
MobIntel: Sensing and Analytics Infrastructure for
Urban Mobility Intelligence

Stepan Mazokha, Fanchen Bao, Jiannan Zhai, Jason O. Hallstrom
I-SENSE

Florida Atlantic University
Boca Raton, FL, USA

{smazokha2016, fbao2015, jzhai, jhallstrom}@fau.edu

Abstract—Mobility monitoring in urban environments can
provide valuable insights into pedestrian and vehicle movement.
Understanding the causes and effects of changing mobility
patterns can help city officials and businesses optimize operations
and support economic development. In this paper, we present
MobIntel, an alternative to visual surveillance technologies for
mobility monitoring. We deployed multiple radio frequency
sensors in downtown West Palm Beach and enabled a system
for providing valuable metrics concerning pedestrian activity
patterns. We discuss several obstacles to accurate trajectory
monitoring, such as MAC address randomization and sensor
range issues.

Index Terms—Mobility Intelligence, Mobility Monitoring, WiFi
Probe Requests, IoT.

I. INTRODUCTION

The Internet of Things (IoT) has brought a renewed interest

in analyzing behavior in public spaces. Sensing in public

environments creates a host of opportunities, including an

ability to analyze mobility patterns, occupancy trends, and

more. The collected data can be used to improve the ways

common spaces are used and foster economic development.

Consider the “Supermanzana” approach [1] developed in

the Poblenou neighborhood of Barcelona as an example. The

project focused on improving the liveability and sustainability

of public spaces. Even without integrating sensing solutions,

the city government was able to orchestrate speed limits

and redesign streets to merge smaller city blocks into larger

“superblocks.” These actions ultimately helped decrease au-

tomobile traffic, in favor of more pedestrians, and increased

small business development.

Nowadays, city governments interested in adopting such

changes have access to reliable data about city traffic. In ad-

dition to enabling more accurate changes, solutions providing

such insights also offer tools for observing immediate changes

in public spaces and analyze the effectiveness of adopted

decisions. Such data could be supplied by monitoring traffic

patterns, which would serve as the basis for robust pre/post

analysis to guide city improvements.

One example of a system that provides this type of data

is MotionLoft [2, 3, 4, 5, 6], a vision-based system for

counting pedestrians and vehicles within a city. The system

is in production in several locations, including the City of

West Palm Beach, Florida.

Unfortunately, MotionLoft suffers from a number of com-

plications, which can limit its adoption in larger cities. For

instance, in May of 2019, the City of San Francisco banned

the use of facial recognition in public spaces [7]. This turn of

events may be a watershed moment for smart city applications

built on visual analysis. On the other hand, it opens up

opportunities for further research into alternative tools built

with privacy constraints at the core of the design.

In this work, we present the first iteration of the MobIntel

platform [8], which addresses privacy concerns and supports

relatively inexpensive deployment within a city. MobIntel does

not use visual analysis; instead, it uses RF-based probing

activities of WiFi and Bluetooth devices. Our small set of

sensors, deployed in downtown West Palm Beach, passively

collect RSSI data from probing activities, as well as the

hashed MAC addresses of emitting devices. We emphasize

the system’s use of hashing as an initial step toward providing

anonymity to devices and owners.

Collected probe data is aggregated into sessions, periods

of time during which a sensor continuously collects probe

requests sent by the same device. Sessions form the basis

for tracking outdoor occupancy and persistence of pedestrians

in designated sensing areas. We later compare these findings

with metrics provided by MotionLoft. Based on discrepan-

cies in this comparison, we present future steps for system

improvement. This includes approaches such as MAC address

de-randomization, pedestrian trajectory tracking, improved po-

sitioning using Kalman filters, and more.

II. RELATED WORK

Wireless probe analysis represents an affordable and scal-

able solution to urban mobility monitoring. The area has

received significant attention over the last decade. Here we

summarize prior work in the area, as well as alternative

approaches, such as video surveillance and others.

