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1 Abstract

This paper presents a framework for describing in-
formation and information flow. We show that in-
formation can be represented as a lattice. We will
motivate the idea that this framework is applicable
for demonstrating security properties of systems. In
particular, we show the relationship between the lat-
tice representing information and the unwinding the-
orem. We will also demonstrate the relationship be-
tween properties of this lattice and the aggregation
problem.

2 Introduction

Consider a system as a black box that allows users
to query its internal state. For example, an airline
database can be queried for different kinds of infor-
mation, e.g., estimated time of arrival. The queries
can be ordered by the amount of information returned.
For example, if a query returns the complete flight in-
formation, then one can deduce the estimated time of
arrival. In this example, the first query that requests
ETA is “less” than the query that requests the flight
information.

Users may also be ordered by the type of informa-
tion that they can access. For example, the president
of an airline company may be able to make more de-
tailed queries than a random customer. In particular,
a customer may not be able to obtain the passenger
manifest whereas this information is available to the
president.

In this paper, we formalize the notion of informa-
tion as a complete lattice. The queries described in the
above example will define elements of this lattice. The
information determined by a query, ¢, is greater than
the information determined by a query, ¢s, if the re-
sult of g can be explicitly determined from the result
of the query ¢g;. The information obtained by making
two queries at once will be the join of the information

obtained by making each of the queries individually.
We will then provide a necessary and sufficient con-
dition for non-interference in terms of the information
lattice. The condition is the existence of a sensitivity
labelling of the information lattice in such a way that

e instructions with a high sensitivity label do not
modify information with a low sensitivity label

e the flow of information in the system is from infor-
mation with low sensitivity labels to information
with high sensitivity labels.

e the output at a sensitivity level can be determined
by the information at that sensitivity level.

We will also show a possible connection of some
properties of the lattice with the aggregation prob-
lem. This may point to a way of dealing with the
aggregation problem in an algebraic manner.

3 The Information Lattice

For the purposes of this section, we will fix a set X3,
representing a state space of a system. In this paper
we will show how information about elements of the
set X can be regarded as a lattice. This information
lattice can be described in two equivalent manners.
First, we can view the lattice as the set of equivalence
relations on the set X. The equivalence classes repre-
sent sets of states that cannot be distinguished with
the information being described. Second, we can view
information in terms of functions from . The func-
tions represent the information that they extract from
the state.

The information lattice is first defined in terms of
equivalence relations. This definition is then restated
in terms of functions in theorem 1. We will use ei-
ther form as convenient. Where possible, we will de-
scribe constructions on the lattice using both repre-
sentations.



Since this paper uses equivalence relations heavily,
we need to make a convention on their use. If ~ is
an equivalence relation then we will always denote the
equivalence of two elements oy and o5 with the infix
notation (o7 ~ o). This is standard practice, but in
this document we make special mention of this nota-
tion because we will not always use the standard sym-
bols for equivalence relations. For example, if the term
[| || represents an equivalence relation, then o1 || f||o2
means that o7 and oy are equivalent via the equiva-
lence relation || f]|.

We will now construct of the lattice. We first define
a set, Z(X), to be the set of all equivalence relations on
the set . We will define an ordering on this set that
makes it a complete lattice. The ordering on Z(X) is
defined as follows

<~ — VO’l,U'Q (0’1N0'2:>0'1%0'2) (1)

where & and ~ are elements of the set 7.

For example, suppose that the state space can be
partitioned in to two components, an unclassified com-
ponent and a classified component. The state space
can be represented as a cartesian product ¥ = U x C|
where U is the unclassified component and C' is the
classified component. We introduce two equivalence
relationships ~ and &~ where

< Up, ] >~< Ug,Co > > U] = U
< up, e >R< Uz, e > = (ug = uz Acp = c¢a)

The ~ equivalence relationship represents the in-
formation that can be deduced by an unclassified user
and the = represents the information that can be de-
duced by a classified user. The unclassified user will
be able to deduce a smaller amount of information
than the classified user, which is represented by the
inequality ~<=as.

We will now demonstrate why the ordering (1)
makes the information set on ¥ into a complete lat-
tice. It is sufficient to show that for any set, P C Z(X),
there exists a least upper bound for that set [1, 2]. It
follows from lattice theory that this is enough to guar-
antee that the information set is a lattice. It is not
difficult to see that the least upper bound of the set
P is the the equivalence relation, ~, given by

Ve,yed (e~y—VYmeEP zry)

We will now make the link from the above definition
to the representation of the lattice Z(X) in terms of
functions whose domain 1s ¥. The construction works

as follows: for any function, f : ¥ — X, we will define

[| ]| to be the element of Z(X) for which

Vo,0' €X (o [|Ifll o’ < f(o) = f(o'))

The following theorem shows how the lattice rela-
tionships can be defined using functions.

