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Abstract—Data Assimilation (DA) is a technique used to
quantify and manage uncertainty in numerical models by incor-
porating observations into the model. Variational Data Assimi-
lation (VarDA) accomplishes this by minimising a cost function
which weighs the errors in both the numerical results and the
observations. However, large-scale domains pose issues with the
optimisation and execution of the DA model. In this paper, ensem-
ble methods are explored as a means of sampling the background
error at a reduced rank to condition the problem. The impact
of ensemble size on the error is evaluated and benchmarked
against other preconditioning methods explored in previous work
such as using truncated singular value decomposition (TSVD).
Localisation is also investigated as a form of reducing the long-
range spurious errors in the background error covariance matrix.
Both the mean squared error (MSE) and execution time are used
as measure of performance. Experimental results for a 3D case for
pollutant dispersion within an urban environment are presented
with promise for future work using dynamic ensembles and 4D
state vectors.

Index Terms—Data Assimilation, Ensemble, Variational ap-
proach

I. INTRODUCTION

Air pollution is the cause of premature deaths daily, thus

necessitating the development of more reliable and accu-

rate numerical tools [1]. Furthermore, global warming and

deteriorating outdoor air quality has resulted in excessive

energy consumption for cooling, air-conditioning and burning

of fossil fuels [2]. As a result, emissions of greenhouse gases,

pollutants and heat have produced heat islands, air pollution

and unhealthy air conditions particularly in urban areas. One

of the methods of mitigating this is with smart urban planning

such that the natural ventilation of buildings can provide a

sustainable way to cool indoor environments, manage building

energy consumption and control the flow of pollutants in the

air. Thus, the necessity to develop an advanced computational

system to forecast the airflow and air quality for an urban

area, informing the urban planning process. The goal is on

utilising these numerical airflow models to optimise the natural

ventilation in buildings, reduce greenhouse gas emission and

conserve energy usage.

To accomplish this, an efficient and practical model for

predicting airflow at various scales has to be developed. Nu-

merical simulations are widely used to predict and model the

complex behaviour of fluid flows from scales of small tunnels

and rooms to entire cities [3]. In these complex and chaotic

systems, the initial conditions, the background state and the

governing equations are often incomplete without an accurate

closed form [4] resulting in the introduction of uncertainty and

error in calculations. This fact, coupled with the accumulated

errors introduced from discretisation and finite precision of

numerical simulations, exacerbates the validity and accuracy

of these models [5].

Data Assimilation (DA) techniques are widely used in this

field to develop forecasting models with higher confidence,

taking into account the various errors that arise in numerical

computation. Data Assimilation is a powerful method of

uncertainty quantification used to integrate observations into

a prediction model to improve the forecast. It is in fact the

de-facto method used for state-of-the-art Numerical Weather

Prediction (NWP) models [6], [7]. Most of these NWP models

however operate within a 2D environment.

Variational Data Assimilation (VarDA) is based on the

minimisation of a cost function that accounts for the errors

in the observations and forecasts that assimilates future ob-

servations [8], [9]. For our purposes, the VarDA model has

to be operational at nearly real-time. Previous work utilised

a truncated singular value decomposition (TSVD) method of

preconditioning that yielded significant results. While TSVD

is an effective method of reducing the rank of the background

error covariance matrix, it comes with computational over-

head and is limited by its truncation parameter τ [10]. This

manuscript extends the data assimilation (DA) methods used

in [11] by means of ensemble extensions of them.

Ensemble-Variational data assimilation is a hybrid method
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which avoids building this background error covariance di-

rectly, instead using an ensemble of possible forecasts to

reduce the rank and propagate the background-error statistics

[12]. The objective is thus to investigate and validate the use

of ensemble methods with 3D variational data assimilation in

a 3D environment at a large scale. We verify the performance

of different ensemble sizes to determine the best number of

ensemble members by comparing the mean squared errors.

The impact of localisation is also investigated —localisation

has been previously explored in 2D environments [13] but

here we explore localisation in 3D. The execution times of

each method are also weighed to determine their suitability

for this application.

This work covers the formulation of the 3D Ensemble

Variational Data Assimilation (3DEnVar) method and its per-

formance on a dataset of pollutant concentration and veloc-

ity profiles collected in the Borough of Southwark, Lon-

don provided by London South Bank University (LSBU)

and a computational fluid dynamics model named Fluidity

(available at http://fluidityproject.github.io) [2]. The results

are benchmarked against previous works (using the TSVD

method of preconditioning) in [11]. This is to serve as a

proof of concept for future works in applying ensemble data

assimilation or hybrid methods with fully dynamic background

error covariance matrices in a 3D environment. The methods

described here are general enough to be applied to any other

data assimilation problem.