A. RF-based Solutions

Using probing packets sent by WiFi and Bluetooth hardware

for urban mobility monitoring has been considered by other

researchers over the last several years. The growth in sensing

infrastructure and use of personal mobile peripherals creates

opportunities to better understand mobility patterns in public

environments.

106

2020 IEEE International Conference on Smart Computing (SMARTCOMP)

978-1-7281-6997-2/20/$31.00 ©2020 IEEE
DOI 10.1109/SMARTCOMP50058.2020.00034

Longo et al. [9] consider occupancy estimation using readily

available WiFi and Bluetooth sniffing hardware. Based on

probing activities (both classic and low-energy extensions),

their system delivers results in the form of a visual dashboard

and messenger bot, which together allow users to quickly find

an available room for work and offers metrics for owners

of indoor workspaces. The authors discuss two obstacles to

monitoring accuracy. The first issue is the inability of a sniffer

to distinguish probing requests from devices in a particular

area under observation. The second issue is a procedure of

generating virtual MAC addresses, implemented by manufac-

turers to complicate device tracking across multiple networks.

Redondi et al. [10] discuss the use of passive RF measure-

ments from wireless hardware. The authors consider device

localization, profiling, and classification. They present a set

of extracted features from probe requests, including dwell

and presence time. The work is based on data collected from

devices emitting physical MAC addresses and emphasizes the

increased adoption of virtual MAC addresses.

Similarly, Mikkelsen et al. [11] discuss RF sensing for

occupancy estimation. The authors apply the approach to

public transportation vehicles. The intent is to provide bus

drivers and potential passengers with information on vehicle

load. However, the solution suffers from several issues, includ-

ing MAC address randomization, passengers carrying more

than one probe-emitting device, and sensors capturing probing

activities outside of the vehicle.

Luo et al. [12] describe the use of RSSI values to locate

devices in a construction site and compare their results with

data obtained from inside a building. They test four different

localization algorithms: MinMax, Maximum Likelihood, Ring

Overlapping Circle RSSI, and k-Nearest Neighbor. The results

indicate that MinMax offers the best overall accuracy. The

authors argue that with an appropriate density of RF-based

sensors, such approach is efficient and cost-effective.

Vattapparamban et al. [13] demonstrate the viability of

probe request sniffing as a solution for occupancy monitoring

in smart buildings. Similar to the work above, the authors

present a solution that applies linear least squares to estimate a

device’s position, and then refine the estimate using k-nearest

neighbor clustering to group discovered devices into one of

8 defined zones within the building. Randomization of MAC

addresses is again a focal point of the discussion.

B. Alternative Approaches

Occupancy tracking and localization are not limited to RF-

based solutions. Although probe-based solutions are among the

most efficient and low-cost, issues such as MAC address ran-

domization, RSSI thresholding, multipath propagation effects,

channel uncertainty, and the possibility of multiple devices

per person limit the achievable accuracy. Here we discuss

alternative solutions.

Göçer et al. [14] study occupancy patterns and walking

routes during different seasons on a university campus using

video surveillance and spatiotemporal mapping. The team ap-

plies machine learning and spatial statistical analysis to detect

and track pedestrians using data transferred to a geographic

information system (GIS).

Steyer et al. [15] describe an object tracking approach based

on a dynamic occupancy grid. The observed area is partitioned

into a matrix of cells and observed objects are mapped to these

cells. False-positive mappings are avoided by determining

object tracks using clustering and velocity variance analysis

of adjacent occupied cells based on their speed of movement.

The authors also consider object size as a factor in areas with

a high density of pedestrians and moving vehicles. Results

demonstrate the robustness of object tracking in highly dense

environments, even in the presence of object occlusion.

III. PILOT IMPLEMENTATION

The pilot implementation consists of sensing platform,

cloud middleware, and web portal. The pilot was deployed

in downtown West Palm Beach, FL.

A. Sensing Platform

Regarding hardware, a Raspberry Pi 4 Model B (RPi4)

serves as the foundation of the sensing platform [Figure 1A].