Theorem 1 For any set X, the following properties
hold:

o any element of T(X) can be represented as || f|| for
some set, X, and some function f:X — X.

o ||fll = |lg|l iff there exists a set isomorphism, &,
from the range of f to the range of g such that

g=¢of.

o |lgll < If|| iff there exists a function, ¢, such that
g=¢of

e if f: X —= X andg:X —Y then

IV Mgl = (1Al

where h : X — X XY 1is defined by

Vo € X h(o) = (f(v),9(c))

4 Some Lattice Properties

In this section, we will describe some of the math-
ematical properties of the information lattice. Where
possible, we will indicate the relevance of the proper-
ties to practical applications.

The most basic property of the lattice is the manner
in which a function f : ¥; — 35 induces a function
fe 1 Z(X9) — Z(X1). The function fx can be defined
by the equation

Falgll) = llg o f1]
Equivalently, if ~€ Z(X,), then fu(~) is the equiv-

alence relation given by

r fa(~) vy = flx) ~ fy)

An important property of this induced function is
that for f: ¥; — X5 and ¢ : X5 — X3, we have,

frogx =(g90f)g

Also if id : ¥1 — X is the identity map, then idy
denotes the identity map on Z(X;).



This structure can be embedding into a category
theory framework. 7 is a contravariant functor from
the category of sets to the category of ordered sets!.

The practical significance of the induced function
f# is that it provides a formalism for determining the
source of updated information after a state change. To
elaborate, we formalize the notion of state change. Let
R : ¥ — ¥ be a transition function. Let f : ¥ — X be
a view of the state space. If ¢ is the state before the
transition, then the value of f after the transition is
foR(o). Thus the informationin f after the transition
can be determined from knowing the information in

1f o Rl| = R ([l £1])

before the transition.

A second important concept is the notion of a func-
tion leaving certain information invariant. If R : ¥ —
Y is a function then we define fix(R) to be the greatest
element of Z(X) such that

Vo €X o fix(R) R(o)

The equivalence relation fix(R) can be formed by con-
structing the reflexive transitive closure of the sym-
metric relation that identifies ¢ and R(c) for all o € L.

This is important for expressing a requirement that
a high process does not write down. If ~€ Z(X) rep-
resents information with a low sensitivity label and
R represents a transition that is being executed by a
high process, then we require that the high transition
leave the low information invariant. Using the above
notation this can be expressed as ~< fix(R). This
will represent one of the requirements of the unwind-
ing theorem presented in section 5.

Next we will present a result that will be important
later in this paper.

Theorem 2 If the cardinality of X is greater or equal
to three then the lattice Z(X) is non-distributive.

Proof: Let X1 = {a,b,c}. There are three non-trivial
elements of Z(X1) given by
yoie 2o (WEzAz£2)V (y=2)
It is easy to show that
ig =g NG Uic) # ((laNip)U(igNie)) =0
If f:X¥X — ¥, is any onto function then we also have

fu(ia) S (o) O (f(20) U fe(ic))
£ ((flia) N f4 (i)
U(f#(ia) N f(ic)))
= 0

11t is not a contravariant functor from the category of sets
to the category of lattices.

QED

Finally we define the notion of independence. Two
items of information are independent if the value of
one has no impact on the value of the other. This is
formalized as follows:

~lr — V01,0'25|0'3 o3~ 01 N\N0O3 ~R 03

Equivalently this can be expressed in terms of func-
tions as follows

Il Lllgll < Va €range(f),y € range(g)

do f(o)=zAglo)=y

The independence of two elements, ~ and =, of
Z(X) is a stronger concept than ~ N &= 0. The fact
that

~lxy - ~Na=0

is easy to show. The fact that independence is strictly
stronger can be shown by considering 7, and i from
the proof of theorem 2. In practice the notion of in-
dependence is more useful than the notion that two
items of information have no common information.

5 Non-interference and Information
Flow

In this section we will describe a variant of the un-
winding theorem using the information lattice. This
theorem is very closely related to the Abstract SAT
MLS Unwinding Theorem of Haigh and Young [3].
This unwinding theorem will provide a necessary and
sufficient condition for the non-interference of a state
machine.

We will suppose the existence of a distributive lat-
tice, L, representing sensitivity levels. We will suppose
that we have a state machine consisting of an initial
state, og € X, a transition function

R:Y¥xI—=X

and output functions oy : ¥ — Op for each sensitivity
level A € L. We will assume also that the set of inputs
I is partitioned into disjoint sets, I, where A € L.

