N 1 €6 7}

ESD-TR-75-306 - MTR-2997 Rev. 1

SECURE COMPUTER SYSTEM:
UNIFIED EXPOSITION AND MULTICS INTERPRETATION

MARCH 1976

Prepared for

DEPUTY FOCR COMMAND AND MANAGEMENT SYSTEMS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
Hanscom Air Force Base, Bedford, Massachusetts

Project No. 522B

Prepared by .
. THE MITRE CORPORATION
Approved for public release; Bedford, Massachusetts

distribution unlimited.
Contract No. F19628-76-C-0001

When U.S. Government drawings, specifications,
or other data are used for any purpose other
than a definitely related government procurement
operation, the government thereby incurs no
responsibility nor any obligation whatsoever; and
the fact that the government may have formu-
lated, furnished, or in any way supplied the said
drawings, specifications, or other data is not to be
regarded by implication or othe~wise, as in any
manner licensing the holder or any other person
or corporation, or conveying any rights or per-
mission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

Y

R. SCHELL, Major, USAF WILLIAM R. PRICE, 1Lt, USAF
niques Engineering Division Techniques Engineering Division

FOR THE COMMANDER

STANLEY /. DERESKA, Colonel, USAF

Chief, Techniques Engineering Division
Information Systems Technology
Applications Office

Deputy for Command and Management Systems

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T REPORT NUMBER Z. GOVT ACCESSION NOJ| 3. RECIPIENT'S CATALOG NUMBER
ESD-TR-75-306
a. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

SECURE CCMPUTER SYSTEM: UNIFIED EXPOSI-

6. PERFORMING ORG. REPORT NUMBER
TION AND MULTICS INTERPRETATICN MTR-2997 Rev. 1
7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
D.E. Bell

L.J. La Padula F19628-75-C-0001

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. i;giR&AwOERLKEm&PTT'NPURMOBJEERCST’ TASK
The MITRE Corporation
Box 208 .
Bedford, MA 01730 Project No. 522B
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Deputy for Command and Management Systems MARCH 1976
Electronic Systems Division, AFSC 13. NUMBER OF PAGES
Hanscom Air Force Base, Bedford, MA 01731 129
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
15a, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

This report supersedes ESD-TR-75-306 dated January 1976.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

ASTERISK-PROPERTY SECURITY
MATHEMATICAL MCDEL TRUSTED SUBJECT
SECURE COMPUTER SYSTEM

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

A unified narrative exposition of the ESD/MITRE computer security model is
presented. A suggestive interpretation of the model in the context of Multics and
a discussion of several other important topics (such as communications paths,
sabotage and integrity) conclude the report. A full, formal presentation of the
model is included in the Appendix.

DD ,7SR%; 1473 EpiTion OF 1 NOV 65 1S OBSOLETE UNCLASSIFIED ’{\“

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered). K

CEAUDITV A1 ACCIEIAATIAL AR TUIC DAAC /M han Nata BPabaaaih

ACKNOWLEDGEMENT

Project 522B was performed by The MITRE Corporation under
sponsorship of the Electronic Systems Division, Air Force Systems
Command, Hanscom Air Force Base, Bedford, Massachusetts.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

SECTION I
SECTION II

SECTION III

SECTION Iv

APPENDIX
REFERENCES

INTRODUCTION
DESCRIPTION OF THE MODEL

DESCRIPTIVE CAPABILITY
GENERAL MECHANISMS
SPECIFIC SOLUTIONS

MORPHISM FROM MULTICS TO MODEL

INTRODUCTION
ELEMENTS OF A SECURE MULTICS
State Elements
Subjects and Objects
Attribute Elements
SECURITY PROPERTIES IN A SECURE MULTICS
RULES OF OPERATION FOR A SECURE MULTICS

get-read

get-write

get-execute

get-read-write
release-read/execute/write
give-read/execute/write
rescind-read/execute/write
create-object

delete-object-group
change-subject-current-security-level

change~-object-security-level

FURTHER CONSIDERATIONS

INTRODUCTION

TRUSTED SUBJECTS

EXTRA-MODEL SECURITY PROPERTIES
Communication Paths
Sabotage and Integrity

127

LIST OF ILLUSTRATIONS

Figure Number

OOOONOOIT W —

_— o
NN — O
Lo i o)

Subjects Accessing Objects

The Desired Object Structure

An Access Matrix

Information Flow Showing the Need for *-Property

Deadlock

The Correspondence of M Columns to ACLs

The "Creation" of a Segment in Multics

The Need for Compatibility

Multics Hierarchy Equivalent

The Interpretation of Links

The ss-Property in Multics

The *-Property for Multics read

The *-Property for Multics write (only)

The *-Property for Multics read-write

The *-Property for Multics execute

The ds-Property in Multics

Communication Using Real-Time Intervals

An Example of a One-Bit Message

The Transmission of the Bit-String 10110

Another One-Bit Message

The Subtree Affected by Sabotage of Sensitive-
Directory

ITTustration of x

LIST OF TABLES

Table Number

1

Elements of the Model

Page
76

SECTION I
INTRODUCTION

For the past several years ESD has been involved in various
projects relating to secure computer systems design and operation.
One of the continuing efforts, started in 1972 at MITRE, has been
secure computer system modeling. The effort initially produced a
mathematical framework and a model [1, 2] and subsequently developed
refinements and extensions to the model [3] which reflected a
computer system architecture similar to that of Multics [4]. Recently
a large effort has been proceeding to produce a design for a secure
Multics based on the mathematical model given in [1, 2, 3].

Any attempt to use the model, whose documentation existed in
three separate reports until this document was produced, would have
been hampered by the lack of a single, consistent reference. Another
problem for designers is the difficulty of relating the abstract
entities of the model to the real entities of the Multics system.
These two problems are solved by this document.

A11 significant material to date on the mathematical model has
been collected in one place in the Appendix of this report. A
number of minor changes have been incorporated, most of them
notational or stylistic, in order to provide a uniform, consistent,
and easy-to-read reference. A substantive difference between the
model of the Appendix and that of the references [2, 3] is the set
of rules: the specific rules presented in Appendix have been adapted
to the evolving Multics security kernel design.

Because the model is by nature abstract and, therefore, not
understandable in one easy reading, Section II gives a prose
description of the model.

In order to relate the mathematical model to the Multics
design, Section III exhibits correspondences from Multics and
security kernel entities to model entities.

Section IV discusses further considerations--topics which lie
outside the scope of the current model but which are important issues
for security kernel design.

As background for the remainder of this document, we briefly
establish a general framework of related efforts in the rest of this
section.

Work on secure computer systems, in one aspect or another, has
been reported fairly continuously since the mid 1960s. Three periods
are discernible: early history, transitional history, and current
events.

The work by Weissmann [5] on the ADEPT-50 system stands out in
the early history period. Not only was a fairly formal structuring
of solution to a security problem provided, but ADEPT-50 was actually
built and operated. In this early period the work of Lampson [6]
is most representative of attempts to attack security problems
rigorously through a formal medium of expression. In Lampson's
work, the problem of access control is formulated very abstractly
for the first time, using the concepts of "subjects," "object," and
"access matrix." The early period, which ended in 1972, understandably
did not provide a complete and demonstrable mathematical formulation
of a solution.

The transitional period (1972 - 1974) is characterized by
markedly increased interest in computer security issues as
evidenced by the Anderson panel [7]. One of the principal results
of this panel was the characterization of a solution to the problem
of secure computing (using the concept of a “"reference monitor")
together with the reasoned dictum that comprehensive and rigorous
modeling is intrinsic to a solution to the problem. This period also
saw the development of the first demonstrated mathematical models
[1, 2, 13] as well as ancillary mathematical results which characterized
the nature of the correctness proof demonstration [2, 8]. A second
modeling effort, also sponsored by the Electronic Systems Division
of the United States Air Force and performed at Case-Western
Reserve University, was also undertaken in this period [9]. 1In
this model, the flow of information between repositories was
investigated, initially in a static environment (that is, one in
which neither creation nor deletion of agents or repositories is
allowed) and subsequently in a dynamic environment. Many other
papers appeared during this period. An implementation of a system
based on a mathematical model was carried out at MITRE by
W. L. Schiller [10]. An extension and refinement of the first
model was developed [3] to tailor the model to the exigencies of
a proposed Multics implementation of the model; included in this
extension was a concept promulgated at Case-Western Reserve
concerning compatibility between the Multics directory structure
and the classifications of the individual files. A great number of
other computer security issues were investigated and characterized
(11, 12, 13, 14, 15] during this time.

Current work succeeding the work reported above is a project
sponsored by ESD and ARPA. In this project, the Air Force, the
MITRE Corporation, and Honeywell are working cooperatively

to develop a design for a security kernel for the Honeywell Multics
(HIS level 68) computer system. Other significant efforts include work
at UCLA [16], and the Stanford Research Institute [17].

This report summarizes, both narratively and formally, the
particular version of the mathematical model that is relevant to
the development of a Multics security kernel. The report not
only presents the model in convenient and readable form, but also
explicitly relates the model to the emerging Multics kernel design
to help bridge the gap between the mathematical notions of the model
and their counterparts in the Multics security kernel.

SECTION II
DESCRIPTION OF THE MODEL

The model can be viewed as having three major facets--a
descriptive capability (the elements), general mechanisms (the
1imiting theorems), and specific solutions (the rules). In this
section, we shall discuss these three facets narratively, make
explicit the inclusions and exclusions of meaning (that is,
interpretations) that can be correctly associated with the model
itself rather than with its interpretation in any given context.
A summary of the model is included in the Appendix; however
reference to the Appendix should not be necessary for complete
understanding of this section.

DESCRIPTIVE CAPABILITY

The model has the ability to represent abstractly the elements
of computer systems and of security that are relevant to a treatment
of classified information stored in a computer system. TThe essential
problem is to control access of active entities to a set of passive
(that is, protected) entities, based on some security policy. Active
entities are called subjects (denoted Si individually and S
collectively); passive entities are called objects (denoted Oj and
0). No restriction is made regarding entities that may be both
subjects and objects: a given interpretation of the model could have
no subject/objects, some subject/objects, or all subjects could be
objects. It is merely required that, when an entity's active
(respectively, passive) role is being considered, that entity be
constrained by the model's treatment of subjects (respectively,
objects).

TNote that the model is in no way restricted to a computer system

(although that is the topic here). It has also been applied to
physical and procedural security controls.

9

ofe

Figure 1. Subjects Accessing Objects

As in computer systems, access in the model can assume
different modes. The modes of access in the model are called

access_attributes (denoted x and A). The access attributes are
abstracted from actual access modes in computer systems.

The two effects that an access can have on an object are the
extraction of information ("observing" the object) and the
insertion of information ("altering" the object). There are thus
four general types of access imaginable:

* no observation and no alteration;

- observation, but no alteration;

+ alteration, but no observation; and
- both observation and alteration.

An access attribute for each of these possibilities is included in
the model:

10

access (neither observation nor alteration);
access (observation with no alteration);
access (alteration with no observation); and

(B L b I

access (both observation and alteration).

The symbols e, r, a, and w are derived from the generalized
access modes execute, read, append, and write, and in fact, the

underlined words are used interchangeably with the shorter letter
symbols. The meaning of any access attribute, however, is not at

all constrained by an actual access mode with the same name. TRather
each actual access mode must be analyzed and paired with the access

attribute which matches its own access characteristics. The only

intrinsic semantics that pertain to every interpretation of the
model access attributes are those listed in the preceding paragraph.

It is now possible to begin a description of a system state in
the model. The state will be expressed as a set of four values, each

referred to as a component.

The first component of a system state is the current access set,
denoted b. A current access by a subject to an object is represented
by a triple:

(subject, object, access-attribute).

This triple means that "subject" has current "access-attribute"
access to "object" in the state. The current access set b is a
set of such triples representing all current accesses.

The next element of a system state within the model concerns a
structure imposed on the objects. What we stipulate is that a

"Note that this abstract notion of "execute" access is not what is
typically implemented (enforced) by computer hardware since the
results of the execution reflect the contents and thus constitute
"observation" of the executed element.

11

parent-child relation be maintained which allows only directed,
rooted trees and isolated points as shown:

ROOT-1 ROOT-2

AN

[N\

Figure 2. The Desired Object Structure

This particular structure is desired in order to take advantage of
the implicit control conventions of and the wealth of experience

with logical data objects structured in this way. The construct used
is called a hierarchy (denoted H and H); a hierarchy specifies the
progeny of each object so that structures of the type mentioned are
the only possibilities.

The next state component which we consider involves access

permission. Access permission is included in the model in an access
Lt
matrix M,

TNotice that M dis a matrix only in the model's conceptual

sphere: any interpretation of M which records all the necessary
information is acceptable.

12

objects

subjects

S fe/, The component
[
"3

Figure 3. An Access Matrix

The component Mij records the modes in which subject Si is
permitted to access object Oj' Thus the entries of M are subsets

of the set A of access attributes.

The last component of a system state is a level function, the
embodiment of security classifications in the model. In a
military or governmental environment, people and documents can
receive two types of formal security designations: one is
classification or clearance (unclassified, confidential, secret,
and top secret are usual) and the other is formal category (such as
Nuclear, NATO, and Crypto). A total security designation is a pair:

(classification, set of categories).
Such a pair we call a "security level." A necessary condition for
an individual's possession of a document is that his security level

must dominate the security level of the document. One level
dominates another:

13

(class 1, category-set 1) dominates (class 2, category-set 2)
if and only if

class 1 is greater than or equal to class 2 and
category-set 1 includes category-set 2 as a subset.

This rather complicated requirement is abbreviated in this discussion
by using abstract security levels (denoted Lu and L) and a dominance
ordering » (read "dominates") which is required to be a partial
ordem’ng.+

The classification of subjects and objects assigns to each subject
and to each object a security Tevel. The (maximum) security level of
a subject Si is denoted "fS(Si)" in the formal development in the
Appendix, but for the purposes of this section will be denoted

“1eve1(51)." Similarly, the security level of an object Oj is
denoted formally and informally as fo(Oj) and level(Oj). One

further assignment to subjects identifies the current security

Tevel of the subject. The current level allows a subject to operate
at less than its maximum security level, a feature that is very
important under some of the security constraints to be developed
1ater.H The current security level of a subject Si is denoted
fC(Si) and current-]eve](Si); it is required that 1eve1(Si) dominate

current-]eve](si).

+That the relation » must be a partial ordering requires only that
1) Lu dominates Lu for every level Lu; 2) Lu dominates Lv and
Lv dominates Lw, then Lu dominates Lw; and 3) if Lu and Lw

dominate each other, then they are the same.

HIn particular, the current security level makes feasible the
requirement that high-Tlevel information not be put into low-level objects.

14

A triple of security level assignment functions (fs, fO’ fc) or
(level(«), level(:), current-level(+)) is called a level function
and is denoted f(or, collectively, F).

A state of the model is a 4-tuple of the form:

(current access set, access permission matrix, level
function, hierarchy).

The model notation for a state is (b, M, f, H).

We refer to inputs to the system as requests (Rk and R) and
outputs as decisions (Dm and D). The system is all sequences of
(request, decision, state) triples with some initial state (zo)
which satisfy a relation W on successive states.

The system defined in this way can be used in two ways--analysis
and synthesis. The use of the model for analysis involves:

1. the specification of R and D for the system
being analyzed, and
2. the determination of W.