This work is organized as follows: Section II provides math-

ematical settings and the main steps of the Data Assimilation

(DA) model and the DA algorithm. Section III introduces

the Ensemble methods and the procedure to build ensemble.

Experimental results on realistic test cases are provided in

Section IV. The conclusions of this work and the description

of future work are in Section V.

II. DA MODEL

A. The General DA Model

Let the description of the forecasting model be

xk+1 = Mk+1xk (1)

where xk and Mk are respectively the state vector and nonlin-

ear model operator at time k. In addition, let yo
k be the vector

of observations at time k and Hk be the nonlinear observation

operator that maps the model space to the observation space:

yx
k = Hkxk (2)

The formulation of the VarDA equation requires knowledge of

the Background Error covariance matrix, B and observation

error covariance matrix, R [14]. The VarDA cost function

is essentially a form of Tikhonov regularisation [15] and is

defined as

J(x) =
1

2

(
x− xb

)T
B−1

(
x− xb

)

+
1

2
(Hx− yo)T R−1 (Hx− yo) (3)

where H is the linearised form of the nonlinear observation

operator H and xb is the background state vector.

Equation (3) can be linearised about the background state

vector which will result in the incremental form of the cost

function given by

J(δx) =
1

2
(δx)T B−1(δx) +

1

2

K∑
k=0

(δdk)
T R−1

k (δdk) (4)

where where δdk = dk − Hkδx and dk = yok − Hkxbk. This

cost function is minimised to provide a solution,

δxa = argmin J(δx) (5)

and

xa = xb + δxa (6)

with xa denoting the state vector after data assimilation.

This form is called 3D First Guess at Appropriate Time

or 3D-FGAT [16] and is useful applications where the model

operator, M is not available.

B. Reduced VarDA Model

The high dimensionality of the background error covariance

matrix B, which is of size n × n (where n is the number of

features in the state vector xk), is an issue. Hence, methods

have been devised to effectively reduce the problem space.

One of the most popular methods for reduction factorises B
as it is often required in variational DA. It also exploits the

sparse nature and symmetry of the matrix.

B = VVT (7)

where V is the deviation matrix defined as

V = x− E[x]

and E[x] is the expected value or mean of x. In this case, x
is an n ×m matrix of states where n is the number of state

features and m is the size of the assimilation window. x is

basically all the state vectors at time k, xk stacked together

into a matrix. For 3D-Var, this simplifies to

V = xb − E[xb]

as there is no model operator (taken as identity). V is called

the background perturbation matrix. There are different forms

of background error covariance factorisation, but this method

is the most prevalent [14].

A control variable transform (CVT) is introduced to refor-

mulate the cost function. Instead of dealing with (4) which is

a function of δx, the idea is to reformulate the cost function to

a new control variable which avoids the explicit knowledge of

B. There are several choices for the control variable [17], but

the choice of control variable should replace the use of B with

V in the cost function. Hence, the following transformation is

made:

δx = VδX (8)

Here, δX is the control variable and V is the control variable

transform. δX is chosen such that it is of a smaller dimension
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than δx which improves the conditioning of the problem. The

aim of this is to have control variables with error covariance

I. This is accomplished with our choice of factorisation. This

can be verified by rearranging (7) to

VT BV = I

Reformulating the cost function around this control variable

transform will give

J(δX ) =
1

2
(δX )T I(δX )

+
1

2

K∑
k=0

(HVδX − dk)
T R−1

k (HVδX − dk) (9)

where dk = yok −Hxbk
Finally, we assume the assimilation of each observation at

every time step is independent of each other, giving us the

final cost function

J(δX k) =
1

2
α(δX k)

T I(δX k)

+
1

2
(HVδXk − dk)

T R−1
k (HVδX k − dk) (10)

where α is a regularisation parameter analogous to the

Tykhonov regularisation. k refers to the time step index, but

since we are using 3DVar where the time domain is not

explicitly considered, it is analogous to having k different

background state vector measurements at the same timestep.

Choosing α = 1 is considered as giving the same relative

weight to the observations compared to the background state.