The transition function, R, can be used to define a
function

R YL xI* =X

where I* is the set of sequences of elements of I as
follows:

’(o, () =0



R*(O', (io, ey in+1)) = R(R*(O', (io, ey Zn)), in+1)

For each sensitivity level A € L we will form a purge
function, py : I* — I*, that takes a sequence of ele-
ments of I and returns the sequence formed by remov-
ing all the elements not in some I, where A’ < A.

The non-interference property states that for all
sensitivity levels, A € L, and all input sequences
(fg,...,0n) € I*, we have

ox(R* (oo, (10, .- -, in)) = oa(R* (o0, pA(i0, - - -, 2n))

Theorem 3 Haigh-Young Unwinding Suppose
that all states are reachable and let R;(0) = R(o,1)
for all o € ¥ and i € I. The non-interference prop-
erty is satisfied if and only if there exists a function,
lwl: L —Z(X) such that

o (Information flows up) For alli € ]

) < | i)

<A

(Ri)#(lvl(A

o (Processes only write up) For all X\, X' such that
X' is not greater than X, and all i € I,

Wi(N) < fix((Ri)g)

o (Output is determined by the information at a
level) For all A,

lloall < tvl(X)

Proof: We will start with the if direction.
We first claim that

ox(R* (00, (io, - -, in))
[ ()

A<
ox(R* (o0, palio, - - -, in))

This follows by induction on the length of the se-
quence of inputs, (ig,...,1,).

We will divide the induction step into two cases: the
case where the last instruction, ¢, is purgeable and the
case where the last instruction is not purgeable.

If the last instruction, 7, is purgeable, then there is
a A with i, € In; and =(X < A). By the hypothesis
that processes only write up, we have

(U W) < fix(Ri, )¢

Using the definition of fix, we have

¢ ) W(X") R (2)

)‘HS)‘

This allows us to prove the induction claim from
the induction hypothesis.

If the last instruction is not purgeable, then we use
the inequality

(Re)g ([ to1(2) U (Ro)g(1i(X)

A<A <A

U U wiey)

)‘IS)‘ )‘HS)‘I

GRELCY

<A

IN

Using the definition of < and (R;)s this means that

U (V) v = Ri(z) [ wi(x

Al A<

This allows us to prove the induction claim from
the induction hypothesis.

Now we prove the only if direction. We define lvl(})
to be the equivalence relation on ¥ that equates two
elements o7 and o5 if

Ox OR*(Ul,(io, .. ,Zn)) = 0O) OR*(UQ,(io, .. ,Zn))

for all (ig,...,4,) € I*.
It follows vacuously that

(Ro)#(Iol(N) < ol(X) < | tol(

A<

lloall < Lvl(A)
Suppose that A is not greater than A and i € I,.

This means that the instruction 7 is A purgeable. By
the non-interference condition,

Ri(o) WI(N) o
But this is exactly the condition that
lvl()\’) < ﬁX((RZ’)#)

QED



6 The Aggregation Problem

In this section we will discuss the aggregation prob-
lem. We believe that one of the aspects of information
that makes the aggregation problem hard is the fact
that the information lattice fails to be distributive.
We hope that the ideas of this section will allow us to
deal with aggregation problem using algebraic tools.

The aggregation problem is concerned with the
problem of labelling the sensitivity of information. For
simplicity, we will suppose that we have two sensitiv-
ity labels, {Lo, Hi}. We have an aggregation problem
when separate items of information that are labelled
at Lo can be combined to make up information that
implies information labelled at Hi.

It seems reasonable to consider a labelling of infor-
mation to be a partial function

Wl : I(X) — {Lo, Hi}

An aggregation problem will occur if there exists
elements i1, iz, and i3 in Z(X) such that

o iy < i1 Ui

e [vl(iy) = Lo
o [vl(iz) = Lo
o Wol(is) = Hi

The first evidence that we will provide for the con-
nection between the aggregation problem and the non-
distributivity of the information lattice is the following
theorem.

Theorem 4 A finite lattice, L, is distributive if and
only there exists a set I C L such that

Viel i<zUy — [(i<2)V(i<y)

Vee L z= U 1

i€l i<

This theorem follows easily from some of the results
in [2].

If such a set I could be found for Z(X), then we
could use it to solve the aggregation problem. The
elements of I could be regarded as atomic bits of in-
formation. Any item of information can be regarded as
being precisely the conjunction of some bits of atomic
information. The atomic bits of information contained
in the conjunction of two items of information will con-
sist of exactly the atomic bits of information contained
in the conjuncts and nothing more.