It is equipped with a Broadcom BCM2711 SoC, with a 1.5

GHz, 64-bit, quad-core, ARM Cortex-A72 processor, and 4GB

RAM. It is portable, powerful, and affordable. The operating

system used is Raspbian Buster with kernel version 4.19.

To perform probe request sniffing, the sensor requires a

WiFi chip capable of entering monitor mode, one of eight

modes a WiFi chip can operate in. It allows the chip to capture

all wireless packets on a given channel, regardless of whether

the packets are associated with an access point (or network).

The built-in RPi4 chip does not support monitor mode natively.

It is possible, however, to patch the firmware to enable monitor

mode via Nexmon [16], an open-source project with a C-

based firmware patching framework for Broadcom/Cypress

WiFi chips. Unfortunately, we were not able to identify a stable

configuration during testing — it generally supported less

than 30 minutes of continuous probe request sniffing before

halting. Hence, the Alfa AWUS036NHA 802.11n wireless

USB adapter was incorporated as the probe request sniffer

[Figure 1A]. It is equipped with the Atheros AR9271 chipset,

which offers native support for monitor mode.

Battery backup is important to prevent data loss or hardware

damage due to power disruption. To meet this requirement,

the 18650 UPS HAT & Safe Power Management Expansion

Board (X750) [17] and four rechargeable lithium-ion batteries

were integrated into the sensor enclosure [Figure 1A]. With

the X750, the sensor can remain operational for at least ten

hours after losing external power. Further, the X750 allows

software to read battery voltage from the built-in MAX17040

Fuel Gauge System via I2C, which enables the sensor to

perform safe shutdown when the battery voltage drops below

a threshold.

The X750 requires 5V DC power to charge the batteries. To

connect the X750 to a regular 110V AC outlet, the RS-15-5

Single Output AC to DC Power Supply is used [18] [Figure

1A].

107

Fig. 1. Sensing Platform Setup

To upload data to AWS, the sensor requires a stable Internet

connection. Our design uses the Raspberry Pi 4G/LTE Shield

Kit [19] to access a cellular Internet connection [Figure 1A].

The kit contains a Quectel EC25 Mini PCle 4G/LTE Module

(internet connection) and a 4G/LTE Base Shield V2 (interface

between the 4G/LTE Module and the RPi4).

The 4G/LTE Shield has two power ports, one through the

5V PWR pin, and the other via USB. The original design

connected power to both ports — the 5V PWR pin to the

X750 power management board, and the USB to the RPi4.

Since power from the X750 was always available, the 4G/LTE

Shield would never lose power, even if the RPi4 was shut

down. This design led to a problem where the WiFi adapter,

which was also connected to the RPi4 via USB, frequently

failed to turn on after a RPi4 reboot. This was caused by

power leakage from the 4G/LTE Shield to the RPi4. When

the RPi4 reboots, a power cycle occurs across all of its USB

ports which shuts down, and then turns on USB-connected

devices. Since the 4G/LTE Shield never loses power, during a

RPi4 reboot, power from the 4G/LTE Shield can leak to the

RPi4’s USB ports. This potentially interrupts the USB power

cycle and prevents the WiFi adapter from turning on.

The problem was resolved by restricting the power supply

to the 4G/LTE Shield via USB only (i.e. no power to the

5V PWR pin). This way, during the RPi4 reboot, the 4G/LTE

Shield loses power completely. With no power leakage from

the shield, the RPi4 performs a proper power cycle on all USB

ports, and then turns on the WiFi adapter.

All hardware components are assembled within an enclosure

to shield from environmental exposure. Device layers are

stacked and mounted to an acrylic sheet, along with the WiFi

adapter and power supply. The acrylic sheet is secured within

a WQ-50 NEMA Hinged Enclosure [20] designed for outdoor

applications. Additional openings are drilled through the walls

of the enclosure to accommodate three antennas and one power

cord [Figure 1C]. All openings are sealed with waterproof

cable glands and SMA adapters.