The operation of the system of concern can then be addressed by
examining the relation W which characterizes the system as a
model. The use made of the model in the security kernel design
work is synthesis: the job involves first the specification of
system characteristics that we desire to be maintained, and then
the definition of a relation W that is sufficient to the task.
The definition of an appropriate relation W 1is the topic of
SPECIFIC SOLUTIONS; we conclude this discussion with an exposition

15

of the system characteristics that we desire to be maintained.
These characteristics we speak of collectively as “"security."

The first aspect of security which we consider is the simple
security property (ss-property hereafter). The ss-property is
satisfied if every "observe" access triple (subject, object, attri-
bute) in the current access set b has the property that level (subject)
dominates level (object). More concisely, the ss-property stipulates
that if (subject, object, observe-attribute) is a current access,
then level (subject) dominates level (object).

The ss-property is the strict interpretation of the current
security regulations for documents, with one modification. In a
document system, "access" refers to physical possession which
implies the ability to extract information. Where there is the
possibility of access without observation, as in this model, access
does not necessarily imply the ability to extract information.
Hence, the security regulations for documents were applied in the
model only to attributes that entail observation (viz. w and r).

The ss-property was considered to be the whole of security in
our early efforts at modeling [1]. A brief Took at the expected
interpretation of the model will show that this property is indeed
only a "simple" statement of the problem.

The expected interpretation of the model anticipates
protection of information containers rather than of the information
itself. Hence a malicious program (an interpretation of a subject)
might pass classified information along by putting it into an
information container labeled at a lower level than the information
itself.

16

A5) high level object-1

malicious
subject

information

@ Tow level object-2

Figure 4: Information Flow Showing the Need for *-Property

Thus, another security property, called the *-Erogertx* (for historical
reasons), is added to the ss-property in the specification of
"security." The *-property is satisfied if:

in any state, if a subject has

simultaneous "observe" access to object-1 and "alter"
access to object-2, then level (object-1) is dominated
by level (object-2).

This definition clearly disallows the situation pictured (Figure 4).
Under this restriction, however, the levels of all objects accessed
by a given subject are neatly ordered:

level (a-accessed-object) dominates level (w-accessed-object);
level (w-accessed-object-1) equals level (w-accessed-object-2); and
level (w-accessed-object) dominates level (r-accessed-object).

————————

+read “star-property." 17

Thus the definition of *-property is now refined in terms of
current-level (subject):

in any state, a current access (subject, object, attribute)
implies:

Tevel (object) dominates current-level (subject) if
attribute is a;

Tevel (object) equals current-level (subject) if
attribute is w; and

level (object) is dominated by current-level (object)
if attribute is r.

There are two important comments to be made about the *-property.
First, it does not apply to trusted subjects: a trusted subject is
one guaranteed not to consummate a security-breaching intormation
transfer even if it is possib]e.+ Second, it is important to
remember that both ss-property and *-property are to be enforced.
Neither property by itself ensures the "security" we desire.

There is one further aspect of security that we address: the
problem is called discrefionary security and it is also based on
current military/governmental policy (known as "need-to-know"). The
enforcement of classification/clearance matching is mandated by executive
order, directive and regulation: an individual may not exercise his
own judgment to violate this standard. Similarly, the enforcement of
categories (also called formal need-to-know compartments) is mandatory.
These two restrictions make up nondiscretionary security policy and are

TThe topic of trusted subjects is treated at more length in
Section 1IV.

18

embodied in the model as the ss-property and *-property. Discretionary
security policy allows an individual to extend to another individual
access to a document based on his own discretion, constrained by non-
discretionary security policy: that is, discretionary security policy
allows an individual to extend access to a document to anyone that is
a]]owed‘by non-discretionary security to view the document.

This exact property is included in the model in the discretionary
security property (ds-property). A state satisfies the ds-property
provided every current access is permitted by the current access

permission matrix M. More specifically, the ds-property, requires
that:

if (subject-i. obiect-j, attribute-x) is a current access

(is in b), then attribute-x is recorded in the

(subject-i, object-j) - component of M (x is in Mij)'
The term "discretionary" security is appropriate in the context of
the specific solutions of this model since the capability to alter
M (the permission structure) is included in the model.

Note that restrictions of the concept of security will not
require reproof of the properties already established because
additional restrictions can only reduce the set of reachable states.
The notion of "security" was purposefully made extensible in this
way to allow for later refinements of the concept of security.+

GENERAL MECHANISHMS

This discussion of the general mechanisms of the model is
tripartite. First, the "inductive nature" of security within the
+Some discussion of other security-related topics which might be
included in later definitions of security is given in Section IV.

19

model is established. Then a general construct--the rule--for the
modular specification of system capabilities is defined. Finally,
the relation of rule properties to system properties is established.

The first genéra] result in the model is the basic security
theorem (Corollary Al in the Appendix). This theorem states that
security (as defined) can be guaranteed systemically when each
alteration to the current state does not itself cause a breach of
security. Thus security can be guaranteed systemically if, whenever

(subject, object, attribute) 1is added to the current access set b,
then:

1. level(subject) dominates level(object) if
attribute involves observation (to assure the
ss-property);

2. current-Tevel(subject) and Tlevel(object) have
an appropriate dominance relation (to assure the
*-property); and

3. attribute is contained in the (subject, object)
component of the access permission matrix M
(to assure the ds-property).

We say that the basic security theorem establishes the "inductive
nature" of security in that it shows that the preservation of

security from one state to the next guarantees total system
security.

The importance of this result should not be underestimated.
Other problems of seemingly comparable difficulty are not of an
inductive nature. The problems of data- and resource-sharing, for
example, are not inductive. In fact, the most trivial example of
deadlock (Figure 5) can arise in any nontrivial sharing system that

20

Figure 5. Deadlock

decides immediately to grant or deny a request for access.

Resolution of this problem requires knowledge of future possibilities,
queues of requests, and process priorities [18]. The result,
therefore, that security (as defined in the model) is inductive
establishes the relative simplicity of maintaining security: the
minimum check that the proposed new state is "secure" is both
necessary and sufficient for full maintenance of security.

The second step of constructing general mechanisms within the
model is a direct consequence of the basic security theorem. Since
the systemic problems of security can be dealt with one state
transition at a time, a general framework for isolating single
transitions was devised. This framework relies on the "rule," a
function for specifying a decision (an output) and a next-state for
every state and every request (an input):

rule

(request, current-state) > (decision, next-state).

21

The idea is to analyze each class of requests separately in a rule
designed to handle that particular class. To provide clarity, no
two rules (in a given system) are allowed to specify non-trivial
changes for a given (request, current-state) pair; total system
"response" to the pair (request, current-state) is then defined as
the response of the rule written to handle the request. This frame-
work allows different approaches to a given class of requests to be
worked out independently in different rules. A final set of rules
to specify a desired system could be chosen to reflect idiosyncratic
needs; the only restriction is that rules With overlapping
responsibility cannot be used together. This approach gives the
model a modular flexibility which can be of great use in tailoring
the model to a particular application, as illustrated by Section III.

The last development which is classed a general development
centers on the relation of rule properties to system properties. It
has been shown that the entire system specified by a set of rules
satisfies all three security properties--the ss-property, the
*-property, and the ds-property--provided each rule itself
introduces no exception to these properties. Moreover, the
requisite demonstration that a rule preserves security can in most
cases be reduced to the direct consideration of the small number
of state alterations involved in the given state transition (Corollary
A3 in the Appendix).

In summary, the general mechanisms of the model:
« bound the scope of investigation to single transitions of state;
- provide the ability to investigate desired features of the

system independently of one another using the rule framework;
and

22

* reduce the systemic problem to very restricted rule-based
problems of the preservation of security properties over
one transition,

SPECIFIC SOLUTIONS

The rules presented in this document represent one specific
solution to the requirement for a "secure" computer system. This
particular solution is in no sense unique, but has been specifically
tailored for use with a Multics-based information system design. For
this use, the solution has to satisfy two requirements: the
provision of generally useful functions and appropriate accommodations
to the effects of the Multics design on an implementation of this
model.

A number of general functions can be suggested for any computer-
based information system. With reference to the model described
earlier, the functions can be grouped in four classes:

- functions to alter current access (the set b);

- functions to alter the level functions (the values
Tevel(subject), Tevel(object), and current-level(subject));

« functions to alter the current access permission structure
(the matrix M); and

« functions to alter the object structure (the hierarchy H).

This Tist covers changes to each of the elements of a system state

in the model. Our particular solution includes the capability to
cause the following changes to the system state:

23

+ altering current access:
+ to get access (add a triple (subject, object,
attribute) to the current access set b), and
+ to release access (to remove an access triple from
the current access set b);
- altering level functions:
- to change object level (to change the value of
level(object) for some object), and
+ to change current level (to change the value of
current-level(subject));
+ altering access permission:

+ to give access permission (to add an attribute to
some component of the access permission matrix M),
and

+ to rescind access permission (to delete an attribute
from some component of the access permission matrix
M); and

« altering the hierarchy:

« to create an object (to attach an object to the
current tree structure as a leaf), and

- to delete a group of objects (to detach from the
hierarchy an object and all other objects "beneath"
it in the hierarchy).

Section III presents a more detailed discussion of the particular
rules presented in this document.

These rules reflect several characteristics of the Multics
operating system. The main Multics characteristic that affects the
model is the hierarchical object structure which has been mentioned
previously. The principal reason for the inclusion of the

24

hierarchy in the model is the desire to disturb the Multics operating
system as little as possible while adding the capability to process
simultaneously information of varying security levels. The basic
Multics mechanisms for access control rely heavily on the object
structure: to retain that basic structure it is necessary to
1nvestigate our restrictions on access control in the Multics setting
of an object hierarchy--that is, in the setting of Multics control
structures.,

The second Multics characteristic involves the physical
counterpart of the access permission matrix M. This structure (called
the Access Control List (ACL) in Multics), its location, and its
manipulation have direct effects on the capability to get access, to
give access, and to rescind access in Multics. The Access
Control List in Multics is a list of “(process, ring bracket)" pairsJr
(for our purposes here, the Multics analogue of subjects) allowed to
access a segment (that is, an object) and the modes of access allowed.
There is one Access Control List for every segment/object. Thus the
information contained in the Access Control List for object-j includes
the information contained in the j-th column of the access permission
matrix M in the model. The most important fact about the Multics
ACLs is that they are contained in a segment's parent directory (parent
object in the model) and are manipulated by manipulation of the object's
parent. Hence, “control” over an object (to extend access, to rescind
access, or to destroy the object althogether) is equivalent in Multics
to write permission to the object's parent. Moreover, since “creation"
of a segment in Multics is the insertion of a new entry (called a
"branch") in a directory segment, the "control" over creation is
equivalent to write or append access (that is, read/write or pure-write
access) to the directory segment that will be the parent of the created
segment (directory Z in Figure 7).

TThe entry into the ACL by process is actually indirect: a process
maps to a "user-id" (essentially a set of processes associated with

a particular user) which in turn maps to an ACL entry. To simplify
the exposition here, this indirect entry is represented directly.

25

Aatrix M

0;
51 rewa
S2 ¢
53 re
is represented by
ACL for Oj
process attributes ring brackets
- T T T M
S] rewa
|
T T T T
S3 re

Figure 6. The Correspondence of M Columns to ACLs

26

~N_
lthe segment!
being !
(oreated__|

Figure 7. The "Creation" of a Segment in Multics

These Multics characteristics are taken into account in the
model's rule where, for example, a request to give access to an object
is allowed only if (among other things) the requesting subject has
current w access to the parent of the object (implying that the usual
Multics operation of extending access can be carried out).

27

unclassified

1 secret

2 unclassified

Figure 8. The Need for Compatibility

28

The way access to an object is carried out in Multics is the
final characteristic reflected in the model. A user request to
access a segment causes the user's surrogate (his process) to access
every object in the hierarchy in the path from the root directory
(the object 0R in the model) to the segment of interest. This
fact implies that in the situation shown in Figure 8, an unclassified
subject would have to observe the secret object O] in order to
access the unclassified object 02: an unclassified subject cannot
observe the secret object O] because of the ss-property. Moreover,
the *-property combined with the requirement to "write" in O] in
order to "create" object 02 make any situation similar to that in
Figure 8 useless. Hence, it is required in the rules of the model
that the security level of an object dominate the security level of
its paren’c.Jr The rules to allow creation of objects and to cause
changes in an object's security level reflect this requirement, which

is termed "compatibﬂ1’ty."1u'~

The rules of this document provide a particular specification
for a secure computer system that supplies a full complement of
information processing capabilities while matching the special
requirements of the Multics operating system environment.

T Remember that if the two levels are the same, this requirement is met.

" he concept termed "compatibility" here was initially proposed and
investigated at Case Western Reserve University [9].

29

SECTION III
MORPHISM FROM MULTICS TO MODEL
INTRODUCTION

The discussion of the correspondence of the Multics security
kernel design to the mathematical model® will be phrased in terms
of a "morphism;" this stance is taken because of the verification
strategy that has been proposed for the Multics kernel design [19].

A morphism is a mapping from one system to another which
preserves one or more operations of the system. This concept can
be stated mathematically in concise form. Exposition of the
concept is better achieved by example. Suppose [I, +, +] is the
following algebraic system:

I is the set of integers from 0 to 9.

+ is the ordinary arithmetic sum operator except addition is
to be done modulo 10; that is, ordinary sum equal to
10 becomes 0, 11 becomes 1, 12 becomes 2, and so
forth.

- is the ordinary arithmetic product operator except
multiplication is to be done modulo 10.

Suppose [A, @, ®] is the following algebraic system:

A is the set of letters a, b, ¢, d, e.
@ is a binary operator defined as follows:

TThe term "model" refers specifically to the model presented in the
Appendix.

30

a & any letter in A = that letter c® c = e
b ® a = b c ®d = a
b & b = ¢ c e = b
b ® ¢ = d d @ d = b
b ® d = e d ® e = ¢
b @ e = a e ®e = d

which can be shown in table form:

a
b
c
d
e

O jajo jole ym
Do jojolo
Tliajojlajolo
OJTI [Q] o
oltojolaofo|o

{2 is a binary operator defined by:

U o o ol
Djaloljoje i} o

Ojlojlojlala] a

Qoo jojaefo
TlO 1Q. | joul @

Now define the mapping M from the system [I, +, -] to the system
[A, ® @] as follows:

31

AR

O 0O N O O B W N - O

M is then a morphism from [I, +, -] to [A, @,] since it "preserves"
the operations of + and +. This means that the value of the
expressions i + j and i - j in the system [I, +, -] have corresponding
values in [A, &, (2] under the mapping M which is the same as the value
obtained by & ing and ing the elements in [A, ¥, (4] which
correspond under M to i and j in [I, +, -]. Symbolically we

can express this as follows:

M +3)=M@E)DM () and M (i-3) =M @(H)OM (§).

By inspecting the previous definitions we can verify, for example,
that:

M(1 + 3) = M(4) = e and
M(I)& M(3) =b& Db =e so
M(1 + 3) = M(1) & M(3),

Similarly,

32

M(7 « 3) M(7) ® M(3) since
M(7 -« 3) M(1) = b and
M(7) ® M(3) = ¢ ® d = b.