The minimisation of (10) is easier and better conditioned than

a full formed version. The gradient in the reduced space is

then

∇J(δX k) = VT∇J(δxk)

= αV + VT HT R−1(HVδX k − dk) (11)

III. ENSEMBLE METHODS

A. Ensemble Formulation
If the background state vector is denoted with, xb, then an

ensemble of state vectors is denoted with

xb(1), xb
(2), .., xb

(N) (12)

If we denote the ensemble mean to be xb, then Vens, the

background state perturbations are found with

Vens = Xb =
1√

N − 1
(xb(1) − xb, xb

(2) − xb, ..., xb
(N) − xb)

(13)

Here, Vens and Xb are a n x N matrix called the ensemble

background perturbation matrix. We will denote the rank-

deficient version of the background error covariance matrix

as Pb where

Pb = XbT Xb (14)

Using the ensembles in 3D Ensemble Variational DA (3DEn-

Var) then proceed similarly with equations (8), (10) and (11)

just with Vens instead of V.

δx = VensδX ens (15)

Here, we will proceed with 3DEnVar with static ensembles

as a proof of concept. Although the ensemble is static in the

sense it does not evolve with time, it still contains the flow-

dependent information at time k = 0 which is still beneficial

for a 3D analysis that assumes no time dependence.

The success of ensemble DA depends on the choice of the

ensemble. Previous work [18] suggests using a free run of

the model as a source of ensemble members. However, the

timeframe for our model is much smaller than the timeframes

for natural weather prediction (NWP) applications meaning

that the ensembles will not accurately represent the variability.

The choice of ensemble for our application needs to be able

to capture the variability with time of the background error

and the correlations between features via the sampling. Our

devised method was to divide the collection of background

states, xb based on the size of the ensemble into N groups

with each group denoted xb(i) meaning the ith group. The mean

and standard deviation of each group is then calculated and

used to sample the ensemble members from.

Algorithm 1 Build Ensemble

1: Inputs: xb
2: i = 0, N = ensemble size, n = length(xb)
3: for xb(i) in array split(xb, N) do
4: μ(i) = mean(xb(i))
5: σ2

(i) = standard deviation(xb
(i))

6: ensemble[:, i] = normal distribution(μ(i)), σ
2
(i))

7: i = i+ 1
8: end for
9: ensemble mean = mean(ensemble)

10: for i = 0, 1, .., N do
11: Vens[:, i] = ensemble[:, i]− ensemble mean
12: end for
13: return Vens

Algorithm 1 details the how the ensembles are formed and

Vens is built. The full background state matrix, xb is split

into N groups each of size n × n
N . The means and standard

deviations of the n rows are calculated and used to sample

from a normal distribution to form the ensemble. The ensemble

mean is then calculated and subtracted from each ensemble

member to form Vens

The low rank of the ensemble error covariance matrix, Pb

will result in sampling errors. Furthermore, the rank deficiency

causes spurious correlations at long distances meaning points

which are located far from each other and are expected to

have little correlation will exhibit some form of correlation

due to the nature of sampling in ensemble methods. Therefore,

methods such as localisation have been developed to handle

these errors.

B. Localisation

δX is of a smaller dimension than δx effectively hav-

ing fewer degrees of freedom. This rank deficiency can be

mitigated by Schur localisation. The insufficient rank will

inevitable cause long-range correlations. These correlations are
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considered spurious, meaning that they are nonphysical and

not present in the true background error covariance matrix.

The idea is to smooth out the long-range correlations in Pb

by regularisation and thus increase its rank. We start with our

background error covariance, Pb defined in (14). Pb can be

viewed as a symmetric matrix with rows i and columns j. Pb
ij

denotes the covariance between points i and j. The goal is

to reduce the magnitude of the covariance depending on the

distance between i and j.

PC = C ◦ Pb (16)

where each element in C consists of values between 0 and 1

and ◦ denotes the Schur product or element wise product of the

matrices. However, in our formulations of the cost function,

(10), Pb does not appear in our equations, but V does. So

instead of replacing Pb with PC , we need to replace Vens

with VC
ens where

VC
ens = C’ ◦ V1

ens,C’ ◦ V2
ens, ...,C’ ◦ VN

ens (17)

where V1
ens is an n×n matrix where every column is identical

to the first column in Vens. Same goes for V2
ens but with the

second column and so on until VN
ens. C’ is related to C by

C = C’T C’ (18)

To formulate C’, eigendecomposition is carried out on C

C = EλET (19)

where E is an n×r matrix containing the eigenvectors and r is

the number of dominant empirical orthogonal functions (EOF)

modes we choose to retain. λ is a r×r diagonal matrix which

contains the corresponding eigenvalues of the eigenvectors in

E. C’ is then

C’ = Eλ1/2 (20)

In this work, a choice of both horizontal localisation and

vertical localisation is employed using different localisation

functions. This choice is based off [19] and is motivated by

the fact that the horizontal scale and vertical scale influence

the system differently for air pollution forecasting. Problems

which involve the atmosphere usually exhibit this behaviour

hence this choice of localisation.