Regarding software, the sensing software was developed

in Python 3.7. It consists of three main applications, each

running under a separate process: Gatherer Pusher, Re-
mote Control Service, and Job Scheduler [Figure 1B].

Gatherer Pusher is designed to gather, pre-process, batch,

and push probe request data to Amazon Web Services (AWS)

for storage. Probe request collection is achieved using the

open-source sniff-probes [21] which uses tcpdump. Tcpdump is

a free packet analyzer that displays TCP/IP packets transmitted

over a network. It is a popular command-line interface tool for

Unix-like systems to analyze network data. After raw data is

collected, the application extracts MAC address, timestamp,

WiFi channel, and RSSI from each probe request to form a

data record. Once a batch of data records is available (default

= 1000), they are pushed to AWS IoT via MQTT messaging.

Remote Control Service was created to send a pre-

registered remote control command to a specific sensor in

order to execute predefined functions and receive a response.

For instance, sending a health check command, such as

108

cpu temp, results in a sensor responding with its current

CPU temperature. Similarly, sending an operational command,

such as reboot, prompts the sensor to perform a safe reboot,

which saves all memory-bound probe request data to a lo-

cal database, terminates sniff-probes, and turns off the WiFi

adapter before rebooting the RPi4. Remote Control Service
provides a scalable way to remotely interact with the sensors

programmatically. It is mainly used to query a sensor’s health

state, troubleshoot issues, and perform over-the-air software

updates.

Job Scheduler runs a registered job repeatedly at a given

period. Three main jobs are registered to provide health checks

on the sensor:

• Daily Email Notification: This job sends an email con-

taining three days of logs each morning. The logs con-

tain health status messages recorded by the application

throughout its execution.

• Internet Connection Check: This job verifies the sensor’s

Internet connection every ten minutes. If the sensor loses

connectivity, it performs a safe reboot.

• Battery Voltage Check: This job examines the sensor’s

battery voltage. If the voltage is below a predefined

threshold (default = 3.2 V), the sensor will send an alert

email and perform a safe shutdown.

B. Cloud Middleware

The architecture of the MobIntel platform supports a large

number of deployments, discussed later in more detail. The

system is built on AWS and consists of five main compo-

nents. They are illustrated in Figure 2: IoT Core, Processing,

Database, API, and Web Portal.

MobIntel collects multiple readings every minute. These

sensors generate messages containing a unique hardware ID

and an array of recorded probing packets. Each transmission

happens as soon as a required number of readings is collected.

In the current implementation, this number is set to 1,000

packets per message due to the maximum size of the MQTT

payload, 128 KB [22].

Next, the message is collected by AWS IoT Core. Each mes-

sage is submitted to a designated MQTT topic, to which the

Processor module is subscribed. The module later processes

each of the probing packets in the payload and saves them to

the database, both as raw data and sessions. The latter record

information about the duration of each device’s stay within

the sensor’s detection range. This data is stored in a managed

PostgreSQL database.

The system is capable of adapting to rapid changes in the

amount of data captured by deployed sensors. This is partic-

ularly important in areas with transient crowds (e.g. weekend

street markets). The design relies on the AWS Lambda and

API Gateway services, which support independent trigger

functions, each capable of fast scalability and parallel data

processing, independent of other system components. As a

result, third party requests can be executed without causing

bottlenecks in data retrieval. Additionally, the system im-

plements sharding for specific functions in the API, which

Fig. 2. MobIntel Cloud Architecture

increases the speed of data retrieval. Performance of these

endpoints is discussed later.

Finally, a user-facing web portal was built using React.js,

deployed on AWS S3. It allows users to easily access all of

the processed messages, as well as to compare collected data

with information obtained from MotionLoft.

C. Deployments

The pilot deployment includes two sensors installed along

Clematis Street, the historical heart of Downtown West Palm

Beach, Florida. Figure 3A shows a sensor mounted on a light

pole; Figure 3B illustrates the locations of the two sensors. As

a vibrant cultural and business center, Clematis Street boasts

ample pedestrian traffic; it is an ideal location for pilot testing.

