64 or 56 classes for training and 19, 17 or 15

classes for validation.

The set of IMFDB consisting of 94-face classes with 20

samples in each class was used. For the evaluation in face

recognition we perform 5, 10 and 20 way tasks so the new

dataset was split into either 89-5/ 84-10 or 74-20 train-

validation & evaluation classes, where the train set was further

split according to an 80-20% split resulting in 71, 67 or 59

classes for training and 18, 17 or 15 classes for validation.

The evaluation was conducted using the same n-way one-shot

tests on the n classes from the evaluation set.

Both the datasets contain around �95 classes and for

training and evaluation, we use a fold wise method. So the

total number of folds for “n-way” is obtained as total number

of classes divided by “n” the number of classes for testing with

minimal re-sampling. Therefore, in the case of 5-way we get

19 folds, 10-way we get 9 folds and for 20-way we get 4 folds.

Note that to frame a 50-way one-shot task, given the number

of classes in each of those two datasets we could perform

only two folds of train-test evaluation run where a few of the

classes might be re-sampled from the previous folds. By “fold”

we mean to say an unique “train-validation-test” evaluation
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set.The accuracy metric used here is true recognition rate for

each fold in a given dataset.

A. Siamese Network-based Results

Out of three approaches, during our initial experiments,

the Siamese Network-based approach performed the worst.

Even while dealing with a 5-way One-Shot recognition task, it

could only deliver the highest accuracy of ≈ 32.50% for both

datasets. To give an idea, results obtained on n-way One-Shot

tasks on both datasets on 4 different folds are shown in Table

I and II. Since the results are not encouraging we are not

providing results for all folds with respect to different n-way

tasks.

TABLE I: Accuracy of One shot Tasks on LFW dataset

using Siamese Network with own feature extractor

Fold Number 5-Way Task 10-Way Task 20-Way Task

Fold 1 32.50% 28.20% 23.40%

Fold 2 27.50% 26.70% 22.60%

Fold 3 30.00% 30.20% 25.60%

Fold 4 24.60% 24.80% 22.60%

TABLE II: Accuracy of One shot Tasks on IMFDB using

Siamese Network with own feature extractor

Fold Number 5-Way Task 10-Way Task 20-Way Task

Fold 1 32.80% 30.80% 24.20%

Fold 2 30.50% 27.50% 20.60%

Fold 3 28.50% 28.60% 22.80%

Fold 4 27.60% 27.60% 26.02%

B. ResNet-Based Face Recognizer Results

The ResNet architecture for face Recognition from “DLIB”

has been used in our experiment. To save time and resources,

a transfer learning strategy was adopted. Here a pre-trained

model of the Res-Net, which was generated while training 3

million face images was initially considered in this experiment.

The weights of the initial convolutional layers of this model

were kept constant during training on samples from the

“LFW” and “IMFDB” and weights associated with all fully

connected layers were updated. The 128-dimensional feature

encoding obtained from the 29th layer of an input test image

is compared with 128-dimensional feature encoding vectors

of all support set samples, then the class of input image is

assigned to the class of nearest neighbor amongst support

set samples. Results on 5-way, 10-way and 20-way One-Shot

learning tasks on LFW and IMFDB dataset is depicted in

Table IV and Table III respectively. Note that here also

we are reporting on the same 4 folds of data that we have

reported for Siamese Network. It can be noted that with the

use of ResNet feature encoding there is a striking improvement

in the results compared to results obtained with the Siamese

Network only based approach. The accuracy is as high as

87.00% with the 20-way One-Shot tasks on LFW dataset,

whereas the highest accuracy on the same dataset with Siamese

Network is ≈ 26.00%. A similar trend can be observed in the

case of IMFDB dataset as well.