It would therefore be reasonable to solve the aggre-
gation problem by starting out by labelling the atomic
bits of information. The label associated with any in-
formation can therefore be considered as the max of
the information associated with the contained atomic
information. The property that

Viel i<zUy — [(i<2)V(i<y)

would guarantee that the information formed by join-
ing two items of information contains only those
atomic items of information that are contained in one
or the other items of information. This would ensure
that the label associated with the join of two items of
information would be the join of the labels associated
with the two items of information.

However, the lattice Z(X) fails to have any subset
like I when ¥ has three elements or more. In fact, this
lattice is pretty bad in this respect. It is possible to
find elements 71, i3, and i3 such that

i3§(i1Ui2)
i3Ni; =0
i3MNig =0

That is i3 can be deduced from the conjunction of i
and ¢, but it has nothing in common with either.
Example:

Suppose that a particular database holds informa-
tion about the salaries of employees of a company.
Suppose that information in this database is labelled
as follows. The salaries of the non-officers is marked as
unclassified. The number of employees of the company
is unclassified. Any information that is averaged over
the whole company is marked as unclassified. Any
information that is explicitly about the salaries of of-
ficers is marked as classified. This labelling leads to
an aggregation problem.

For example, a user might ask the salaries of the
non-officers, the average salary of the employees of
the company and the number of employees of the com-
pany. From this the user can determine the average
salary of the officers. The user can then start asking
a more refined set of queries to gain additional infor-
mation about the officers salary (e.g. the standard
deviation of the salaries at the company).

In fact, if we suppose that the number of employees
at the company is a constant then this example turns
out to be a good example of the situation described
above. Suppose that noff is the list of salaries of the
non-officers, n is the number of employees of the com-
pany, av is the average salary at the company and oav



is the average salary of the officers. These variables
are related by the following equation:

Sum(noff) + (n — Len(noff)) * oav = n * av

It is not hard to show that the value of oav is in-
dependent of the value of noff (||oav|| L ||noff]]). Sim-
ilarly the value of oav is independent of the value of
n (||oav]| L [|n|]). Finally the value of oav is indepen-
dent of the value of av ([|oav|| L ||av||). However, once
given the values of noff, n and av we can deduce the
value of oav (||oav|| < ||roffl| U||n|| U ||av]]).

Note that this does not imply that any database
which has at least three distinct states will have an ag-
gregation problem. For any X with cardinality greater
than three, the lattice Z(X) will have many distribu-
tive sublattices. It is possible for a database to restrict
the information that it provides to such a distributive
lattice. Such a database would avoid the aggregation
problem as described in this section.

7 Conclusions

In this paper we have shown how information can
be viewed as a lattice. This provides us with an al-
gebraic way of understanding critical concepts con-
cerning information flow. For example, state transi-
tions give rise to order preserving functions that de-
scribe the flow of information resulting from the state
change. State transitions also give rise to the set of in-
formation that is left fixed by the information. These
concepts can be used to define algebraic necessary and
sufficient conditions for the non-interference property.
The algebraic approach will provide a new set of tools
with which we can tackle the non-interference prob-
lem. An example that utilizes this approach can be
found in [6].

In addition, we have indicated a connection be-
tween the aggregation problem and some algebraic
properties of the lattice of information. This allows
us to use algebraic techniques to gain additional in-
sight into the aggregation problem.

References

[1] Garrett Birkhoff. Lattice Theory, volume XXV of
American Mathematical Society Colloguim Publi-
cations. American Mathematical Society, 1967.

[2] P. Crawley and R.P. Dilworth. Algebraic Theory
of Lattices. Prentice Hall, 1973.

[3] Will Harkness. The General LOCK Model and Un-
winding Theorem. R21 informal technical report,
Department of Defense, October 1990.

[4] T. H. Hinke. Inference Aggregation Detection in
Database Management Systems. In Proceedings of
the 1988 IEEE Symposium on Security and Pri-
vacy. IEEE, April 1988.

[5] T. Lunt. Aggregation and inference: Facts and fal-
lacies. In IEEE Symposium on Security and Pri-
vacy, pages 102-109, Oakland, CA, May 1989.

[6] Sylvan Pinsky. An Algebraic Approach To Non-
Interference. In Robert Werner, editor, Proceed-
ings of the Computer Security Foundations Work-
shop V, pages 34-47. IEEE Computer Society
Press, June 1992.

[7] M. Weiser. Program Slicing. IEEE Transac-
tions on Software Engineering, pages 352-357,
July 1984.