IV. EVALUATION

We now present an evaluation of the MobIntel implementa-

tion. First, we evaluate the sensor’s probe request capture rate.

We then analyze the performance of the live system by testing

response times of the various API endpoints.

A. Probe Request Capture Rate

The probe request capture rate is defined as the number

of probe requests captured by a sensor divided by the total

number emitted within the sensor’s sensing range. It is used

to assess a sensor’s capability of handling a high volume of

probe requests.

To send probe requests, we created a stressor application

using an open source network packet crafting tool, scapy [23].

Scapy can send probe requests at arbitrary rates, up to the

109

Fig. 3. MobIntel Sensor Deployment

sending device’s physical limit. To capture probe requests, a

deployment-ready sensor was used. To ensure that most probe

requests reached the sensor, we placed the stressor and the

sensor 1.5 m apart and configured both to work on channel

10.

During each trial, the sensor was turned on approximately

one minute before the stressor. The stressor continuously

sent mock probe requests for one minute at pre-configured

probe request rates (20, 21, . . . , 215 counts per second). Each

probe request contained a distinct marker identifying the probe

request rate. After the mock probe requests were sent at all the

rates, the sensor would send additional 1,000 sentinel probe

requests to signal the completion of its task. The experiment

was terminated when at least one such sentinel was present in

the database on AWS.

We conducted two rounds of tests: one with a single stressor

(SS), and the other with double stressors (DS). Each round

consisted of four separate trials. After each trial, we collected

the number of probe requests sent (for each request rate)

from scapy’s output and obtained the number of captured

requests by counting the stored requests that contained the

corresponding identifier. The numbers of sent and captured

probe requests were averaged over all trials. Results are

summarized in Figure 4. The x-axis denotes the stressor probe

request rate, and the y-axis denotes the capture rate.

Fig. 4. Sensor Capture Rate

The SS data points cluster around 350 probe requests per

second, indicating that the stressor reached its physical limit.

This is confirmed by a similar clustering of the DS data points

around 700 probe requests per second. When the probe request

rate is similar for both SS and DS, the capture rate under DS

is always lower than under SS, because DS involves parallel

probe request transmission (i.e. two stressors sending at the

same time), which at high transmission rates, can result in

collisions loss.

The SS curve is also stable, maintaining above 95% until

the probe request rate passes 260 probe requests per second.

Beyond 260, it drops toward the DS curve. This drop might

be due to the same limitation in the sensor as described above.

Specifically, when the probe request rate goes above 260 probe

requests per second, it is likely that the probe requests arrive

at the sensor faster than they can be processed. Once the

sensor exhausts its buffer, any further probe requests might not

be captured. Although the sensor is under SS, this situation

resembles the one under DS. Hence, the trend of the SS curve

dropping toward the DS curve. We speculate that if the stressor

has a higher physical limit, we will observe the SS curve

decreasing further, and probably merging with the DS curve.

Despite the decline in capture rate under DS, the sensor

still maintains a decent capture rate (88%), even at 700 probe

requests per second. This suggests the sensor is capable of

handling at least 2,520,000 probe requests per hour. Given that

a smartphone typically sends up to 2,000 probe requests per

hour [24], our sensor can monitor at least 1,260 smartphones

over an hour. Since the sensor covers approximately 2,290 m2,

with a 27 m radius, it is expected to accommodate a device

density of at least 0.55 smartphones/m2.

B. API Throughput

As discussed in Section 3.2, MobIntel receives messages

from sensors through AWS IoT Core, and upon arrival, triggers

110

Fig. 5. Lambda Function Processing Time

a designated AWS Lambda function. The processed data is

stored in a PostgreSQL database hosted on the AWS Relational

Database Service (RDS). This solution has the capability of

scaling up to the limitations of these services.