TABLE III: Accuracy of One shot Tasks on IMFDB using

Dlib-ResNet-29 network

Fold Number 5-Way Task 10-Way Task 20-Way Task

Fold 1 80.80% 78.60% 80.00%

Fold 2 82.40% 80.40% 76.50%

Fold 3 81.00% 79.30% 78.20%

Fold 4 83.60% 82.00% 75.40%

TABLE IV: Accuracy of One shot Tasks on LFW dataset

using Dlib-ResNet-29 network

Fold Number 5-Way Task 10-Way Task 20-Way Task

Fold 1 88.20% 86.00% 85.30%

Fold 2 90.00% 84.60% 87.00%

Fold 3 89.00% 90.00% 82.00%

Fold 4 90.20% 89.00% 81.40%

C. Results obtained from Combined Hybrid Approach

The classification technique that we used to perform One-

Shot learning on the encoded features from Res-Net was a

naive Nearest Neighbour classification. Despite the simple

classification, such high accuracies from the ResNet-based

approach confirm that the encoded features generated by the

ResNet were very discriminative. This motivated us to couple

the discriminative feature extractor with the sophisticated

discriminator function of the Siamese network architecture.

In this setup, the ResNet generated encoded features were fed

to the Siamese network which learns its own set of weights

and hence gives much higher accuracy in the range of 80.00%-

84.20% even for the 50-way one-shot task. We experimented

exhaustively with this approach with all possible folds of data.

The 20-way one shot results are depicted in Table V and Table

VI depicts the typical results obtained by this method on 50-

way one-shot learning for the two datasets.

TABLE V: Accuracy of 20-way One shot Tasks on LFW

Dataset & IMFDB using combined approach

Fold Number LFW IMFDB

Fold 1 92.50% 70.00%

Fold 2 95.50% 72.50%

Fold 3 82.50% 72.50%

Fold 4 87.50% 80.50%

In our experiments, for the 5-way one shot task we obtained

an average accuracy of 92.44% across 19 folds on the entire

subset of LFW dataset. Further, we obtained accuracy as high

as 97.00% in few ocassions. The mean accuracy yielded by

the 10-way one shot tasks over a 9 fold cross-validation set
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TABLE VI: Accuracy of 50-way One shot Tasks on LFW

Dataset & IMFDB using combined approach

Fold Number LFW IMFDB

Fold 1 80.00% 80.50%

Fold 2 82.50% 84.20%

was 90.55% with best accuracy shooting as high as 97.50%

in one of the fold.

Similar to the experiments conducted on the LFW dataset

we also performed 5-way and 10-way tasks on the IMFDB

dataset. The mean accuracy of the 5-way one-shot task for 19

folds was observed to be 82.63%. Whereas for the 10-way one-

shot task the mean accuracy across 9 fold set was observed to

be 79.05%. The best accuracy of the 5 and 10 way task was

observed to be 92.50% and 87.50% respectively.

D. Comparison with other techniques

Though there are a large number of published results on

face recognition, however, very few works like [13], [16], [14]

focus on the One-Shot face recognition task. Unfortunately, we

could compare the performance of our system with only [14]

as the others have used the “MS-Celeb Low Shot” dataset

meant for One-Shot recognition task and that dataset is not

available from any legitimate source. In [14], the authors

did experiments for One-Shot recognition using the “LFW”

dataset and we have compared our results with them in Table

VII. Note that our method has outperformed the method

proposed in [14] especially in the case of 10-way and 20-way

one-shot tasks. We plan to preserve and publish the train and

test split of images that we have used for our experiments from

the other dataset “IMFDB”, for benchmarking performance

evaluation of One-Shot face Recognition task.

TABLE VII: Accuracy comparison of One shot Tasks on

LFW

Method 5 Way 10 Way 20 Way

Deep attribute, Jadhav at al. [14] 94.00% 93.75% 88.87%

Dlib-Siamese Net , Proposed Method 97.00% 97.50% 95.50%

VI. CONCLUSIONS & FUTURE WORK

This article proposes a new hybrid approach of fusing Res-

Net features along with a Siamese-Network classifier to handle

face recognition task in a One-Shot learning framework. The

proposed hybrid network shows impressive performance even

while dealing with 50-way One-Shot recognition tasks on two

publicly available datasets. Future research plan is to use more

sophisticated discriminator function to combat 100-way One-

Shot recognition task.
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