The localisation matrix, C is now split into horizontal and

vertical matrices, Ch and Cv and (16) becomes

PC = Cv ◦ (Ch ◦ Pb) (21)

VC
ens = C′v ◦ (C′h ◦ Vens) (22)

The horizontal localisation [20] function used in this paper is

according to

ρ(s) =

⎧⎪⎪⎨
⎪⎪⎩

1 ; s ≤ Lh/2
1
2

{
1 + cos

[
2π(s−Lh/2)

Lh

]}
;Lh/2 ≤ s < Lh

0 ; s ≥ Lh

(23)

where Lh is a horizontal localisation length scale which acts

as a cutoff distance and s is the horizontal distance.

The elements in the vertical localisation matrix, Cv is

calculated based on [21] given by

ρ(�z) =
1

1 +
(
�z
Lv

2
) (24)

where �z is the vertical distance and Lv is the vertical length

scale which is the size of 1 grid cell unit, in our case Lv = 10.

The selection criteria for rh and rv are based on the

explained variance for each of the EOF modes and to select

enough modes to make up at least 90% of the variance. Given

E is the matrix of all the eigenvectors and ei is the ith column

of E, the explained variance of the ith EOF mode, σ2
i is given

by

σ2
i =

V ar[ei]∑n
i=0 V ar[ei]

(25)

One important thing to note is that localisation effectively

increases the length of the control vector, δXens from size

N to rN . Therefore carrying out localisation increases the

computation time [18]. This is why the EOF approach in

(19) and (20) are pivotal in reducing this additional burden.

Furthermore, localisation may also remove some true long-

range correlations. Therefore it is important to consider the

nature of the problem and choice of localisation function and

parameters when using with an ensemble DA system.

C. DA Algorithm

The cost function in (10) is minimised around the perturba-

tion of the state δx, instead of on the state vector x directly as it

is more stable. The minimisation will be carried out iteratively

via the L-BFGS method which is proven to be efficient for

large scale optimisation problems. [22].

Algorithm 2 details each step of the 3DEnVar Data Assimi-

lation. First, C′h and C′v are respectively constructed with (23)

and (24). Vens is the built based on Algorithm 1. Localisation

is then applied to get VC
ens and the initial values are initialised

to 0 [18].

This initial guess is then projected to the reduced space

using the control variable transform. The while loop initiates

the beginning of the L-BFGS steps. The cost functions are

then evaluated using equations (26) and (27) with V C
ens,

J(δX k) =
1

2
α(δX k)

T I(δX k)

+
1

2
(HVC

ensδXk − dk)
T R−1

k (HVC
ensδX k − dk)

(26)

∇J(δX k) = αVC
ens + (VC

ens)
T HT R−1(HVC

ensδX k − dk)
(27)

with α being set equal to 1 [11] and H = I as the

observations and model outputs exist within the same space.

After convergence the analysis vector, δX a
k is projected

back up to the model space and the analysis state vector at

time k, δxa
k is calculated. This is repeated for all k giving xa

which is a matrix of xak.
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Algorithm 2 3DEnVar Algorithm

1: Inputs: xb, yo

2: Construct C′h and C′v
3: Build V with Ensemble: Vens = BuildEnsemble(xb)
4: Apply Localisation: VC

ens = C′v ◦ (C′h ◦ Vens)

5: Define initial guess: δx0 as array of zeroes with length n
6: Define R from the observed data, yo
7: δX 0 = (VC

ens)
−1δx0

8: for k = 0, 1, 2, ...K do
9: dk = yok −Hkxbk

10: while ||∇J || > ε do
11: Compute J(δX k) using (26)

12: Compute ∇J(δX k) using (27)

13: end while
14: δxa

k = VC
ensδX a

k

15: xak = xbk + δxa
k

16: δX k+1 = δX a
k

17: end for
18: return xa

IV. TESTING

Algorithm 2 has been implemented entirely in python 3.6

environment and the external libraries used are numpy, scipy

and vtk. The performance of the DA is evaluated using the

mean squared error (MSE) based on the equation

MSE(x) =
||x− xC ||L2

||xC ||L2

(28)

where xC is a control variable. For our application, the control

variable will be taken as the observations yo. Since the obser-

vations and model output is within the same space, H resolves

to identity. In this paper, a realistic 3D case which includes

14 buildings represented the urban area around London South

Bank University (LSBU) in Elephant and Castle, London, UK

is investigated. The unstructured 3D mesh of the area used

in Fluidity comprises of 100,040 nodes (Fig. 1). K = 494
timesteps of the model and observations are assimilated for

analysis.