AWS Lambda is limited to 1,000 concurrent executions,

with a 15-minute maximum function timeout [25]. AWS IoT

Core is able to handle 10,000 inbound messages per second

[26]. On average, the triggered Lambda function processes

one message in 4.1 seconds, which results in a maximum

throughput rate of 244 messages per second. Performance

results were sampled using AWS CloudWatch during active

use of the system. A summary of the sampled results is

illustrated in Figure 5. The x-axis denotes the time at which the

function’s performance was recorded, and the y-axis denotes

the processing time in milliseconds. Given these specifications,

the system is capable of capturing up to 14,640,000 probe

requests per minute.

C. API Response Time

On average, MobIntel saves about 450,000 new probe

requests per day, with just two sensors. The number will grow

as more sensors are deployed.

To evaluate API response time, we implemented an appli-

cation that calls the API endpoints with an increasing date

span. The resulting response time is calculated as an average

of 5 requests, with the same set of parameters executed

on 5 independent machines. Twenty-five measurements are

calculated for each time window.

First, we evaluate the performance of the Population Size

API. This endpoint returns the total number of recorded

probes within the time range specified by the user. Our

initial implementation was naive, aggregating probe counts

upon request using SQL queries. The solution suffered long

processing times as more data was recorded. The performance

is illustrated in Figure 6, labeled Population Size (naive). The

x-axis denotes the requested time window, and the y-axis

denotes the API response time. As the time range increases,

the response time increases significantly.

Fig. 6. API Response Time

To improve performance, the revised solution calculates

probe counts on each sensor for a set of predefined densities,

starting with 5 minutes, up to 12 hours. The results are then

processed and stored in the database independently of the raw

probe requests. As a result, the system performs only a simple

query to retrieve the aggregated counts saved in the database.

The performance is illustrated in Figure 6, labeled Population

Size (optimized).

Next, we evaluate the performance of the Population Per-

sistence API. The API yields a variable number of sessions

discovered in the area based on a dynamically chosen popula-

tion (i.e., set of anonymized MAC addresses). As a result, the

precomputation discussed above is not viable. The evaluation

results are summarized in Figure 6, labeled Population Persis-

tence. The response time of the endpoint increases significantly

as the time range increases. Optimization of this endpoint is

the focus of future work.

D. System Accuracy

Between November 20, 2019, and December 20, 2019,

roughly 4.7 million probe requests were captured, and 97.7%

of the probe requests use virtual MAC addresses. Over 2.3

million probe sessions were observed, and 1.9 million unique

MAC addresses were extracted.

The MotionLoft system was used for comparison, shown

in Figure 7. The x-axis denotes the time span in which the

measurements were recorded, and the y-axis denotes the num-

ber of recorded probes. The figure shows a strong correlation

between the data sets, but MobIntel captures significantly

larger counts. This can be attributed to three factors. First,

MobIntel sensors have an omnidirectional sensing range, while

the MotionLoft cameras are pointed directly towards the

pedestrian route on the street. Second, 97.7% of the probe

requests captured by MobIntel include virtual MAC addresses,

so a device can be interpreted as multiple entities, as its address

changes with time. Third, each pedestrian can carry more than

one signal-emitting device. We observed requests from phones,

laptops, and smart watches, which are all captured by our

system.

111

Fig. 7. MobIntel & MotionLoft Comparison

We also noticed the presence of constant signal emitters,

including routers, point of sale systems, etc. These devices

include physical MAC addresses in their probe requests and

can be easily identified. The MobIntel Web Portal allows users

to remove these devices from the population counts. Their

probing activity compared to the MotionLoft data is shown

in Figure 8, where the x-axis denotes the time span in which

the measurements were recorded, and the y-axis denotes the

number of recorded probes. The correlation is weaker, with

relatively little variability in MobIntel counts during daytime

hours.