1

The "préservation“ property of M can be shown diagrammatically:

+

I x 1 > 1
Mox M M
A x A @ > A
I x I - >1
M x M [M
A YA © >A

These diagrams are said to be "commutative." In each, one can get
from I x I to A by two paths; each path leads to the same
place, that is, given two elements in I (an ordered pair in I x 1)
the same element in A is arrived at by both paths.

The math model of a secure system is like the system [A, &, ©].
Corresponding to the set A 1is a set of elements of the model. The
analogy is most enlightening if we consider elements in A to
correspond to states in the model. Corresponding to the operators
@ and @ 1is a set of eleven rules. The Multics system we shall
discuss is like the system [I, +, <]. Corresponding to the set I
is a set of elements of the system; again, consider the latter to be

33

states of the system. Corresponding to the operators + and « is a
set of algorithms. Now, just as we established a morphism from

[1, +, <] to [A, @, @], we wish to establish a morphism from
Multics to the model. In other words, given a set of algorithms

for "secure" operation, which correspond to rules of the model, we
wish to establish a mapping from the elements of Multics to the
elements of the model in such a way that the algorithms (operations)
are preserved. For each algorithm we wish to be able to specify a
commutative diagram; for example:

algorithm 3

v
C-

M M

v rule 3 >v'

In this document the mapping M 1is partially specified. The algorithms
then are to be so specified as to be able to show that M preserves
operations; this specification is outside the scope of this report.

In the remainder of this section we identify the elements of
Multics and then show a preliminary correspondence of the identified
elements to the elements of the model. It remains for future effort
to show that the correspondence is a morphism.

ELEMENTS OF A SECURE MULTICS

State Elements

Corresponding to a state (b, M, f, H) 1in the model is a set
of information structures in Multics. The following correspondences
have been identified:

34

segment descriptor words >b

access control lists >M

information in directory segments
and special process security | ———————>f
level tables

.1.
branches >H .

An element (S s j’ x) in b indicates that subject Si has current
access to object O in access mode x. In Multics the same
information is conta1ned in a descriptor segment base register (DSBR),
a temporary pointer register (TPR), and a segment descriptor word (SDW).
An address field in the DSBR is a pointer to the head of the descriptor
segment for the process (subject) that is currently running on the
processor to which the DSBR belongs. The TPR gives an offset, in the
descriptor segment, to the SDW associated with the segment (object)
to which the process has access. In the SDW is a field which indicates
access permission (namely, read, execute, or write). When a process
is ready or waiting (not running) the information in the DSBR and TPR
is saved in the active segment table.

In case the object referred to in a tr1p1e of the form (S 0 2 X)
is something other than a segment, say a socket s correspondences
Tike those shown above must pertain.

An entry 45 = {r, w} in M indicates that subjec%“si has
read and write permission with respect to object Oj. Suppose Oj
is a data segment. In Multics this information is kept in an
access control 1ist. An access control 1list has the following form:
TThe Multics described in this report is derived from Organick's The
Multics System [4]. Multics, as an evolving system, currently may not

fit this description, but at this writing, the variations were of little
importance to the discussion.

"TThe term "socket" denotes a connection from a process to a physical
device for input or output operations.

35

user identification

mode of access

ring bracket

<:> user identification

mode of access

ring bracket

<:—> and so for'ch.Jr

The access control 1ist (ACL) together with other information (e.g.,
physical location) makes up a branch. A collection of branches is

a directory segment. Corresponding to %55 then we have:

D

7 ACL other

i
//
77 \
/”/ \ \
branch \ | \ \\
N \ N
\ N
o
5
Y- W
e ring bracket
$
\

and so forth.

i . » 3 3
Currently, ring brackets are associated with segments rather than
ACL's; this presentation follows Organick.

36

The security level function f of the model has the three
components:

fS: maximum security level of subjects; gfiﬁf

fb: current operating security level of subjects; &wt “ﬁ? ‘ fﬁww;f

fO: security level of objects. / P LLﬁﬂ;MAZ
T

? .é{ W’V“/Vi/m

For example, f (O) = confidential means that 0 is c?a551f1ed
confidential. Th1s information would be kept in Ewg}rectory """
segment in Multics, perhaps aswgﬁ“8§f§ﬁ§ﬁaﬁwg?wg braq/h/’ Spec1f1a
e e e e

information structures for representing | fs; and { fC have not ye?

been chosen at this writing; we postulate™ approprfaté tables

R

at a high level of abstraction for establishing correspondence to
the model.

The hierarchy H of the model is structured to reflect the étg&f
tree structure among segments realized by branches in Multics;
correspondence is quite straightforward. If Oi and Oj are
objects in the model and H(Oi) includes Oj, then 0. fis the
parent of Oj; the Multics structural equivalent of this situation

is shown in Figure 9.

directory segment

branch

branch

e data segment 0k directory
\:igment

Figure 9. Multics Hierarchy Equivalent

37

With respect to the model, the Multics 1ink is considered a
shorthand for a symbolic pathname: therefore, it introduces no
additional structure.

ROOT

Figure 10. The Interpretation of Links

From directory A in Figure 10, the symbolic name "D" is
shorthand for ">B>D."

Subjects and Objects

Aing pair (process, ring) in Multics corresponds to a
subject in the model. Corresponding to objects in the model are, at

least, directory segments, ggig_segments, certain I/0 devices, certain

addres§7spaces, and sockets. T

—_

38

Attribute Elements

The set A ={r, e, w, a} is used in the model for access mode
designation with thevfo1lowing meanings:

r--read; observe only

e--execute; neither observation nor alteration
w--write; observe and alter

a--append; alter only.

For data segments in Multics the usage attributes correspond as

follows:
Multics Model
read r
execute r, e
read and write———> W
write a.

or directory segments the correspondences are:

Multics Model
status >r

status and modify————>Ww
append >

o 1o |

search

For other objects in Multics the access attributes have not yet
Wﬂ*—u———'

been specified sufficiently to permit exact correspondences to be

established at the time of this writing.

Corresponding to the set C = {C], CZ’ e e Cq} of
classifications in the model is a set of classifications in Multics:

39

top secret >(

1
secret C2
confidential C3

unc]assified-—-—-———-——->-C4.

Corresponding to the categories K = {K], K2, N Kr} of the
model is a set of formal categories in Multics. The four
classifications above have been adopted for general use [5]; the
formal categories used in any particular installation will vary.
For example, an installation might establish the correspondence:

NATO ,,K]
CRYPTO =K,
NOFORN - Ks.

For the present implementation, a maximum of 7 categories has been
adopted as the standard.

SECURITY PROPERTIES IN A SECURE MULTICS

With the Multics/model element correspondences as a foundation,
the examination of a secure Multics can proceed with an examination
of the properties of Multics which will be deemed "security"
properties. Among these properties are the Multics analogues of the
security properties in the model; the identification of other
security properties in Multics is also included here.

The first model property reflected in a secure Multics is the
ss-property, or simple-security property. This property embodies the
military/governmental policy on disclosure, tailored to a computer
environment. In the model, the ss-property requires that every current
access involving observation (an element (subject, object, observe-
attribute) in the current access set b) must imply that the level of
the subject dominates the level of the object observed

40

SOL3LNW Ul A3uadoug-ss ayl

1 SsajeuLwop

yd

14_pcmsmmm

M 9 U

N O

qusaed

7
7

1004

412d | 3uswbas

Juswbas 404 MAS

"LL 34nBL4

$S900ud-quduand

44sd

Jusubas 403dLAdSIp

9| qe3-|9Ad] SS9204d

$59904d-3U44ND

a1

(Tevel(subject) » level(object)). In Multics, an SDW in an active
segment's descriptor segment with the r dindicator on indicates a
current observe for that process. (Recall that in Multics “read"

is the only observe access to data segments; "status" plays the
jdentical role for directory segments.) Thus, for an active process,
compliance with the ss-property means that the r (or s) indicator
is on only in those SDWs where the level of the process dominates
the level of the segment described by the SDW (see Figure 11). For
an inactive process, compliance with the ss-property means that on
activation the currently stored process information would conform to
the requirements for an active process.

In the model, the *-property places restrictions on current
access triples (subject, object, attribute) based on the value of
current-level(subject). Specifically,

- if attribute is read, current-level(subject) dominates level(object);

- if attribute is append, current-Tevel(subject) is dominated by
level(object); '

« if attribute is write, current-level (subject) equals
level(object); and

» if attribute is execute, current-Tevel(subject) and
Tevel(object) have no required relation.

In Multics, the *-property can be phrased for active processes, the
requirement for inactive processes being, as for the ss-property,
that on activation the restrictions on active processes be satisfied.
For any SDW of an active process's descriptor segment, the current-
level of the process:

« must dominate the level of a segment having the r indicator
on and the w indicator off (respectively, the s indicator

42

on and the m indicator off) as shown for segment-1 in
Figure 12.a;

- must be dominated by the level of a segment having the r
indicator off and the w indicator on (respectively, the
s -indicator off and the a dindicator on) as shown for
segment-z in Figure 12.b;

- must equal the level of a segment having both the r and
w (respectively, s and m) indicators on (segment-3 in
Figure 12.c¢);

- must dominate the level of a segment having the e indicator
on and the w indicator off (segment-4 in Figure 12.d).

In the model, the ds-property requires that every current access
(a triple (subject, object, attribute) in the current access set b)
be permitted by the current access permission matrix M (attribute is
an element of the (i, j)-component of M). The exactly analogous
condition in Multics is required for the satisfaction of the
ds-property. For every SDW and every access indicator that is on
in the SDW, the branch in the segment's parent to the segment
described by the SDW has the same access indicator on. In Figure 13,
ag = ON implies By = ON; Gy = ON implies By = ON; and ag = ON implies
By = ON. Note that (a], Ons a3) = (ON, OFF, OFF) and
Bys Bos B3) = (ON, ON, ON) satisfy the ds-property. Note that the
maximum access permitted need not be present in the SDW. As before, an
inactive process is required to be described dormantly so that on
activation the above condition holds true.

There are several other important security properties being
considered in the development of a secure Multics. Two important
correlative properties are sabotage and communication paths.
"Sabotage" in this context means the malicious alteration or
destruction of data, especially data related to the operation of

43

(ALu0) 93LuM SOLILNY 404 f3aadod g-x @Yl °q 2L dunbLy

Uy = [ana| Aq pejeuiwop SL [9AB]-3UBAAND =]

n

M

9

A

7 {ss@%04d-3ud44nd

N-ucmsmmM/////////

NO

440

~J

Q)

Z-1uaubss

N WIFREE

Z2-1Uaxed

_—3 M. - |oA9| S97BULWOP [DAB|-FUSUIND = 1

Juswbhas 40301LAISSP

M

o

pead SOL3|Ny 404 A348doud-x dYL

A

31403 LoAJ[-FUSIITD

$53204d-3Ud44ND

pz| 94nbi4

n -

™~

S " | sseo0ud-juadund

440

NO

~ 414

[-3usuwbas

WIISEE

All..ll 4asd ,

[EFUEN]

JuaWwbas 403dLaIS3Pp

31qe} L9ASL-3udAUND

. $59204d-2uUd44nd

a4

= TUSWD.

.._

TI7-535

H-3usued

¢ ~TUSlIbaS

RIRTE

£-juaded

d

7 = |9A3| S91RULWOP |[dAB[-3UBAUND =

n

93N29Xd SOLY[N| 404 AdddOudyg-x BYL

n

M

Cl

4

~. | 440

440

N~ uad

-1udWb3s

ﬁ/lllllll/

d44asda

—

TUSIbas JOTATIISIP

9] LUM-pRAU SOLI [N, 40} A3dadodg-x Byl

71 = |9A3] S[enba |9A3[-3uUBAUND

u:.._

M

]

J

NO

NO

/
. ;/ﬁ/ A2d

¢-juaubss

TUSWDaS J010TI053p

‘Pzl d4nbi4

~ :A_mmmoo;a-u:m;g:u

91qe3 |oAd|-3usJdand.

$$9204d-3Ud44N0

*221 24hbL4

n
~ "1Ts58304d=7udTARS

91qe3 [3A3[~-3Ud44ND

d4s

$59204d-2U844ND

45

$59204d-7U344N0

v

SOL3 N uL Ajuadoad-sp syl ‘gL o4nbL4
Juawbhas
~
19v| uswbas
juaJed
M 3 U
”6 N.b —6
»na Juswbhas
L 44sa S9204d-3Ud44nd

Juawhas 403dLadsap

46

critical programs. The matter of communication paths centers on the
possibility of information transmission using observable system
characteristics and a prearranged code to semaphore critical
information to an undercleared subject/process. Neither of these
topics is directly addressed by the mathematical model, although both
can be satisfactorily resolved using the model as a paradigm;

discussion of these security properties is included in the section
FURTHER CONSIDERATIONS.

RULES OF OPERATION FOR A SECURE MULTICS

Kernel primitives for a secure Multics will be derived from
a higher level user specification and will serve to match the user
specification to the particulars of the Multics architecture. Current
planning is based on the desire to change the Multics architecture
as little as possible; this will account to a large extent for
radical differences in form between actual kernel primitives and
the rules of the model.

In the interests of exposition and better understanding, a set
of imaginary kernel primitives is presented here. They are essentially
a transliteration of the model rules using Multics terminology and
elements. In this exposition the get-access rules of the model are
translated into separate kernel functions, one for each of read,
write-only write, execute attributes of the model. In Multics the
current operation is such that only one access function serves: when
a segment fault occurs (for example, as a result of a load or store),
an SDW is created, if possible and allowable,with all allowable bits
on (the r, e, and w indicators) which are on in the user's ACL.

Another difference between the set of model rules and the projected

kernel primitives is that there will be neither a change-subject-

47

current-security-level nor a change-object-security-level kernel
primitive. Nevertheless, descriptions of these rules as well as the
other nine rules of the model will be given here.

For purposes of exposition each informally specified kernel

function is given a name of the form kernel function i (kfi) with
kf1 corresponding the rule 1, kf2 corresponding to rule 2, and so
forth. Objects will be considered to be data segments; similar
operations would pertain for other objects.

48

kernel-function 1: get-read

Request has the elements:

(a) get-access
(b) process-id
(c) segment-id
(d) read

Process process-id requests that access to data segment
segment-id in usage mode read be enabled.

The following conditions are checked:

(i) the ACL (in the directory segment which is the parent of
segment-id unless segment-id = Root) 1ists process-id with
read usage (for segment-id).

(i1) the security level of process-id, as given in the
security level table, dominates the security level of
segment-id, as given in the branch extension in the
directory segment which is the parent of segment-id.

(iii) process-id is a trusted subject or the current security
level of process-id, as given in the current security
level table, dominates the security level of segment-id.

If conditions (i) - (iii) are met, then a segment descriptor
word (SDW) is added to the descriptor segment of plr'ocess-id.Jr The

1-11" the SDW already exists, then the following actions are still

appropriate--essentially the appropriate access mode bit is turned on

in the existing SDW. This remark pertains in following rules also.
49

SDW has the read bit on, is pointed to by a temporary pointer register

(TPR), and points to segment-id. The process-id receives an affirmative
response.

Otherwise process-id receives a negative response from the
kernel.

50

kernel function 2: get-write-only

Request has the elements:

(a)
(b)
(c)
(d)

Process process-id requests that access to data segment
segment-id in usage mode write be enabled.

The following conditions are checked:
(i) the ACL in the directory segment which is the parent
of segment-id lists process-id with write usage.