Fig. 1. Unstructured Mesh of Problem Domain

V. RESULTS

A. Ensemble Size Evaluation
In Fig. 2, the mean squared error (MSE) and execution

times for data assimilation with ensembles of different sizes

and TSVD are plotted. Ensembles of size 10, 20, ..., 100 are

constructed based on Algorithm 1 to represent the background

error covariance in 3DEnVar. For the TSVD method, a trun-

cation parameter τ = 145 is selected based on previous work

in [11]. The values of the MSE are computed using (28). The

MSE decreases with an increase in the ensemble size until it

reaches a plateau. Note that the MSE for TSVD (which has

a reduced matrix size of 145) is also plotted on the graph

denoted by the red cross. For pollutant concentration, the

ensemble method outperforms the TSVD method achieving

a lower error even with an ensemble size of 10. This is a

good indicator that the chosen ensemble members covered

the correlation of the background error well even though at

a reduced rank.

(a) Mean Squared Error of Pollutant

(b) Execution Time of Pollutant

Fig. 2. (a) Mean square error of DA result of pollutant and velocity;
(b) Execution time. MSE and execution time are plotted for 3DEnVar carried
out with ensemble sizes of 10,20,...,100. The comparison is with the TSVD
method (for τ = 145) plotted as benchmark.
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(a) y− xb

(b) δxa, ensemble size=10

(c) δxa, ensemble size=40

(d) δxa, ensemble size=70

(e) δxa, TSVD τ = 145

Fig. 3. (a) The innovation, d of C. (b),(c),(d),(e) Perturbation of the C after
DA, δxa for ensemble sizes 10,40,70. (f) Perturbation of the C after DA, δxa
for TSVD preconditioned matrix with τ = 145. Scale is from -0.005 (blue
colour) to 0.01 (red colour). Results show values averaged across K = 494
timesteps.

Execution times (Fig. 2(b)) increase linearly with the en-

semble size, as expected. The TSVD method converges faster

than ensemble sizes larger than 80. This is due to the fact that

TSVD is a better form of preconditioning than with ensembles

[23]. Hence, the selection of a good ensemble size is a trade

off between accuracy and execution speed. From Fig. 2, a

good choice would be an ensemble size of 40, which is the

point where the accuracy starts to plateau while also being

two times faster than the TSVD method. Fig. 3 shows that for

small ensemble sizes, it is unable to properly assimilate the

observations. It manages to capture the profile in the misfit

(y−xb) but does not weight the observations heavily resulting

in the disparity. At larger ensemble sizes it is able to assimilate

the observations in more clearly and weighs against the

background state appropriately. Most importantly, the DA for

ensemble methods is able to assimilate the observations further

from surfaces better than TSVD, indicating that ensemble

methods outperform TSVD for data assimilation at sparse

regions.

B. Localisation Evaluation

(a) Explained variance for horizontal localisation EOF, rh

(b) Explained variance for vertical localisation EOF, rv

Fig. 4. Graphs of explained variance for localisation EOFs

The values of rh and rv were found by plotting the the

cumulative sum for the explained variances for the number

of components of the eigendecomposition. From Fig. 4, the

first 3 dominant EOFs are able to capture 90% of the ex-

plained variance for both horizontal and vertical localisation.

Horizontal and vertical localisation is carried out on the
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background error covariance matrix with these parameters.

Table I displays the mean squared errors and execution times

for the cases of TSVD with τ = 145, ensemble method with

ensemble size of 40, and ensemble methods with horizontal

localisation only and both horizontal and vertical localisation.

The results indicate that applying both horizontal and vertical

localisation to the ensembles result in lower error. The MSE

for DA without localisation was shown to plateau at 0.12 but

localisation results have reached 0.1 and lower. This means

localisation has improved the potential of the 3DEnVar model

used.

However, localisation increases the execution time of DA.