Fig. 8. Physical MACs vs MotionLoft Readings

As noted previously, we have also implemented a technique

to visualize population persistence in an observed area. The

plots demonstrate how long a group of devices stay in the ob-

served area without leaving. One example is shown in Figure

9. The x-axis denotes the time at which the initial population

is recorded, and the y-axis denotes population persistence,

which is computed as the percentage of the remaining devices

compared to the initial population. The graph illustrates how

long unique devices (and their owners) stay in the area visible

to a sensor. For instance, at time point 02-14 00:02, the

population persistence is approximately 40%, meaning that

Fig. 9. Population Persistence

40% of the initially detected devices still remain in the sensing

area. As time passes, the population percentage decreases from

100%, eventually converging to 0% (i.e. none of the original

devices are present in the area). During our observations, we

discovered dwell times ranging from 5 seconds, up to 25

consecutive days, with an average persistence of 12 minutes

and 7 seconds. It is important to recall that this includes virtual

MAC addresses, so the data doesn’t directly correspond with

device departures.

V. CONCLUSION

In this paper, we described an approach to monitoring

pedestrian and vehicle activities in urban environments based

on analysis of wireless probing activities. It consists of a

network of RF sensors and cloud infrastructure for processing

and visualizing the collected data.

A study on the performance of the system was provided.

Our load tests demonstrate a sensor’s ability to maintain a

sufficient capture rate (88%) under a constant probe request

load of 700 counts per second. The sensors are capable of

handling a device density of over 0.55 device/m2 in their

detection range every hour.

We also evaluated API response time under different request

time ranges. The original implementation demonstrated slow

performance due to an on-demand calculation strategy. The

optimized alternative relies on population size pre-calculation

and demonstrates significantly improved performance.

Our future work will focus on further exploration of the

load limits of our sensing platform. This can be achieved

by either building a stressor with a higher physical limit on

probe request rate, or using more stressors in the load test.

We will examine whether the correlation between the probe

request rate and the capture rate follow the trend observed

in the current study. This includes validating whether our

speculation on the merging of the SS into the DS curve occurs

if the stressor extends its emission rate beyond 350 probe

requests per second; confirming whether the sensor’s capture

rate continues to drop at low probe request rates when more

stressors are involved; and exploring whether the decrease in

112

capture rate, as observed in the DS curve, experiences a sudden

change after some critical point.

Future work on system performance will involve four tracks.

The first will focus on the de-randomization of virtual MAC

addresses. This requires collection of additional information

before MAC address hashing, such as vendor identifier. The

second focus on geospatial analysis for device identification.

By tracing each device’s path over time, it becomes possible to

match trajectories and locations, even with virtual addresses.

Third, we plan to add positioning and velocity measurement.

With an area covered by multiple sensors, if a device’s probe

requests are captured by at least two sensors, its position and

velocity can be estimated. Finally, we plan to add support for

Bluetooth probes. In combination with WiFi, we expect this

to enable better device identification within a covered area.

VI. ACKNOWLEDGEMENT

This research is supported by the City of West Palm Beach,

the Knight Foundation, and the Community Foundations of

Martin and Palm Beach Counties. The authors would like to

thank Chris Roog, Director of Economic Development in the

city of West Palm Beach, for his collaboration in realizing

MobIntel.

REFERENCES

[1] J. Scudellari, L. Staricco, and E. Vitale Brovarone,

“Implementing the supermanzana approach in barcelona.

critical issues at local and urban level,” Journal of Urban
Design, pp. 1–22, 2019.

[2] MotionLoft Inc. Motionloft - meaningful data from

vehicle and people counts. [Online]. Available:

https://motionloft.com/

[3] H.-H. Lee, C.-J. Lee, and C.-P. Lo, “Electronic device

and method for managing traffic flow,” Oct. 31 2013, uS

Patent App. 13/854,168.

[4] M. Cuban, J. Reitman, and P. McAlpine, “Object detec-

tion sensors and systems,” Jan. 31 2019, uS Patent App.

15/659,198.

[5] M. Cuban, J. Reitman, and P. McAlpine, “Object de-

tection and tracking,” Jan. 31 2019, uS Patent App.

15/659,239.

[6] M. Cuban, J. Reitman, and J. O. Pritchard, “Object

detection and analysis via unmanned aerial vehicle,”

Jun. 5 2018, uS Patent 9,989,965.