(ii) process-id is a trusted subject or the sécurity level
of segment-id dominates the current security level of

If conditions (i) - (ii) are met, then a SDW is added to the

get-access
process-id
segment-id
write.

process-id.

descriptor segment of process-id.

Otherwise process-id receives a negative response from the

kernel.

51

The SDW has the write bit on, is
pointed to by the TPR, and points to segment-id.
process-id receives an affirmative. response.

The process

kernel function 3: get-execute

From the viewpoint of usefulness (not security), this function is

appropriate only if the segment identified in the request for access is
a. procedure segment.

Request has the elements:

(a) get-access

(b) process-id

(c) segment-id (procedure-id)
(d) execute

Process-id requests that execute access to procedure-id be
enabled.

An appeal to rule kfl is made with "execute" replacing “read"
in condition (i) and in the action description.

52

kernel-function 4: get-read-write

One of a number of possible forms for kf4 is shown here.
Request has the elements:

(a) get-access
(b) process-id
(c) segment-id
(d) read and write

Process-id requests that read and write access to segment-id be
enabled.

Action of kf4:

(a) appeal to kfl

(b) if respbnse from kfl1 is affirmative then appeal to
kf2; otherwise response is negative

(c) if response from kf2 is affirmative, then response
is affirmative; otherwise, response is negative.

53

kernel-function 5: release-read/execute/write

Request has the elements:

(a)
(b)
(c)
(d)

release-access

process-id

segment-id
usage attribute

Process-id requests that read, execute, or write access to

segment-id be disabled.

The read, execute, or write bit in the SDW pointed to by TPR
is turned off. If no other access bits are on, then the SDW is
removed from the descriptor segment of process-id.

54

kernel-function 6: give-read/execute/write

Request has the elements:

(a)
(b)
(c)
(d)
(e)

give-access

requesting-process-id
receiving-process-id

segment-id

usage-attribute (read, execute, or write)

Requesting-process-id gives to receiving-process-id usage-
T
attribute access to segment-id.

The following conditions are checked: gt

(1)

(i)

neither the parent of segment-id nor the segment A} e
segment-id itself is the root of the directory ”fﬁbﬁﬁ(
hierarchy and the SDW for the“pgréﬁf&of segment-id

has the write indicator on. -

the segment segment-id is the root object of the

directory hierarchy or is directly inferior to the ° y D
. g fE

root and requesting-process-id i§w§119W?¢”§9m9jV¢ D LA v

access permjggjgnwﬁo the segment in the

current state.

If either condition (i) or condition (ii) is met and segment-id
is not the root object, then an entry is added to the ACL in the
directory segment which is the parent of segment-id; this ACL lists
receiving-process-id with usage-attribute usage (to segment-id). If
condition (ii) is met and segment-id is the root, then permission

55

for receiving-process-id to access segment-id in usage-attribute
mode is recorded. Requesting-process-id receives an affirmative
response.

Otherwise requesting-process-id receives a negative response.

56

kernel-function 6: give-read/execute/write

Request has the elements:

(a)
(b)
(c)
(d)
(e)

give-access

requesting-process-id
receiving-process-id

segment-id

usage-attribute (read, execute, or write)

Requesting-process-id gives to receiving-process-id usage-

attribute access to seament-id.

The following conditions are checked:

(i)

(i)

neither the parent of segment-id nor the segment
segment-id itself is the root of the directory
hierarchy and the SDW for the parent of segment-id
has the write indicator on.

the segment segment-id is the root object of the
directory hierarchy or is directly inferior to the
root and requesting-process-id is allowed to give
access permission to the segment in the

current state.

If either condition (i) or condition (ii) is met and segment-id

is not the root object, then an entry is added to the ACL in the

‘directory segment which is the parent of segment-id; this ACL Tists

receiving-process-id with usage-attribute usage (to segment-id).
condition (ii) is met and segment-id is the root, then permission

55

If

for receiving-process-id to access segment-id in usage-attribute
mode is recorded. Requesting-process-id receives an affirmative
response.

Otherwise requesting-process-id receives a negative response.

56

kernel-function 7: rescind~read/execute/write

Request has the elements:

(a)
(b)
(c)
(d)
(e)

Requesting-process-id takes from receiving-process-id usage-

rescind-access
requesting-process-id
receiving process-id
segment-id
usage-attribute

attribute access to segment-id.

The conditions checked are the same as the conditions of kf6
except, of course, "rescind" replaces "give" in condition (ii).

If either condition (i) or condition (ii) is met, then the usage-
attribute is removed from the receiving-process-id's ACL entry in the
directory segment which is the parent of segment-id; if no other
usage attributes are left in this entry, then the entry is deleted.
Requesting-process-id receives an affirmative response.

Otherwise a negative response is given.

57

kernel-function 8: create-object

Request has the elements:

(a) generate-leaf-segment

(b) process-id

(c) segment-id

(d) security-level (sec-level)

Process process-id requests that a segment be added to the
directory hierarchy directly below directory segment segment-id; the
added segment is requested to have level sec-level.

The following conditions are checked:

(i) the SDW in the descriptor segment corresponding to the
directory segment-id has the w bit turned on.

(ii) sec-level dominates the security level of segment-id,
which is recorded in the branch to segment-id, found
in its parent directory.

If conditions (i) - (ii) are met, then a branch is created in
segment-id to the created segment, using a supplied name, say
new-segment; the level of new-segment is set to sec-level. The
process process-id receives an affirmative response.

Otherwise, process-id receives a negative response from the
kernel.

58

kernel function 9: delete-object-group

Request has the elements:

(a) process-id
(b) segment-id

Process-id requests that segment-id be deleted (detached from
the directory hierarchy). This results in deletion of all segments
in the directory hierarchy which are inferior to segment-id.

The following condition is checked:
(i) same conditions as condition (i) of kf6.

If the condition is met, then the following recursive algorithm

is invoked:

(i) set current-segment-id to segment-id.
(ii) if there are no branches in current-segment-id then
do the following:

(a) delete all SDWs which refer to current-segment-id,

(b) delete current-segment-id from the hierarchy.

(c) delete the branch of current-segment-id in
its parent directory segment.

(d) set current-segment-id to the segment-id of the
parent of the segment just deleted.

(e) if current-segment-id refers to the parent of
segment-id (the original segment-id), then
finished; else do action (ii). -

59

otherwise, set current-segment-id to the segment-id
given in any branch and do action (ii).

60

kernel-function 10: change-subject-current-security-level

Request has the elements:

(a) process-id
(b) sec-level

Process process-id requests that its current security level be
changed to sec-level.

The following conditions are checked:

(i) process-id is Tisted in a table of trusted processes
or for every SDW for a segment in the descriptor
segment for process-id,

+ if the r indicator is on, sec-level dominates the
level of the segment, and

- if the w indicator is on, sec-level is dominated
by the level of the segment.

(i) the security level of process-id, given in the security
level table, dominates sec-level.

If conditions (i) - (ii) are met, then the current security
level of process-id in the current-security-level table, is changed
to sec-Tevel. The process process-id receives an affirmative
response.

Otherwise, process-id receives a negative response from the
kernel.

61

kernel-function 11: change-object-security-level

Request has the elements:

(a) revise-security-level
(b) process-id
(c) segment-id
(d) sec-level.

Process process-id requests that the security level of segment-id
be revised to the value sec-level.

The following conditions are checked:

(i) process-id is a trusted process and the current security
level of process-id, recorded in the current security
lTevel table, dominates the security level of segment-id,
found in the branch to segment-id in segment-id's parent
directory,

(ii) for every SDW for a process and segment-id that has the
r indicator on, the current level of process in the
current-security-level table dominates sec-level,

62

(iii) for every SDW for a process and segment-id that has the
w indicator on, sec-level dominates the current level
of process .,

(iv) the security-level field of every branch in segment-id
dominates sec-level and sec-level dominates the level of
the parent of segment-id,

(v) process-id is allowed to change segment-id's security
level.

If conditions (i) - (v) are met, then the security-level field
of the branch to segment-id found in the parent directory of segment-id
is changed to sec-level. The process process-id receives an
affirmative response.

Otherwise, process-id receives a negative response from the

kernel.

63

SECTION IV
FURTHER CONSIDERATIONS

INTRODUCTION

In this section we discuss topics that are related to the mathe-
matical model only indirectly. The first of these is the concept of
"trusted subjects": an attempt is made here to explicate the func-
tional characteristics of trusted subjects and the formal justifica-
tion required to make a subject "trusted." The other topics discussed
are problems that might admit modeling in an extension of the current
model but that have not been investigated in this way. These topics
are "communication paths" (the indirect disclosure of sensitive in-
formation), "sabotage" (the deliberate alteration or destruction of
sensitive information), and "integrity" (a property addressing approved
modification of information).

The topics covered in this section become important in the
certification and implementation phases of the development of a secure
computer system. Moreover, resolutions of the problems have not been
devised as yet. Hence, the discussion in this section will attempt
to identify the issues, making use of specific examples in a Multics
environment in the exposition. The discussion will of necessity not
provide definitive answers: the intent is to formulate the questions.

TRUSTED SUBJECTS

‘ Within the model, trusted subjects are those subjects not
constrained by the *-property. Outside the model, a subject, to be
designated "trusted," must be shown not to consummate the undesirable
transfer of high level information that *-property constraints pre-
vent untrusted subjects from making. The demonstration that a process
can be a "trusted" process is the concern of this discussion.

64

It is important to emphasize here that a "trusted subject" is
only required not to copy high-level information into a low-level
segment (object). It is also important to guarantee that the operation
of a trusted subject (procedure) cannot be used as a medium of clan-
destine communication. That is, trusted subjects are not involved in
communications paths, a topic we will discuss in a later section. The
focus here is on "trustedness" — not copying information into in-
appropriate objects.

A sufficient (but not necessary) condition for declaring a
process trusted is that the process is conceptually equivalent to a

set of subprocedures each of which performs an operation constrained
by the *-property and then chooses a successor. For example, the simple

procedure:

P: DO WHILE A;

IF B THEN D: = E;
ELSE F: = G;
END;
H: = 1;
END;

is conceptually equivalent to the subprocedures P1, . . ., P6 defined
and organized as shown:

Pl | DO WHILE A <

\

P2 IF B

P3 D: = E F: =G P4

P5 CONTINUE

P6 H: = 1

65

If none of the subprocedures violates the *-property (using the minimal -
conceptual current access for each Pi), then P itself would not
violate the *-property, even if, say, A were top secret and H were
confidential.

Two remarks are in order. First, the division into subprocedures
here is possibly overdone. If, for instance, D, E, and F are
secret, B 1is confidential, and G 1is unclassified, then
subprocedures P2, P3, P4 and P5 could be combined into a single
subprocedure P7. P could then be represented as follows:

o

P1 DO WHILE A <

< <
IF B THEN D
ELSE F:

T) M

P7

we we

P6 H: = 1

Since P7 does not violate the *-property, P could be shown not
to violate *-property using this subdivision also. The merits of
subdivision to instruction level vs. subdivision only as needed can
be worked out to suit individual tastes; the result will be the same
in either case.

The second point to be made about this type of demonstration is
that the condition that the process be equivalent to a number of
subprocedures obeying the *-property constraints is not necessary for

/. %@e establishment of trusted processes. In particular, if and when
A a}semantica]]y correct "write-down" from a high-level file to a
3;‘ff15w-1eve1 file can be guaranteed, the process responsible could be

66

demonstrated to be trusted. The latter situation leads directly to
the formulary concept, which is treated at some length elsewhere [20].

EXTRA-MODEL SECURITY PROPERTIES

Communication Paths

The first extra-model security property to be discussed is
communications paths. By this term is meant the indirect disclosure
of sensitive information, as opposed to the direct disclosure of
information which is addressed by the security properties of the
model. Indirect disclosure can be effected by transmitting data
piecemeal using observable system characteristics as the code medium.

A large number of observable system characteristics can be
used to transmit information, frequently a bit at a time. Possibly
the most difficult medium to rule out as a communication path is
real time: intervals of real time, delimited by prearranged
observable events and varied by using the system, can be used to
transmit information in bit strings (see Figure 14).

event event event event event event
interval 1 interval 2 interval 3 interval 4 interval 5 .,
1 0 1 0] time

Figure 14, Communication Using Real-Time Intervals

67

Examples of system uses to vary real-time intervals are computing-
to-10 ratios and paging rate. There is the possibility that
synchronous paths cannot be entirely eliminated from any system that
shares data. Examples of this type of communication can be found in
B. W. Lampson's discussion of system-performance information channels

[21] and Lipner's discussion of improvements (viz., Towering bandwidths
of paths) [23].

Indirect communication using nonsynchronous paths remains a
very complicated problem. Since a nonsynchronous path must make
use of files, system variables, and the like to transmit a message,
close and careful consideration of every possible action in a system
will discover every nonsynchronous communication path. Within the
model, however, there is no guidance for this enumerative exercise.
In addition, the exercise itself can involve very subtle interactions
of a number of objects.T Two examples will be presented to demonstrate
the subtleties involved. Both examples involve the capability to
create and destroy objects.

Suppose in the first instance that secret-process can create

and destroy confidential segments whose existence can be detected by
confidential-process (see Figure 15).

secret-process

creates/destroys

[confidential-segment |€ 25&" 2"~ — onfidential-proces
not seen by

Figure 15. An Example of a One-Bit Message

+A description of a solution to this problem may be found in [22].

68

A string of such confidential segments could easily be used to
transmit a bit string to a confidential process, by destroying those

segments which correspond to zeroes in the bit string (Figure 16).
This situation is clearly undesirable.

Mmoo (o [w] >

Figure 16. The Transmission of the Bit-String 10110

For the second example, suppose that confidential-process is
denied a request to destroy a confidential directory if there is a

secret segment inferior to it (see Figure 17).
confidential segment

\ request to
onfidential-DrOCes§ destroy

~_

secret segment

Figure 17. Another One-Bit Message
69

In this case, secret-process can alter the system's response to a

request to destroy the confidential segment by creating or destroying
a subordinate secret segment. This situation too is undesirable.

Neither of these situations is possible in the secure Multics
design. The first example is disallowed by compatibility: to
destroy a segment one must read/write the segment's parent which, by
compatibility, has a level lower than or equal to that of the
segment itself. The second example is disallowed because the
destruction of objects specified by rule 9, delete-object-group,
does not prohibit a confidential process from destroying a secret
object inferior to the root object of the destroyed subtree.
However, the care with which creation and destruction algorithms
must be designed illustrates the complexities of enumerating the
full 1ist of objects which can be used in nonsynchronous communications
paths.

Sabotage and Integrity

11
A

Sabotage, in this context, means undesired a]teiétion or
destruction of information by the purposeful action of an agent;
integrity is a property determined by approved modification of
information. To clarify the meanings of the two terms "sabotage"
and "integrity" the intended meanings of the adjectives "undesired"
and "approved" must be explicated. An alteration or destruction of
4information is undesirable if the intended and well-intentioned
users of the system deem it so; a modification is approved if these
same users consider the resulting semantic content of the modified
information to be correct. Hence, in the context of information
stored in a computer-based information system, sabotage and

integrity are closely related.

70

An act of sabotage can have two principal effects: improper
functioning of the system and incorrect semantic content. An
integrity policy attempts to prevent acts of sabotage within the
information system or to localize the effects to an acceptable
degree.

Work on a model or integrity policy implementation is proceeding
at MITRE [23]. A major problem is to specify an acceptable and
appropriate policy to govern the modification of data segments. We
consider here a simple model of integrity, leaving policy largely
unspecified, in order to further the exposition of the problem.