This is to be expected as localisation increases the size of

the control variable and the rank of the background error

covariance matrix. Applying both horizontal and vertical lo-

calisation reduces the error to 0.087 but increases the running

time to roughly 167 seconds per timestep. In comparison,

applying only horizontal localisation has a running time of

1.94 seconds per timestep which is comparable with TSVD

but has significantly lower error (by a factor of 1.8). From

the results, there is a clear tradeoff for choice of localisation

between performance and speed.

TABLE I
TABLE OF MSE AND AVERAGE EXECUTION TIMES FOR A SET OF

OBSERVATIONS PER TIMESTEP FOR TSVD, ENSEMBLE METHODS AND

ENSEMBLE METHODS WITH LOCALISATION

MSE Runtime per timestep (s)
No DA 0.261 -
TSVD 0.184 1.8
Ensemble Method (ens. size=40) 0.123 0.6
Horizontal Localisation 0.106 1.94
Horizontal & Vertical Localisation 0.087 167.5

Fig. 5 shows the mean absolute error of the forecasts before

DA, after DA and with localisation. The ensemble method is

able to assimilate the profile of the observations at regions

to the right which are further away from the surfaces of the

buildings correctly forecasting that the Fluidity model had

underestimated the pollutant concentration.

For the case with localisation, the areas surrounding the

edges of the building have lower absolute errors and are

more concentrated. This showcases the effect of localisation

restricting the error correlation around these areas to provide

a better forecast. However, the reverse is observed at the

sparse region to the right where the error is higher than

the case without localisation. At this region, localising the

background errors have the opposite effect as it is trying to

derive information from a limited sparse region and in this

case depends more on the long range correlations.

VI. CONCLUSION AND FUTURE WORKS

A form of 3DEnVar has successfully been implemented for

use with a computational fluid dynamics model named Fluidity

and air pollution data in a large scale 3D environment. The DA

system uses a static ensemble with its members sampled from

groups of the background state. Localisation was carried out

(a) Error in C before 3DEnVar

(b) Error in C after 3DEnVar

(c) Error in C after 3DEnVar with localisation

Fig. 5. Comparison of absolute error of C before (|xb − xC |) and after
(|xa − xC |) assimilation. Scale is from 0 (blue colour) to 0.015 (red colour).
Ensemble size of 40 used for data assimilation. Results show values averaged
across K = 494 timesteps

on the ensembles to reduce spurious long-range correlations.

Three dominant EOFs were used for both horizontal and

vertical localisation as they were calculated to contain 90%

of the explained variance.

The results from the investigation show that the mean

squared error (MSE) of the ensemble methods outperformed

TSVD for pollutant concentration and velocity. Furthermore,

the execution time for ensemble methods is much quicker

than for TSVD for ensemble sizes less than 80, achieving

convergence faster. This is indicative of ensembles having

a good spread for the background error statistics for pollu-

tant concentration. The error decreases as the ensemble size

increases signifying that more ensemble members improves

the rank of the background error covariance matrix and thus

better represents it. However, the 3DEnVar method provides

a better analysis at sparse regions further from buildings.

An ensemble size of 40 is shown to exhibit a good tradeoff

between performance and execution time.

Localisation was shown to greatly improve the error at

regions near edges and surfaces. At those regions, local

correlations dominate but at regions further from the surface,

localisation is seen to not affect and even worsen the error. At

these regions, the analysis is reliant on long-range correlations
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which localisation removes hence the increase in error. Overall

however, localisation was able to achieve better performance

than without.

Furthermore, localisation greatly increases the execution

time for DA due to its nature of increasing the rank of the

background error and the size of the control vector. From

the results, applying both horizontal and vertical localisation

would require 167 seconds per timestep of assimilation which

is far from real time.

To summarise, this work has proven the performance of us-

ing ensemble methods with 3D Variational Data Assimilation

on air pollution data. It is also the first attempt at applying

ensemble methods to a 3D case at this scale. Localisation

of the background error show a tradeoff in performance

with speed and the problem domain needs to be considered

carefully.

The results are adequate to justify future work in using

semi-static or fully dynamic ensembles for the background

error covariance (both in 3D and 4D) [24] for this application.

Furthermore, hybrid approaches of mixing a static and ensem-

ble background error covariances [25] can also be explored

to further refine the DA system. A coupling of the system

with Gaussian Recursive Filter [26] can also be explored in a

parallel computing environment [27]. The developed 3DEnVar

model was used for the first time for air pollution flow in a

3D urban environment. The methods used are generic enough

and not limited by the software making it usable for other DA

problems.
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