[7] New York Times. (2019) San francisco bans

facial recognition technology. [Online]. Avail-

able: https://www.nytimes.com/2019/05/14/us/facial-

recognition-ban-san-francisco.html

[8] F. A. U. I-SENSE. (2020) Mobintel platform. [Online].

Available: https://www.mobintel.org

[9] E. Longo, A. E. Redondi, and M. Cesana, “Accurate

occupancy estimation with wifi and bluetooth/ble packet

capture,” Computer Networks, vol. 163, p. 106876, 2019.

[10] A. E. Redondi and M. Cesana, “Building up knowledge

through passive wifi probes,” Computer Communica-
tions, vol. 117, pp. 1–12, 2018.

[11] L. Mikkelsen, R. Buchakchiev, T. Madsen, and H. P.

Schwefel, “Public transport occupancy estimation us-

ing wlan probing,” in 2016 8th International Workshop
on Resilient Networks Design and Modeling (RNDM).
IEEE, 2016, pp. 302–308.

[12] X. Luo, W. J. O’Brien, and C. L. Julien, “Comparative

evaluation of received signal-strength index (rssi) based

indoor localization techniques for construction jobsites,”

Advanced Engineering Informatics, vol. 25, no. 2, pp.

355–363, 2011.

[13] E. Vattapparamban, B. S. Çiftler, I. Güvenç, K. Akkaya,

and A. Kadri, “Indoor occupancy tracking in smart

buildings using passive sniffing of probe requests,” in

2016 IEEE International Conference on Communications
Workshops (ICC). IEEE, 2016, pp. 38–44.

[14] Ö. Göçer, K. Göçer, B. Özcan, M. Bakovic, and M. F.

Kıraç, “Pedestrian tracking in outdoor spaces of a subur-

ban university campus for the investigation of occupancy

patterns,” Sustainable cities and society, vol. 45, pp. 131–

142, 2019.

[15] S. Steyer, G. Tanzmeister, and D. Wollherr, “Object

tracking based on evidential dynamic occupancy grids in

urban environments,” in 2017 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2017, pp. 1064–1070.

[16] M. Schulz, D. Wegemer, and M. Hollick. (2017)

Nexmon: The c-based firmware patching framework.

[Online]. Available: https://nexmon.org

[17] Geekworm. X750 - all for raspberry pi. [Online].

Available: http://raspberrypiwiki.com/index.php/X750

[18] MeanWell Web. Mean well rs-15-5. [Online].

Available: https://www.meanwell-web.com/en-gb/ac-dc-

single-output-enclosed-power-supply-output-rs–15–5

[19] Sixfab. Raspberry pi 4g/lte hat kit. [Online]. Available:

https://sixfab.com/product/raspberry-pi-4g-lte-shield-kit/

[20] Polycase. Wq-50 nema hinged enclosure. [Online].

Available: https://www.polycase.com/wq-50

[21] B. Dorsey. Sniff probes - plug-and-play bash script

for sniffing 802.11 probes requests. [Online]. Available:

https://github.com/brannondorsey/sniff-probes

[22] Amazon Web Services. AWS iot core

endpoints and quotas. [Online]. Avail-

able: https://docs.aws.amazon.com/general/latest/gr/iot-

core.html

[23] Scapy. [Online]. Available: https://scapy.net/

[24] J. Freudiger, “How talkative is your mobile device? an

experimental study of wi-fi probe requests,” in Proceed-
ings of the 8th ACM Conference on Security & Privacy
in Wireless and Mobile Networks, 2015, pp. 1–6.

[25] Amazon Web Services. AWS

lambda limits. [Online]. Available:

https://docs.aws.amazon.com/lambda/latest/dg/limits.html

[26] Amazon Web Services. AWS IoT core in-

creases default limits for customers. [Online].

Available: https://aws.amazon.com/about-aws/whats-

new/2018/03/iot-core-increases-default-limits/

113