Suppose that a set S of "integrity levels" is given: consider
as an example the set:

Le

nonsensitive < sensitive < critical < very critical

The semantics of these terms is suggestive; the integrity policy is,
nevertheless, not specified by them since they are not formally o 5}
defined. Suppose further that integrity level funct1ons, ana]ogous & W“ b

to security level functions, are defined: Luﬂéﬁ%* l; (}nubkh*“”{

v‘ W 10{3“ Q
t m& "
Is: {subjects} ———>{integrity levels} and u,vt ‘békiﬂ(
IO: {objects} ————>{integrity levels}. [ﬂ&iﬁﬁ &{i'“rlﬁ o \
W A A
1 /EW b e {

I (subject) denotes the maximum integrity level of an object that I
subject is allowed to modify; Io(object) denotes the minimum Tlevel)
of any subject that is allowed to modify object.

Redefine a state v of the system by the inclusion of
I= (IS’ IO):

71

v={(b, M f, I, H).

We can define a simple-integrity-property (si-property), analogous to
the ss-property, as follows:

a state satisfies the si-property provided for every current
alter-access (subject, object, alter-attribute), the
integrity level of subject (Is(subject)) is greater than or
equal to the integrity level of object (Io(object)).

More formally, v = (b, M, f, I, H) satisfies the si-property
provided:

[(Si’ Oj, x) in b and x in {w, a}]
implies IS(Si) 2 IO(Oj)‘

There is an alternative formulation of the si-property, as there is
for the ss-property:

the state v = (b, M, f, I, H) satisfies the si-property
provided every (Si’ Oj’ x) in b satisfies the simple-
integrity condition relative to I (SIC rel I); (Si’ Oj, X)
in b satisfies SIC rel I provided (x = w or x = a)
e N

implies that IS(Si) 2 IO(Oj)'

Given the above extension of the model, needed modifications
to the rules of operation are obvious; moreover, intuition indicates
that assuring the si-property systemically is inductive and can be
accomplished by demonstrating si-property preservation over one
state change (as is the case for secure state preservation). No
analogue to the *-property exists, since the problem of information
transfer within the realm of disclosure has no analogue in the

72

realm of sabotage. Finally, an inverse compatibility property for
the hierarchy seems attractive; this would dictate that the

integrity level of objects be monotone non-increasing on paths away
from the root. This latter property relates to "localizing" damaging
effects of sabotage action. Actual sabotage of sensitive-directory
in Figuke 18 indirectly sabotages inferior segments, which are
necessarily nonsensitive or sensitive under inverse compatibility;
the effect of sabotaging sensitive-directory by a sensitive process
running amok would not extend to its parent, critical-directory,

nor to unrelated segments such as critical-segment, sensitive-segment,
~and nonsensitive-segment.

ROOT
(very critical)

sensitive-segment critical-directory

/
critical-segment / sensitive~ \\
directory \

/ —————————

/ \

/\ N
// \\

{ sgns1t!ve- : nonsensitive- ‘
{ inferior inferior
\ ‘ J

. —
TER e ww e cmme S oy T

nonsensitive-
segment

Figure 18. The Subtree Affected by Sabotage of Sensitive-Directory

73

e

APPENDIX

Introduction

The formal mathematical model is presented in this Appendix.
No interpretation or explanation is offered, except as subsequently
noted. The intended interpretations and correspondences to Multics
architectural elements are given in the body of this report. In
the section of this Appendix on rules, a narrative statement of each
rule is given in order to reduce the reader's inconvenience in
dealing with highly abstract symbology and in order to provide a
natural language statement of intention by which errors or policy
misdirections in the formal statements may be more easily discovered.

Elements

The elements of the mathematical model are presented in Table 1.
Some items are not self-explanatory and they are explained here.

partial ordering relation x»:

A relation R 1is a partial ordering relation if R is

reflexive, antisymmetric, and transitive.

Suppose that U is a.set and R 1is a binary relation defined
on U, with elements of U denoted by small letters a, b, ¢, . . .
etc.

reflexive: R is reflexive if xRx for each x in U.

antisymmetric: R 1is antisymmetric if [xRy and yRx] implies

75

x =y (x is identically y) for each x and y in U.
(In other words, we have xRy and yRx (symmetry) only
in case X = Yy.)

transitive: R 1is transitive if [xRy and yRz] implies
xRz for each x and y and z in U.

L ='{L1, Lys « s Lp} where L; = (Cj’ K) and Cj is in
C and K is a subset of K. Define the relation» on L as
follows:

(L1.,L.) e » = L.;oL.z(Ci,K)Jo(CJ., K') iff

J

(i) Ci 2 Cj, and

(ii) K2K'.

Since both "2" and "J' are partial orderings, a straightforward
argument shows that "»" is also a partial ordering.

Suppose C={S, C, U}, S>C>U, and K= {Kl’ K2, K3}
Ly = (C,{K{})s Lg = (Sy {Kps Kgls Lgo= (Cy {Kp3)s and Ly = (Us (K1),
The partial ordering of these elements of L is illustrated as a
digraph in Figure Al. .,

L -\\\\ \\\\\\\\s Lge
\.
ps

Figure Al: Illustration of ».
76

|

LS

$S|9A9| A3LANISS

sobajtAaLud

¥ 40 39sgns e SL 3 pue
J utL si no adaym (M ,nuv - vA

¢ uoLje|aq bulLuaspao
Letyded yiLm ﬁaq - .NJ ,_AW

sss20e |eLdads :SaLa0ba3ed

4 .
ﬁvﬂn. * . aNV_ a—.VZV
3098fqo ue 40 uotled
-LJLsseyo ¢309fgns e jo cu <ttt < Nu < —o
1 [9A9] @oUeURI|D :sSuOLjedL}LSSe|D ,ﬁcu €+ 0 ,Nu aFUw)
S?OLADpP /I ¢S3o9fqgns
= ‘sweaboad $sa|Ly Sejep :S309[qO ﬁEo feo 00 ,No ,—OV 0
uoL3ndoxa
P uL sweuabouad ¢sassdooud :s323lqns ﬁ:m fo o0 ,Nm .me S
SIILRVW3S SINIWIAT3 13S

L9POy{ BYL 40 SIUBWD|]

I sLqel

77

7

s
<

*3L 03 209dsad Y3aLM A3L4nO8S

91R|[OLA 03 30U ,pd1snul,

qng Ajuaadoad-x 03 303[Lqns
q0u saoafgns :s309lqns pajlsndl

)

:K3aadoad-, 03 399lgns s309lqns

S 40 319sqns e

)

puLosad ‘esealad
anLb ¢39b :b

ISUBWR| D 3S|NDAU

{4 B}

e}

oe

(AL uo-9314m) puadde
¢ (93L4M pUR pRAU) BFLUM M

wﬁmquB ou ‘peau OCV 931nJaXo 9

<fluo-peas :Jd :S9INGLAJIE SSII0P

SOTLNVWAS

(*3u0)) 1 aLqel

NREITERE!

13S

78

“a uegaLam

SL @ 40 jusws|d Adedjlgae ue

TsuoLsLoap ${; “a04dd ‘ou “sak} a
ELEDL
£31anoas HuLbueyd 404 s3ssnbad ”Amvm 1 x8§ = Amvm
s309lqo
JO UOL3ONUSBp U404 S3Sanbau “A¢vm 0 xS = vam
$109(q0 40 UOL}EDLJLSSe[DJ84
pue uorje4ausb 40 s3sanbad “Ame\ Tx0xSxy = Ame
$S900%
-puLdsa4 pue -aALb 404 s3sonbad nANvm ¥V Xx0xSxyYdxS§ = Amvm
$S9008
-9Sea|dJ pue -33b6 J0) S3sanbau ”APvm ¥ x0xSxyy = Apvm
G515
7s3sanbau a43yM “Apvm .H\Jv b
SIILINVW3S SINIWI3 13S

("3u0)) I °|qel

79

A usljLum

1590uUsnbas uoLSLI3P. SL A 40 juswd|d Auedlique ue mko A
X U93FLUM
‘'saouanbas 3sanbau SL X 40 juswdld Auediique ue mpm X
uoL1ouny |3A3] A3L4NJI3S JUBAUND "ow Awmvom o Awmvm%
uoL3ouny A9 A3Lundas 393[qo “ow S ut wm yoes
uotgoung |aAa| A3tandes 328fqns "m% 40} 4L ALuo pue ji mq % oq x mq 5 4
$SA0109A |9A3| AJLANI3S uL st Aum .om ,mmv = J juawWajs ue K|
saouanbas
91015 pue ‘uoLSLdoap ‘3sanbad 03
XopuL ue SL 3 Juswdl® ue Ssjusuwow
93940SLp JO uoLjedLjLjuspl
€995 aWl} B JO Sjuswd{d :S|JLpUl ISR S AR B 1
SOLINVW3S SINIW3IT3 13S

("3u0d) I ®lqel

- 80

W/

*3943 pRIJBULD

‘pojoous 9|buLs e Aq pajussaadad
aq ued Haaa7 usyz ©osul

91buLs e sey Ayosdeuaaly syl Jt

:AyodedaLy syl jo J4ed 3Sado0), a3yl

:efem:L*DHASI:u

qwxmo<

I4

*sjuLod paje|OSL pue Sd3U3
Pa3d34Lp pa300J4 JO UOLJDD||0D B
AQ pajuasaadas 29 ued Ayosdedsty
e “*9°L °‘sdwnis yim AqLssod

L, LM

0="T0 pPuUR ‘MS U4 S| 4 yoes
a0y (“oyn ut st g qeys yons
$393(q0 go {"g ¢+ + <y <lp}

39S ® 1SLX® 30U S30p a4yl (2)
¢ = (Foynutoym serndur o £ to (1)
:J1 ALuo

3S9404 B SL AyddedalLy e :saLyddedaly pue jt oﬁomg.w H UL SL H juswafd ue H
CL

"W Aq psjousp si

Aiag3us ay3 mwo 03} 8ALjle[3J4 Sd3NqLualje

m__w SMOYS xm 40 A4jua - ([*L)

A314N23S AURUOLLIDAISLD SO 83U} fyd WoAJ SOLAIUD YILM XLdjew

JUBILPOQUS €84N3INU3S uoLssLuuad wxu ue st ,xz Aes ¢ 40 JuUDWR[D ue
-$S3000 JUBAUND :S3JLJJRW SSDIDIP mﬁwmscz Co v e .Nz ._zw W
SITINVIIS SINGWAT3 13S

(*3u0)) I ®afqel

81

Z 3Juanbas a3e3s ayy ul
9301S U3-3 9Yl SL Z UL ¥Z $Z udjLUM

1S90UlaNbas s3els SL 7 40 Juswd|d Adedirqae ue mh> Z
A U331LJ4M SL A 4O
1S93e3S Juawd|d® Adeajigae ue ¢y x 4 x Jx g A
sopow SnoLJ4BA uL S393fqo 03
$309[Qns JO SS9I2R 3uUS4UND JO pUa0ddU q u333LJM SL g Jo
$39S SS320B JUALNI Juswald Auedagilqae ue S(y x 0 x S)d q
:S309[qo aALloe 3yl ssedb ﬂ.:mwxp (H)v
{S309[q0 3S840)-UOU 4udYylo Aue}
N {SOLASp (/I 3Sd40}-UOU}
$SILUR| [3OSLW N {S9|qeLieA IpLM-WILSAS} ssedb
SITLNWI3IS SIN3IW3IT3 13S

(*Louo)) 8LqeL

82

Suppose [U, R] is a partially ordered system. An element
m in U is called a minimal elément in U if mRx implies xRm
for each x 1in -U; if m 1s unique it is called a minimum. For
[L, »], as in the previous example, there are three minimal
elements, (U, K1), (u, K2), and (U, K3) and there is no minimum.
If K'=KuU {¢}, then (U,¢) s a minimum in [C x K',xl.

the notation AB:

Suppose A and B are sets. The notation AB denotes the set
of all functions from B to A. Suppose A = {a, b} and B = {1, 2};

then AB consists of

—h
it

;= 10, a), (2, by,
= {(1, b), (2, a)},
3 = {(1, a), (2, a)}, and
4 = 100, b), (2, b))

~h —h -h
N
n 1l |

cartesian product:

Suppose A and B are sets. The cartesian product of A and
B, denoted A x B, is defined by

AxB={(a, b): aec Aand b e B},

i.e., A x B is the set of all ordered pairs of the form (a, b)

where a dis in A and b is in B. Suppose A = {a, b} and
B=1{1,2}. Then A xB = {(a, 1), (a, 2), (b, 1), (b, 2)}. Notice
that B x A= {(1, a), (2, a), (1,b), (2, b)} # A xB. Notice
also that f] c B xA, f] defined above.

83

the notation PX:

Suppose X is a set, say X = {a, b, c}. PX means the set of
all subsets of X. In this case, PX = {¢, {a}, {b}, {c}, {a, b},
{a, ¢}, {b, c}, {a, b, c}} where ¢ denotes the empty set.

hierarchies:
Suppose H & (PO)O where 0 ='{0], 02, 03, 04, 05}. Restrict
membership in H by the conditions (1) and (2) (see Table 1, entry

for H). Define H ¢ H as follows:

H= {(0y, {0y, 033), (0, ¢), (05 {04, Og}), (04, ¢)s (05, ¢)}.

H can be described also by a diagraph:

Condition (1) rules out a structure such as

TR

84

and condition (2) rules out a structure such as

!

If an element of H 1imposes a forest structure on the objects with
exactly one tree, as in the example, we identify the root of the
tree by the notation OR' If H is a tree structure then 0R is
that object in 0 for which

H(OR) # ¢ and
Op £ H(0) for any 0 e 0.

If 0j is an object in 0 then Os(j) denotes that object with
respect to H such that Oj € H(Os(j)); in other words Os(j) is
“superior" to Oj by H.

System

Suppose that WC R x D x V x V. The system
2 (R, D, W, zO)C X x Y xZ is defined by

(x5 ¥s z) ¢ Z(R, D, W, Zo) iff

(Xt’ Yir Zys Zt—1) e W foreach t in T,

where z, is an initial state of the system, usually
of the form (¢, M, f, H).

Properties

We define properties in terms of the members of a state sequence.
We then say that the system has a specified property if each state of

85

every state sequence of the system has the property. The following
notation is defined.

b(S: X, ¥s « « +» 2z) = {0: (S, 0, x) eb or
' (Ss 0, y) e b or

simple-security

A state v = (b, M, f, H) satisfies the simple-security property
(ss-property) iff

SeS=>[(0eb (S:r, w) =>(fS(S) % fO(O))].
It is convenient also to define:

(S, 0, x) e b satisfies the simple security condition relative
to f (ssc rel f) iff

(i)
(i)

or

X a,
X or w and fS(S) P fO(O).

Then it is easily shown that a state v = (b, M, f, H) satisfies
ss-property iff each (S, 0, x) ¢ b satisfies SSC rel f.

*-property

Suppose S' is a subset of S. A state v = (b, M, f, H)
satisfies the *-property relative to S' iff

86

(0 € b(S: a)) =>(f0(0) > fC(S))
Se S'=> (0 ¢ b(S: y))=>(f0(0) = fC(S))
(0 ¢ b(s: 1)) = (£ (S) » £, (0)).

An immediate consequence is: if v satisfies *-property rel S
and S ¢ S' then

[Oj e b(S: a) and 0k e b(S: r)] =>f0(0j) >’ fo(Ok).

discretionary-security

A state v = (b, M, f, H) satisfies the discretionary-security
property (ds-property) iff

(S'i’ OJ’ i) e b= X e MTJ.

secure system

A state v 1is a secure state iff v satisfies the ss-property
and *-property rel S' and ds-property. A state sequence z is
a secure state sequence iff z 1is a secure state for each t e T.
Call (x, y, z) € (R, D, W, 20) an appearance of the system.
(x, ¥y, z) € (R, D, W, z,) is a secure appearance iff z is a
secure sequence. Finally, X(R, D, W, zo) is a secure system iff
every appearance of X (R, D, W, zo) is a secure appearance. Similar
definitions pertain for the notions.

(i) the system X (R, D, W, zo) satisfies the ss-property,
(ii) the system satisfies *-property rel S', and

(i11) the system satisfies the ds-property.
87

Definition of Rule

A rule is a function p: R xV = D x V., A rule therefore
associates with each request-state pair (input) a decision-state
pair (output).

A rule p is secure-state-preserving iff v* 1is a secure
state whenever o (Rk, v) = (Dm, v*¥) and v 1is a secure state.
Similar definitions pertain for the notions

(1) p 1S ss-property-preserving,

(ii) e 1is *-property-preserving, and

(iii) o s ds-property-preserving.

Suppose w = {p], Pos « + s ps} is a set of rules. The
relation W(w) is defined by

(R > D> V¥ V) e W(w) iff D # 2 and
(Dm, v¥) = 0s (Rk, v) for a unique i, 1< i <s,

Theorems

(Ri’ Dj, V¥, v) ¢ Rx Dx V xV is an action of Z(R, D, W, zo)
iff there is an appearance (x, y, z) of Z(R, D, W, zo) and some
t € T such that (Ri’ Dj, v¥, v) = (x

t* Yoo 2t fe1)
theorem Al:

Z(R, D, W, zo) satisfies the ss-property for any initial
state z, which satisfies ss-property iff W satisfies the following

88

conditions for each action (R;, D> (b*, M*, f*, H*), (b, M, f, H)):

(i) each (S, 0, x) € b*-b satisfies the simple security
condition relative to f* (SSC rel f*);

(ii) each (S, 0, x).e b which does not satisfy SSC rel f*
is not in b¥*,

argument:
(&)
Suppose z, = (b, M, f, H) s an initial state which satisfies

ss-property. P1ck (x, yo z) € Z(R, D, W, z) and write
- o),) 8 48]y forcacn te T,

2, satisfies ss-property

(Xl’ Yis 2Z7s zo) is in W. In order to show that Z4 satisfies
ss-property we need to show that each (S, 0, x) in b(])
ssc rel £,

satisfies

Notice that b{1) = (b1 L 0y (b(0) n p(1)y anq
(b(l) b(o)) N (b(]) N b(o)) = ¢. Suppose (S, 0, x) is in b(])
Then either (S, 0, x) is in (b() ()) or is in (b(])f\ b(o))
Suppose (S, 0, x) s in (b(). (0)) Then (S, 0, x) satisfies
ssc ret (1) according to (i). Suppose (S, 0, x) is in
(b(o) N b(])). Then (S, 0, x) satisfies SSC rel f(]) according
to (ii). Therefore zq satisfies ss-property.

89

if Zy 4 satisfies ss-property, then z, satisfies ss-property.

19

The argument given for "z] satisfies ss-property" applies with
"t-1" substituted for "0" and "t" substituted for "1".

By induction, 2z satisfies ss-property so that the appearance
(x, ¥y, z) satisfies ss-property. (x, y, z) being arbitrary,
Z(R, D, W, ZO) satisfies the ss-property.

(=)

Suppose X(R, D, W, zO) satisfies the ss-property for any
jnitial state Zg which satisfies ss-property.

Argue by contradiction. Contradiction yields the proposition
there is some action (Xt’ Yis Zys zt_]) such that either

(iii) some (S, 0, x) in b(t) - b(t']) does not
satisfy SSC rel f(t) or

(iv) some (S, 0, x) in b(t']) which does not

satisfy SSC rel £(8) 4s in b{t), i.e., is
1'n b(t']) N b(t)."

Suppose (ii1). Then there is some (S, 0, x) in b(t) which
does not satisfy SsC rel f(t), Suppose (iv). Then there is some
(S, 0, x) in p(t) which does not satisfy SSC rel f(t). Therefore
zy does not satisfy ss-property, (x, y, z) does not satisfy
ss-property, and so X (R, D, W, zo) does not satisfy ss-property,
which contradicts initial assumption of the argument.

20

The argument is complete.

theorem A2: X (R, D, i, zo) satisfies the *-property relative to
S'c S for any initial state Zg which satisfies *-property relative
to S8' iff W satisfies the following conditions for each action
(Ri’ Dj, (b*, M*, f*, H*), (b, M, f, H)):

(i) for each S € ',

(a) 0 € (b* - b)(S:a) = fo*(O)Ib fc*(S), and
(b) 0 € (b* - b)(S:w) = fo*(O) = fc*(S), and
(c) 0 € (b* - b)(S:r) => £ *(S) » f *(0);

(ii) for each S € S',

(a') [0 € b(S:a) and f_*(0) ¥ f_*(S)] =
0 ¢ b*(S,a), and

(b'y [0 € b(S:w) and fo*(O) # fc*(S)] =
0¢ b*(S,w), and

(c') [0 € b(S:r) and fc*(S)Jb fo*(O)] =)
0 ¢ b*(S:r).

argument:
(&)
Suppose zj = (b, M, f, H) is an initial state which satisfies

*_property rel S'. Pick (x, y, z) in Z(R, D, W, zO) and write

z, =), w8 £(8))y for cach t €T

91

z, satisfies *-property rel S'

(Xys Y95 295 20) is in W. In order to show that z,
satisfies *-property rel S' we need to show that:

0 e b (s:a) > f (”(0) » f (”(S)
(iii) S ¢ S'> 0 ¢ bl)(s)= f °()(0) C()(S)
0ebM(s:n)m £, "M (s) » ¢ 1)(0).

Suppose (S, 0, X) € b(]), SeS', xe{a,w, rr. Then either

(S, 0, x) s in (b(]) b(o)) or (S, 0, x) is in (b(]) n b(o))
Suppose (S, 0, x) 1is in (b(]) b(o)). Then (iii) is satisfied
according to (i). Suppose (S, 0, x) is in b(])(\ b(o). Then (ii1)
is satisfied according to (ii). Therefore Zy satisfies *-property
rel S'.

if z, 1 satisfies *-property rel S', then z, satisfies
v -
*-property rel S'

The argument given for "z] satisfies *-property rel S'"

applies with "t-1" substituted for "0O" and "t" substituted for
I|‘lll.

By induction, z satisfies *-property rel S' so that the
appearance (x, y, z) satisfies *-property rel S'. (x, y, z)
being arbitrary, (R, D, W, zo) satisfies *-property relative to
S'.

(=)

Suppose (R, D, W, zO) satisfies *-property relative to S'
for any initial state z, which satisfies *-property rel S'.

92

Argue by contradiction. Contradiction yields the proposition

there is some action (Xt’ Ygs Zys zt_]) such that either

(iV) (i) is false or
(v) (ii) is false."

Suppose (iv). Then there is some S e S' such that (a) is false or
(b) is false or (c) is false. Then zy does not satisfy *-property
rel S'. Suppose (v). Then there is some S e S' such that (a') is
false or (b') is false or (c') is false. Then z, does not satisfy
*-property rel S'. This leads to "(x, y, z) does not satisfy
*-property rel S' and so Z(R, D, W, zo) does not satisfy

*_property rel S'", which contradicts initial assumption of the
argument.

The argument is complete.

theorem A3: =(R, D, U, ZO) satisfies the ds-property iff Zg
satisfies the ds-property and W satisfies the following condition
for each action (Ri’ Dj’ (b*, M*, f*, H*), (b, M, f, H)):

(1) (Sys Oyus X) e b* - b=>Xxe Mét .3 and

a

(1) (S;s 0,05 X) € b and X £ MF oo = (Sys 0gus X) £ %
(<=)

If (S Oyes X) e (1) - b(o), X e M (])a' by (i), Suppose
(5,0 0,00 x) e 1V 6 {01 x4 m, (V. then (5, 0,0 %) ¢ (1),

contrary to our supposition. Thus X e Ma (])a"
]

93

(5,0 0,0» x) & b1 = (b1 (0§ M {0y, e m, (1) and
z satisfies the ds-property.

(=)
Suppose Z(R, D, W, zo) satisfies the ds-property.
Argue by contradiction. Contradiction yields the proposition

“there is an initial state Zq satisfying the ds-property and

there is some action (Xt’tyt’ Zys zt-l) such(t?at there

is some (S.» 0,15 X) e b such that x ¢ M- att
Therefore z, does not satisfy ds-property, (x, y, z) does not
satisfy ds-property, and so (R, D, W, ZO) does not satisfy
ds-property, which contradicts the initial assumption of the
argument.

The argument is complete.

corollary Al: =z(R, D, W, zO) is a secure system iff z, is a
secure state and W satisfies the conditions of theorems Al, A2,
and A3 for each action.

theorem A4: Suppose w 1is a set of ss-property-preserving rules
and Zg is an initial state which satisfies ss-property. Then
Z(R, Dy W (w), ZO) satisfies ss-property.

argument

Suppose Z(R, D, W (w), ZO) does not satisfy ss-property.

94

Then there is (x, ¥, z) in Z(R, D, ¥ (w), zO) which does not
satisfy ss-property. Suppose t 1is the least element of T such
that 2y does not satisfy ss-property. Since z satisfies
ss-propgrty, t > 0. By choice of t, Zy 1 satisfies ss-property

and z,_; # z,. By definition of (R, D, W (w), ZO)’

(Xys Yp» 24> 24_q) € W (0). By the definition of W (w), there is
some rule p e w such that p(Xt, Zt-l) = (yt, Zt)' Since z, 4
satisfies ss-property and p(xt, zt_]) = (yt, Zt) and o s
ss-property-preserving, Zy satisfies ss-property. The contradiction
shows that z(R, D, W (w), zO) satisfies ss-property.

The argument is complete.

theorem A5: Suppose « 1is a set of *-property preserving rules
and z, is an initial state which satisfies *-property. Then
(R, D, W (w), zo) satisfies *-property.

argument: The argument is that of theorem A4 with the substitution
of *-property for ss-property.

theorem A6: Suppose w 1is a set of ds-property preserving rules
and z, is an initial state which satisfies ds-property. Then
(R, D, W (w), zo) satisfies ds-property.

corollary A2: Suppose w is a set of secure-state-preserving
rules and z, is an initial state which is a secure state. Then
(R, D, W (w), zO) is a secure system.

theorem A7: Suppose v = (b, M, f, H) is a state which satisfies
ss-property, (S, 0, x) £b, b*=b u{(S, 0, x)}, and
v¢ = (b*, M, f, H). Then v* satisfies ss-property iff

95

or
and fS(S) » fo(O).

(i) (x=¢eor
(ii) (x = r or

|o
p

X
X

=

argument
(=)
Suppose v* = (b*, M, f, H) satisfies ss-property. Then

0 e b* (S:r, w) =f_(s) » f,(0) by definition. Therefore (i) or
(ii) holds since x ¢ {e, w, r, a}.

(<=)
Suppose (i). Then v* satisfies ss-property since v does.
Suppose (ii). Then for any S ¢ S we have
0 e b* (S:r, w) =>fS(S) » fo(O) since v satisfies ss-property.
Therefore v* satisfies ss-property.
theorem A8: Suppose v = (b, M, f, H) 1is a state which satisfies
*-property rel S'c S, SeS', (S, 0, x) ¢ b,

b* =b U{(S, 0, x)}, and v* = (b*, M, f, H).

v*¥ satisfies *-propelrtyJr iff

(i) if x = a, then f,(0) » fC(S);
(i1) if x = w, then f.(S) = fo(S); and
(ii1) if x = r, then fc(S) » fO(O).

+ "rel S'M is understood.

96

argument:

(=) Suppose v* satisfies *-property. The definition of *-property
applied to S, 0 and (S, 0, x) yields conditions (i), (ii), and
(i11) directly.

(<) Suppose conditions (i) - (iii) hold. Let (S;, Oj’~X) € b*
with Si e S, If (Si’ Oj’ y) €b, the *-property conditions

hold for f by the assumption that v satisfies *-property. If
(S, 0;5 y) ¢ b, (S, Oj, y) = (S, 0, x) and the *-property
conditions hold by the initial assumption of conditions (i) - (iii).
Hence v* satisfies *-property as desired.

theorem A9: Suppose v = (b, M, f, H) is a state which satisfies
ds-property, (S;, Oj, X) £b, b*=bu {(Si’ Oj, x)}, and

vk = (b*, M, f, H). Then v* satisfies ds-property iff xce Ms s

argument:

(=) Suppose v* satisfies ds-property. Then X e Mij by
definition.

(=) Suppose X ¢ M;;. Then, since (Si’ Oj, X) € b*, the
proposition ((Si’ Oj, X) e b* > X ¢ Mij) is true; therefore,
v* satisfies ds-property.

corollary A3: Suppose v = (b, M, f, H) 1is a secure state,
(S'I’ OJ’ _)S_) é b, b* = b U{(S.ls OJ’ _Z(_)}, and v* = (b*a M, f, H)-
Then v* 14s a secure state iff

(i) Si € ST and the conditions of theorems A7 and A9
are met, or
97

(i1) Si e §8' and the conditions of theorems A7, A8, and
A9 are met.

theorem A10: Let o be a rule and p(Rk V) = (Dm, v*), where
v=1(b, M, f, H} and v* = (b*, M*, f*, H*).

(i) If b*S b and f*

f, then p 1is ss-property-preserving.

(i) If b*S b and f* = f, then p 1is *-property-preserving.
(ii1) If b*<Sb and Mij*gMij for all i and j, then o
is ds-property-preserving.

(iv) If b*S b, f* = f, and M;‘jz M;; forall i and J,
then p is secure-state-preserving.

argument:

(i) If v satisfies the ss-property, then (S, 0, x) e b*
with x = wor r implies (S, 0, x) e b so that
fs (S) » fo (0) by assumption. Hence fs* (S) » fo* (0)
since f* = f. Thus v* satisfies ss-property and o
is ss-property-preserving.

(ii) and (iii) are proved in ways exactly analogous to

the proof of (i). Implications (i), (ii), and
(iii) prove implication (iv).

98

Rules
notation

The symbol "~\" will be used in expressions of the form "ANGB"
to mean "proposition A except as modified by proposition B".
Some examples follow. Suppose f 1is a function from the set
{A, B, C} to the set {0, 1, 3} defined by:

f(A) =1 or (A, 1) e f,
f(B) =0 or (B, 0) ¢ f,
f(C) =3 or (C, 3) ¢ f.

Then f~(C, 1) or f~f(C) =1 means

f(A)
f(B).
f(C)

1,
0,
1.

Suppose M 1is a matrix. Then M\\Mij < a means the matrix
obtained from M by replacing the (i, j)th element by a.
M\Mij U {x} means the matrix obtained from M by adding the
element x to the (i, j)th set entry. Similarly, the notation
f\\fo <~ fo U (ONEN(H)’ Lu) [see Pule 8] means the function obtained
from f by replacing fo by fo plus the ordered pair

(ONEW(H)’ Lu) [fo (ONEW(H)) = Lu]. The notation NEW(H) denotes

a selection function with respect to the hierarchy H which
specifies an arbitrary inactive object index.

definitions of rules

The definitions of Rules 1 to 11 are given in the following

99

pages. These rules preserve compatibility and assume the presence
of trusted subjects.

100

— [———
. RGN “*s)n q)) = (n)1y T
<L(70)% o (*s)%s pue Ls o mu O [(n M) Lx PUT 5 5 'sT> PUE Ty s TIT IS0 ¢(r <7) = (a)y T (1y) wop 7 Ny T
*35 LMADY20
fL - Fy
LML 0 b5 2 53w [0 % (')%57 0 17 2 T1 0 Loy wop s My ar (s, (3<Focts

"SS3U30RAWOD pue A3L[1qLB3] 404 INO 348| BUe SBdRUG {(d ‘Fp

N

(A fou) = (A ﬁxxv_m EHE

(1) wop 7 Ty 41

c
“0)% « (*$)°s = 3001

*(4) apow ALuo-pead ui ﬁo

129(q0 03 $S822e S)sanbad

r

A.Awmv wop £q wz 40 ulewop djousg) ., Y uL (4 °°Q .. ¢

(1)

,?mvw N g A1asi1oaud auou

+

T1Y 404 wy3Laobly

(A “ou)
)N q) “S37)
(A %)

ts 309cqng
6) = Ny (e

peat-3eb

= (A N) 1

19nd 3yl

A> nxmv Lx tuoLiouny %PL@QQLQI*

1S3tjuUewas

11y 30 uLewog

(1Y) L sny

101

. S(A fOU) = (A My) 2y IS8
aAAI a..v aZ .Avm. n.O .n.va nv .lwdx.v = A> ov_w_v N_ |||£
3

ls s 6] T [(n Mu)ze P L5 3 ‘s> P BTN

*3SLMABY]O0
fs1e [Thie 18 [(2 Zgi_st
MANmV wop 7 m 3t

"')

L(n My)zx w0 Ls s

L 2 . .0
(7S)74 o« (F0) 4> INUL

£

pua

3515 ¢(n “7) = (A “N)zd UOUT (z4) wop # Ty 3T

124 404 wy3Luobly

(r 50)

((Hesns (B Lo ts)nq) <3ak) (n M2y
(A %)

1aLn4 9yl

(A .xmvm* :uot3ounyg Ayaadouad-y

-opow () pusdde ur - 393[qo 03 $SIL SISANbIU 's goafgng :sdljuRwas

ts <6) = My L1e 2y s0 urewog

vcmmmm-uwm $(2d) 2 21y

102

A $(A “oU) = (A .wwvmm
mﬁﬁz.%.z.am,.o.wmvﬂ,gv.mmxvua>.xmvmxdmmm..zu

$(cy) wop # Ny 41

‘pus

TIT 518 (A) = (A “Nu)cy TRUT (gy) wop # N 3T

:€Y 404 WY3LA0B LY

95 1MAY10 (A <ou)
- .0
"t s 3] 8 [(eu) wop 3 T 41 (WU 0 ts)Na) TER) ¢ = (A ho)ey
(r*9)
191nd 3y

*apou () 9INIIXI ul

el = (A) gx uo3ouNy A3uadoud-y

ﬁo 199(qo 01 s$S822%e S3sanbau _m 309lgns :sdtjuewss
. |a.m, n.r < v_ .

(e (3 70 ¢°s °6) = "y Lle gy Jo uLewog

39noox9-39b :(gY) € ainy

103

)

$(A “ou)
)
!

A> nV-NS@K oS
m::mﬁzé,ho._& nq) 5F) = (a) W@

C(n M) P 15 2 ¥s] T [070)% o« (F5)% B L5 2 tslo B Py s WIT S (0 D) = (n hy)py TSGT (vy) wop # Ny IT

a

1pY 404 wylaobly

*9SLMADYI0
m = ¢ 13
L(n Maype 20 L5 3 b7 p [(F0)% e (ts)%s1 % [0 o W] 8 [(vy) wop 2 My] st ((H3 W (R0 ts)nq) “S3F) b = (n < My)py
$(py) wop 7 My 41 (r %)

:apna ayg

(F0)% = (*s)°s L = (r N)px :uorzouny Arusdoad-x

‘apoul (M) SILIM ul ho 123l'qe 03 ssad2e s3sanbau b qoafqng :sotjuewss

LG fo <ts 6) = My L1 pd 0 upewoq

91Lum-18b :(pd) v ANy

104

‘pus

T —_—
S(H 3w (X <Fo <ty -) TR) = (a Ty)gu IS

((r“7) = (r u)ou TRUF (g¥) wop F Ny IT
1GY 404 wylluaobly

39S LMABYJ0 (A %)
. = (r sy

<(gy) wop = Ny 31 ((H 3 W (X <70 <'s) - q) “53F)
;N4 2yl

Il = (A .,_Em* :uoLaoung Ayuadoad-y

n

-(Pusdde) e 4o < (3TLAM) W <(3INI9X3) 2
¢(ATUo-pesd) T SL X aaym X opow up 0 303[q0 03 $S3I00 JO IseI[3d Y3 s|eubts s 109fqns :soljuRweg

‘¥ 3 X .:vx a (X ?no Lm ‘4) = Iy Lle :GY 40 ulewoq

pusdde /37 LAm/31n0o%Xa /peal-asea[ad :(Gd) G aLnY

105

0 = (NS a0 ¥g = Mo a0y A 23035 UL V_o 03 uoLssiudad $s900e 9ALG 03 pamo||e s Yo gy anuL = (A 0 .Amv N9

‘pu2

A> ,xmvmm mme

A> ly)oy ToUT
nuvﬂm

(n <T0)
S s @0 T fq) SR
[<C(r Yo <%s) anis] PUE [%0 =
£ %o “Ysyme) 3 Yo = (%01 T8 <[(R :5)a » (%) 7 ﬁmo 4 (0301 5w (Yo # F01>1 7T DB
f(r <7) = (r Mu)ou BT (9u) wop 7 Ty IT

19y 404 wWypluobly

*9SLMIBYI0 (a “ou)
r<f(r Yo ¢¥s) 3n19] % (Yo = fo1>
a0 (n <Fo .5) 3 (% = (V%0
d0 (W :5)q Ema 2 [0 # (M%7 8 fo ¢ f03] L - (a)y
B [(9y) wop 2 mu s (e B FheNHeg) “33R)
$(9u) wop # M 41 (r <)

:3Lna 3yl

Il = (A W) 9x :uot3ouny Ajuadodd-y

BT 40 M YD 4 SL X adaym ‘X spou ul wo 07 uoisstwaad ssadde Pm 1080gns saaLb «m 1090gns :sSdtjuewss

VT e (X o cts 6 <¥s) = Ny L1e :9y 40 urewog

puadde /97 Lam/a3nooxa/pead-aALh 19 aLmy

106

‘A 27015 u 90 03 uoLSSwABd SSB00E PULDSSL 03 PIMOLLE SL 'S 441 INYL = (A Ay Y5y anrosY

(A “Ou) = (n <Ny)4 F5[8

S 3 - PN (® o <ty - q) TR = (M) 1y @
[<L(r <0 <¥s) antosmul P Yo = Fols

T <[(F:Ys)q s (%1 pue (% # o1 T30 «(r 7) = (r)y W0 (zy) wop # Ny IT

1Y Jo4 wy3Luaobiy

*3SLMABYRO (n cou)
sL<f(r Yo <¥s) an1osau] 3 [Y0 = ‘ol
a0 <[(m :Ys)q 3 (%7 5 (¥ 4 o107
% [(zy) wop 3 Ty] 41 (e ® - P @<Forts) - q)) | o= (n)y
$(ry) wop # Ny 41 (n <7)

:aLna 3y
*IML = (A &5? :uoLjouny A3uadoud-y

= = - N
T 40 M B ‘T sL X o4oyM X apow up g 03 uoissiumad ssaooe s,'s 1230gns spuidsad. 'S 1080gns :SdLjuewWsS

- — . C
v 3 X .Amvm 3 (X ¢fo ctg cu Yoy = Ny (1o 7y 40 upewog

puadde /a3 14M/a1ndax3/pead-puLdsad :(/4) £ 3Ny

107

g [(e

(MM <Foyn y (M ;55283 > 70, Weq) ¢
i <[(F0)% « 11 FUe _“:w

*9SLMABYZO0
[
0(70)% o "]

W :*s)q 3 fo] 5 [(s) wop 3 Ny] 41

(su) wop # Ny 41

ho Mo13q A130841Lp
30 (juswyoeaze ©-a°L) ,U0L}RALD, 3y} sisanbas *g

fpus

$(A ols = (r My)gy 313
$3F) = (» Ny)sy

M ”wmvn 3 wOuv IISEHERICRE

o~

18y 404 Wy3LA0blY
(n cou)

(((HIM3N (HMNgy A O 5 Oy stuta) ,mmxv = (n Tu)ey

(A <2)

¢
“onu”

1914 ayL

“INYL = (A ﬁxmv 8x :uoL3ouny Ajuadoad-,
.Aﬁnovz 3 Axvzuzo “*av1) H Aysaedaty ayy
.:4 19A3| A3tundas Buiaey ,AIVZuzo pajousdp °309lqo ue

's +3090qo ue ,sejedsusb, S 1990QNS :sOl3uBWSS

s 6) = Ny (12 :8¥ 4O urewog

(FTr11qt7eduod BuiAdssaxd) 1087q0-a3ea4d :(gY) 8 aLnYy

) Tay3 (gy) wop # N IT

108

A U (v x %8%2&5 X§) = %8&32
1(*o)doryzant = o .Av_o <Csgyy - m CoyazuLans
t(Foyn = o+ (%oyn = Lo <(loyn 3 Yo aeuz wons {Mgee<Co «loy s3080q0 yo 285 @ st Bueyd] TG [Fo = o1 oy = (“o)doryaanI

spue
n n $(n GU) = (A N6y BS[o
aAAOvuum.._.m:mlIno_,nAOvamen_ZH 3 BOaC snsi O ZDE/ZaA Ovmmmuu<m| q Jv = (A M,V_N_vmm
W (7 :ts)q = (%7 pue (Yo # f0] 7T TSI
S(n<7) = (n hy)eu TOU (6y) wop 7 Ny TT
16y 404 wyiLdaobly
39S LMABYL0 (A <ou)
" (£)s k
T Hs)a = 017 [0 # ‘o] v [(ew) wop] 3
((Foyamuzans - ws* (Copworuasnt = Mo cus n s 0 > "sue (Fo)ssanoy - a) TR [= (4 e
“(6u) wop 7 Ny 4 (A <)

. 194 8yl
AL = (A ,xmv 6x :uoLIOUNY Ajuadoad-y

*AyouedaLy BY3 ul ho 07 40LJ4B4UL $308[qQ0 [[® pue wo 40 UOL1d[Op UL S3Lhsad siyf
*(Ayd4RABLY BY] WOL} PAYIRIdp ‘°3°L) PIIB|3P 89 ho 1080q0 1ey3 sisanbau Y¢ 10afgng :soLjuRwas

: Ch (Yo <*s) = My 11 6y 4o urewog
v

‘dnoab-358fqo-93319p :(6d) 6 2Ly

109

T
(A “ou) = (A “xxvoﬁm asie
S ™M > ()N 4 W) SBR) = (v Ma)ory

U3 [o () %] Pue [(n M)olx w0 Ls 9 BT TTIIE «(a D) = (n M) oru TOT (ory) wop # My IT

101y 404 wyzLaobly

*9S LMABY30 (A <ou)
L(n My)ote 4o L5 5 fs] g = (» M)ouy
n
(™ o (*s)%51 % (o) wop 3 My] 41 ("1 > (F5)°a~3 i “q) 59%)
(oly) wop 7 My 41 (A7)
1914 ayy
C —_ r
3 :.ﬁe& « e T) g3 0]
g :.Soﬁn "™ :ts) g 0]
2 [o (F0)% <« (T :*s) a3 "0l <o InuL = (A N)oLx :uoLrouny Ardadoud-,

.:4 03 Aﬁwmvuw 40 @nleA) A114nd8s jusJdund s3L ul sbueyd e s3sanbad Fm 199fgng :sdljuewas

() (™ <*s) = M4 1o 01y 0 urewog

[9AS|-AT1IRd8S-3UaI4NI-305 qns-abuByd :{QLY) Ol aLny

110

‘Wa3SAS Je[NO134ed © 40 JUBWSIAOLUD ADLLOd |RUOLILPPE 04 MOL|R 0} 3P40 UL PIpnIdut SL IONVHD,

+m> mpmum ut —w>w~ zupgzumm s, o abueyd 03 cwso_—w st ”mquv INL = M:AMﬂo“>vmwz<:u
— s
pue “[(- ov: 3 0 yoes 404 4 o« (ovow pue AA.v 0) 4 o« 1}<=>3NdL = (T6T0°A) LYdWOD B43uM

*9sLMABY}0 (A cou)
0™ %o) 3onwm0] 2 [(™ o *A) Lwawodd B LA)LLx] B
"« Zm:ia q :5)q 3 F0)1 s 2 s yoes oyl 3 : = ()L
[<(F0)% e ™ o (*6)%5> w0 <«(F0)°s e (*9)°s 3 L5 3 FeoT 7 [(11) wop 2 Myl ar (™1 (F0)°0N sutq) “SA)
¢(114) wop 7 My (r %)
:3{hd YL
()’ « a2 (T Fo ')
g [= (3& «qs (W .mo (5)]
8 [(3& «Me=q3 (B0 YS)]
X

e
€53 'S Yomd 404 <=> ML = (A .xmv__¥ 1uot3ouny Ajuaadodd-y

.:4 03 Avovwwmmw_uuuv pabueyd ag ho 108[qo J0 |9A8| A3L4ND13S Byl eyl s3sanbau wm 209(gng :sSOLjuRWAS

) ("1 <Fo ¢ts cuy = My 1o iy so uteuog

[9A5|-F3tandas-139rqo-obueyd :{114) L1 3Lhd

111

|

.n

5=
<
[}

(r BU) = (A)L FSIE
(M 0’ e TR = (0)Ly
T [(M <Fo) 3onvkol U [(M1 <0 ©A) 1vdnod]
(0™« (5)°3) <= ((R T :5)q 2 fo1s s s uoes ét
%5 w (t5)%s P [(F

ovu:x JRAmeLOHMu "s] 3s

“|

)Ly TBW (L1y) wop # N TT

1LY 40y wylLaobly

112

descriptions of rules

rule 1: get-read

Request is of the form (g, Sis Oj’ r).

Subject Si requests access to object Oj in read-only mode

(r).

If request is not of the proper form, then response is ? with
no state change.

Otherwise, the following conditions are checked:

(1) S, has current access permission to 0j in
read-only mode.

(ii) the security level of Si dominates the security
level of Oj'

(i) Si is a trusted subject or the current security

level of Si dominates the security Tevel of Oj'
If conditions (i) - (iii) are met, then the response is yes
and the state changes by adding an entry in the current access list

indicating that Si has read-only access to Oj.

Otherwise the response is no with no state change.

113

rule 2: get-append

Pequest is of the form (g, Si’ Oj’ a).
Subject Si requests access to object 0j in append mode (a).

If request is not of the proper form, then response is ?
with no state change.

Otherwise the following conditions are checked:

(i) Si has current access permission to Oj in
append mode.

(i1) S; is a trusted subject or the security level
of Oj dominates the current security Tevel of

S..
i

If conditions (i) - (ii) are met, then the response is yes and
the state changes by adding an entry to the current access list
indicating that Si has append access to Oj'

Otherwise the response is no with no state change.

rule 3: get-execute

Request is of the form (g, Si» Oj, e).

Subject Si requests access to object Oj in execute mode

(e).

114

If request is not of the proper form, then the response is ?
with no state change.

Otherwise the following condition is checked:

(i) Si has current access permission to Oj in execute
mode.

If condition (i) is met, then the response is yes and the
state changes by adding an entry to the current access 1ist
indicating that Si has execute access to Oj.

Otherwise the response is no with no state change.

rule 4: get-write

Request is of the form (g, S5 Oj, w).
Subject Si requests access to object 0j in write mode (w).

If request is not of the proper form, then the response is ?
with no state change.

Otherwise the following conditions are checked:

(i) Si has current access permission to 0j in write
mode.

(i1) the security level of S, dominates the security
level of Oj.

115

(ii1) Si is a trusted subject or the current security
level of Si equals the security level of Oj.

If conditions (i) - (iii) are met, then the response is yes
and the state changes by adding an entry to the current access list

indicating that Si has write access to Oj.

Otherwise the response is no with no state change.

rule 5: release-read/execute/write/append

Request is of the form (r, S., Oj’ X).

Subject Si signals the release of access to object Oj in
access mode Xx.

If request is not of the proper form, then the response is ?
with no state change.

Otherwise the response is yes and the state changes by
removing an entry from the current access list indicating that Si

no longer has access to Oj in mode X.

rule 6: give-read/execute/write/append

Request is of the form (S,, g, S;s 05, X)»

116

Subject SA gives to subject Si access permission to Oj
in mode X. '

If request is not of the proper form, then response is ? with
no state change.

Otherwise the following condition is checked:

(i) object Oj is not the root object of the hierarchy
and subject Sx has current access in write mode to
Oj's immediately superior object (0)) in the
hierarchy

s(J

or

Oj is the root object and Skis allowed to give
access permission to the root object in the

current state.
If condition (i) is met, then the response is yes and the
state is changed by adding access permission for Si to Oj in mode
X to the access permission matrix.

Otherwise the response is no with no state change.

rule 7: rescind-read/execute/write/append

Request is of the form (S,, r, S, Oj, X).

Subject Sx rescinds subject Si's access permission to Oj
in mode x.

117

If request is not of the proper form, then response is ? with
no state change. '

Otherwise the following condition is checked:

(i) object 0j is not the root object of the
hierarchy and subject SX has current access
in write mode to 0.'s immediately superior

object (0)) in the hierarchy,

s(J
or
0j is not the root object and Sl is allowed to

rescind access permission to the root object in the
current state.

If condition (i) is met, then response is yes and the state
changes as follows:

(i) removal of an entry from the current access list

indicating that Si no longer has access to Oj
in mode Xx.

(i) removal of access permission for Si to Oj in

mode x from the access permission matrix.
Otherwise the response is no with no state change.

rule 8: create-object

Request is of the form (g, S Oj, Lu).

118

Subject Si generates an object. Si requests creation
(i.e., attachment) of an object, denoted ONEW(H)’ having security
level Lu’ directly below object Oj in the hierarchy
H (ONEN(H) € H(Oj)).

If request is not of the proper form, then response is ? with
no state change.

Otherwise the following conditions are checked:

(i) Si has current access to Oj in write or append
mode.

(ii) the security level Lu dominates the security level
of Oj.

If conditions (i) - (ii) are met, then response is yes and the
state changes as follows:

(i) the security level function is updated by adding the
ordered pair €0NEW(H)’ Lu) (i.e., the security level
of ONEW(H) is recorded as Lu)‘

(ii) the object ONEW(H) is added to the hierarchy such

that ONEW(H) is directly below Oj(ONEw(H) € H(Oj)).

Otherwise response is no with no state change.

rule 9: delete-object-group

).

Request is of the form (Si’ 0J

119

Subject Si requests that object 0j be deleted (detached from
the hierarchy). This results in deletion of all objects in the
hierarchy which are inferion to Oj.

If request is not of the proper form, then response is ? with
no state change.

Otherwise the following condition is checked:

(i) S; has current write access to the object
immedi i . . .
. ediately superior to 0J (OS(J)) and OJ
is not the root object.

If condition (i) is met, then response is yes and the state
changes as follows:

(i) all entries in the current access list giving subjects
access to Oj or any object inferior to 0j in any
mode are removed from the current access list.

(i) all entries in the access permission matrix giving
subjects access permission to Oj or any object
inferior to Oj in any mode are removed from the

access permission matrix.

(iii) 0j and all objects inferior to 0j are removed
from the hierarchy.

Otherwise response is no with no state change.

120

rule 10: change-subject-current-security-level

Request is of the form (Si’ Lu).

Subject Si requests that its current security level be
changed to Lu'

If request is not of the proper form, then response is 2 with
no state change.

Otherwise the following conditions are checked:

(i) Si is a trusted subject or if Si's security level

were changed to Lu’ then the resulting state
would satisfy *-property.

- (i1) the security Tevel of S, dominates L .

If conditions (i) - (ii) are met, then response is yes and the
state changes by changing the current security level of Si to Lu.

Otherwise response is no with no state change.

rule 11: change-object-security-level

Request is of the form (r, Si» Oj, Lu)‘

Subject Si requests that the security level of object Oj be
changed to Lu’

If request is not of the proper form, then response is ? with
no state change.

121

Otherwise the following conditions are checked:

(1) S; s a trusted subject and the current security level
of Si dominates the security level of Oj

or

the current security level of Si dominates Lu and
Lu dominates the security level of Oj.

(ii) if any subject S has current access to Oj in
read or write mode, then the current security level

of S dominates Lu'

(iii) if 0j's security level were changed to Lu’ then
the resulting state would satisfy *-property.

(iv) if Oj's security level were changed to Lu’ then
compatibility would be preserved in the hierarchy.

(v) S; s allowed to change Oj's security level.

If conditions (i) - (v) are met, then response is yes and the
state changes by changing the security level of 0j to Lu.

Otherwise response is no with no state change.

proofs

rule 1

Suppose v satisfies ss-property, *-property rel S', and
122

ds-property and R, e R. R](Rk, v) = (Dm, v¥) with:

(i) v*¥*=v or

(1) v* = (bU (545 05, 1)y M, £, H)
If (i), then v* satisfies ss-property, *-property, and ds-property
since v does.

Suppose (ii). If (Si’ Oj, r) ¢ b, then v* = v. Suppose
(S Oj, r) ¢ b. Then, since f(S5) » fo(Oj) according to R1, v*
satisfies ss-property by theorem A7 and, since
fc(si) » fo(Oj) if S;e S' according to RI, v¥ satisfies
*.property rel S' by theorem A8 and, since r e Mij according

to Rl1, v* satisfies ds-property by theorem A9.
Therefore R1 is secure-state-preserving by corollary A3.
rule 2

Suppose v satisfies ss-property, *-property rel S', and
ds-property and R, e R. R2(Rk, v) = (Dm, v¥) with

(i) v¥=v or

(1i) v* = (b U(Si, Oj’ a), M, fy H)

Suppose (ii). If (Si’ Oj, a) e b, then v* = v. Suppose
(Si’ Oj, a) ¢ b. Then v* satisfies ss-property by theorem A7
and, since fO(Oj) X>fC(Si) if Si e 8' according to R2, v*
satisfies *-property rel S' by theorem A8 and, since a ¢ Mij

123

according to R2, v* satisfies ds-property by theorem A9.
Therefore R2 1is secure-state-preserving by corollary A3.
rule 3
Suppose v is a secure state and Rk e R.

Suppose v* = (b U (S;, 055 e), M, f, H) and (S, Oj, a) ¢ b.

Then v* satisfies ss-property by theorem A7 and v* satisfies
*-property rel S' by theorem A8 and, since e ¢ Mij according to
R3, v* satisfies ds-property by theorem A9.

Therefore R3 is secure-state-preserving by corollary A3.
rule 4

Suppose v is a secure state and Rk e R.

Suppose v* = (b U (Si’ Oj, w), M, f, H) and (Si’ Oj, vi) ¢ b.
Then, since fs(si) P fO(Oj) according to R4, v* satisfies ss-property by
theorem A7 and, since fc(si) = fo(Oj) if S;e S', v* satisfies
*-property rel S' Ly theorem A8 and, since w e Mij according to
R4, v* satisfies ds-property by theorem A9.

Therefore R4 ds secure-state-preserving by corollary A3.

rule 5

Suppose v is a secure state.

124

According to R5 b*C b, M* = M', and f* = f. Therefore
v¥ is a secure state and R5 1is secure-state-preserving by
theorem Al10 (iv).
rule 6

Suppose Vv is a secure state.

According to R6 b* =b and M* = M y {x}. Therefore v* s
a secure state and R6 1is secure-state-preserving by theorem Al10
(iv).
rule 7

Suppose v is a secure state.

According to R7 v¥ = v or v* = (b - (Si’ Oj’ X), M\\Mij - {x}, f, H).
If the latter then it is still the case that (Sa, Ob’ X) eb>xce Map
R7 is ss-property-preserving and *-property-preserving by theorem
A10 (i) and (iv). Therefore v* 1is a secure state and R7 s
secure-state-preserving.

rule 8
Suppose v is a secure state.
According to R8 b* = b and M* = M. Since (SA, ONEW(H)’ x) ¢ b

for any S, in 8§ and x in A, v* 1is a secure state and R8
is secure-state-preserving.

125

rule 9
Suppose v is a secure state.

According to R9 if (Sa, Oa“ X) € b*, then x e Maa' so v*
is a secure state. Therefore R9 is secure-state-preserving.

rule 10

Suppose v is a secure state.

According to RI0 if f* # f then f* = f*\.fc(Si)é— L, and
10 (Rk, v) is true so v is a secure state. Therefore RI10 is
secure-state-preserving.
rule 11

Suppose v 1is a secure state.

According to RI1 if f* # f then f* = f\\fo(oj)<— L, and

11 (Rk, v) s true so v is a secure state. Therefore R11 is
secure-state-preserving.

126

REFERENCES

D. E1liott Bell and Leonard J. La Padula, "Secure Computer
Systems: Mathematical Foundations," ESD-TR-73-278, Vol. I,
AD 770 768, Electronic Systems Division, Air Force Systems
Command, Hanscom AFB, Bedford, Massachusetts, November 1973.

Leonard J. La Padula and D. Elliott Bell, "Secure Computer
Systems: A Mathematical Mode]l," ESD-TR-73-278, Vol. II,

AD 771 543, Electronic Systems Division, Air Force Systems
Command, Hanscom AFB, Bedford, Massachusetts, November 1973.

D. Elliott Bell, "Secure Computer Systems: A Refinement of the
Mathematical Model," ESD-TR-73-278, Vol. III, AD 780 528,
Electronic Systems Division, Air Force Systems Command, Hanscom
AFB, Bedford, Massachusetts, April 1974.

E1liott I. Organick, The Multics Systems, The MIT Press,
Cambridge, Massachusetts, 1972.

Clark Weissman, "Security Controls in the ADEPT-50 Time-
Sharing System," AFIPS Conf. Proc. 35, FJCC 1969, 119-133.

B.W. Lampson, "Dynamic protection structures," AFIPS Conf. Proc.
35, FJCC 1969, 27-38.

James P. Anderson, “Computer Security Technology Planning Study,"
ESD-TR-73-51, Vol. I, Electronic Systems Division, Air Force
Systems Command, Hanscom AFB, Bedford, Massachusetts, October
1972.

D. Elliott Bell and Leonard J. La Padula, "Secure Computer
Systems: Mathematical Foundations and Model," M74-244, The
MITRE Corporation, Bedford, Massachusetts, October 1974.

K.G. Walter et al., "Primitive Models for Computer Security,"
ESD-TR-74-117, Electronic Systems Division (MCIT), Air Force
Systems Command, Hanscom AFB, Bedford, Massachusetts, January 1974.

W. Lee Schiller, "Design of a Security Kernel for the PDP-11/45,"
ESD-TR-73-294, AD 772 808, Electronic Systems Division, Air Force
Systems Command, Hanscom AFB, Bedford, Massachusetts, December
1973.

127

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Leroy A. Smith, "Architectures for Secure Computing Systems,"
ESD-TR-75-51, AD AOQ9 221, Electronic Systems Division, Air Force
Systems Command, Hanscom AFB, Bedford, Massachusetts, April 1975.

Steven B. Lipner, "A Minicomputer Security Control System,"
MTP-151, The MITRE Corporation, Bedford, Massachusetts,
February 1974.

Roger R. Schell, Peter J. Downey, and Gerald J. Popek,
"Preliminary Notes on the Design of Secure Military Computer
Systems," MCI-73-1, Electronic Systems Division, Hanscom AFB,
Bedford, Massachusetts, January 1973.

R. Bisby, II and Gerald J. Popek, "Encapsulation: An Approach
to Operating System Security," USC/Information Sciences Institute,
Marina del Ray, California, October 1973.

D.K. Hsiao, E.J. Kerr, and E.J. McCauley, III, "A Model for
Data Secure Systems (Part I)," Computer & Information Science
Research Center, OSU-CICRC-TR-73-8, Ohio State University,
February 1974.

Gerald J. Popek and Charles S. Kline, "Verifiable Protection
Systems," Proceedings, 1975 International Conference on Reliable
Software, Los Angeles, April 20-23, 1975.

Peter G. Neumann et al., "On the Design of a Provably Secure
Operating System,” presented at the International Workshop
on Protection in Operating Systems, IRIA, August 1974.

Leonard J. La Padula and D. El1liott Bell, "Harmonious Cooperation
of Processes Operating on a Common Set of Data, ESD-TR-72-147,
Vol. III, AD 757 904, Electronic Systems Division, Air Force
Systems Command, Hanscom AFB, Bedford, Massachusetts, December
1972.

D. E1liott Bell and Edmund L. Burke, "A Software Validation
Technique for Certification: The Methodology," ESD-TR-75-54,

AD AO09 849, Electronic Systems Division, Air Force Systems Command,
Hanscom AFB, Bedford, Massachusetts, April 1975. ‘

Daniel F. Stork, "Downgrading in a Secure Multilevel Computer
System: The Formulary Concept," ESD-TR-75-62, AD AO11 696,
Electronic Systems Division, Air Force Systems Command, Hanscom
AFB, Bedford, Massachusetts, May 1975.

128

21.

22.

23.

B.W. Lampson, "A Note on the Confinement Problem,"
Communications ACM 16 (1973), 613-615.

Jonathan K. Millen, "Security Kernel Validation in Pr§ctice,"
ESD-TR-75-54, Vol. II, Electronic Systems Division, Air Force

Systems Command, Hanscom AFB, Bedford, Massachusetts,
June 1975.

Steven B. Lipner, "A Comment on the Confinement Problem,"

MTP-167, The MITRE Corporation, Bedford, Massachusetts,
November, 1975.

129

