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FOREWORD

This document is a collectlon of internal working
notes produced by members of the Computer Security Branch,
Directorate of Information Systems Technology,. Deputy for
Command and Management Systems, during the period of
‘August - November 1972,

Although the preliminary nature of these notes lIs
emphasized, we hope they will be an ald to understanding
the dlirection of ongolng computer security efforts, unti)
such time as more complete results are avallable. Three
efforts now underway have been Influenced by the ideas
expressed here, and future products can be anticlipated:

a; ESD-TR-73=-51, Computer Security Technology
Planning Study, by James P. Anderson, dated October 1972,

b. MITRE-MTR-2547, "Secure Computer Systems:
Mathematlcal Foundations®, by D, E., Bell and L. J.
LaPadula.

c. Flnaf report from Case Western Reserve University
under the ESD(MCI) Statement of Work, "Abstract Model for
Secure Computer Systems".

REVIEW AND APPROVAL

Publication of this report does not constitute Alr
Force approval of the report's finding or conclusions. It
is published only for the exchange and stimulation of
Ideas. ‘

] 's
MELVIN B. EMMONS, Colonel, USAF
Director, Information Systems Technology
Deputy for Command & Management Systems
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NOTES ON AN APPROACH FOR DESIGN OF SECURE
MILITARY ADP SYSTEMS

Introduction

The military has a heavy responsibility for
protection of Information In its shared computer systems.
The military must insure the security of its computer
systems before they are put into operational use. That
Is, the security must be "certified", since once millitary
Information 1Is 1lost it Is irretrievable and there are no
legal remedies for redress.

Most contemporary shared computer systems are not
secure because security was not a mandantory requirement
of the initlal hardware and software design. The military
has reasonably effective physical, communication, and
personnel securlity, so that the nub of our computer
security problem Is the Information access controls in the
operating system and supporting hardware. We primarily

need an effective means for enforcing very simple
~protection relationships, (e.g., user clearance level must
be greater than or equal to the classification level of
accessed Iinformation); however, we do not require
solutions to some of the more complex protection problems
such as mutually suspicious processes.

Based on the work of people like Butler Lampson we
have espoused three design principles as a basls for
adequate security controls: .

a. Complete Medlation =-- The system must provide
complete mediation of Information references, i.e., must
Interpose Itself between any reference to sensitive data
and accesslion of that data. A1l references must be
validated by those portions of the system hardware and
software responsible for security.

b. lsolation =-- These validation operators, a
"security kernel", must be an isolated, tamper-proof
component of the system. This kernel must provide a
unique, protected Identity for each user who generates
references, and must protect the reference-validating
algorithms,



c. Simplicity -- The security kernel must be simple
enough for effective certification. The demonstrably
complete logical design should be implemented as a small
set of simple primitive operations and system data base
structures that can be shown to be correct.

These three principles are central to the
understanding of the deficiencies of present systems and
provide a basis for critical examination of protection
mechanisms and a method for insuring a system is secure.
It is our firm belief that by applying these principles we
can have secure shared systems in the next few years.

Deficiencies of Present Systems

Most current computer systems exhibit a complex, ad
hoc security design with diffuse implementation that

violates our third principle of simpligity. Large
portions of complex operating systems execute In an
all-powerful supervisor state, so that the entire

operating system has potential security Implications.
Wwhatever nominal securlity controls exist in such bug-prone
monoliths are not effectively isolated (in violation of
‘our isolation principle) and so can be tampered with
through errors or trap doors in other parts of the
operating system.

The significance of these inherent security weakness
has been amply and repeatedly demonstrated by the ease
with which contemporary systems (such as 0S/360 and ‘GC0S)
have been penetrated. Unfortunately, this lack of an
underlying design methodology cannot be effectively
overcome by ad hoc "fixes" and "security features" built
on an uncertain foundation.

Certification

A naive (but occasionally attempted) approach to
insuring the securlty of a complex operating system is to
have a penetration team of "experts" test the system. It
is supposed that repeatedly unsuccessful penetration
attempts demonstrate the absense of security "holes'.
Such a test approach is primarily limited to penetration
attacks in areas indicated by the particular background
and experience of the individuals involved. A security
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evaluation through such attempts may reveal weaknesses of
a system but provide no Indication of the presence or
absence of trap doors or errors In areas unnoticed by the
attack team. The failure of an attack team to notice a
particular penetration route does not prove or certify
that an actual penetration attempt will overlook it at a
later date. The underlying concern 1Is that an active
hostile penetrator 1is not particularly thwarted by the
various flaws found and fixed through testing so 1long as
there remains just one vulnerability that he can find and
effectively exploit.

On the other hand our three principles lead to a
simple, well-defined subset of the system totally
responsible for information protection. We expect that
the primitive functions of this small, simple kernel can
be tested by enumeration, and other parts of the system
are not relevant to security. As a result most system
changes will not affect the kernel, so routine system
maintenance will not requlre repeated recertification.

Practical Mechanisms

An abstract security model 1Is needed In order to
evaluate the adequacy of protection mechanisms. Lampson's
capability (l.e., access matrix) model has proven a useful
departure point, and we have applied two deslgn techniques
for developing a specific secure design:

a.. The model is represented Iin various 1levels of
abstraction. The design process transforms an initial
abstract model of all the system'!s protection
relationships (derived directly from the system's specific
definitions . of securlty, thus leading to a model that is
secure by hypothesis) into subsidiary levels of
abstraction. As the design progresses from level to level
the representations of the model become more specific and
culminate In specific hardware features. The inter-level
transformations, chosen for reasons of efficiency as well
as utility, can ultimately be implemented as primitive
operations of the kernel, and since the inter-level
transformations preserve the Iinitial protection
relationships, we can prove that the resulting design is
secure. :

b. The kernel design is simplified by including only
those relevant operations that modify access control data
bases, but not those that merely read this control
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information that Is not Itself being protected against
disclosure. Consider as an example a demand paging
system. At some level of abstraction page table entries
represent capabilities that must be carefully controlled,
so the kernel will have a primitive for changing page
table entries; however, the page replacement selection
algorithm should not be in the security kernel.

Using this model, ~descriptor-based addressing
avallable 1In advanced processor hardware is seen to offer
a most promising basls for a security kernel design. In
terms of our first design principle (complete mediation),
this addressing hardware validates each memory reference
by a user's process: it Interprets the required access,
specified in the applicable descriptor. The security
kernel Iinsures security through its primitive operations,
which are invoked by the remainder of the operating system
to malintain the descriptors. Because access control s
vested in the well-defined and bounded descriptor
mechanism, kernel software functions are few enough and
simple enough to make certification tractable, as required

by simplicity, our third design principle.

Descriptor-based Isolation mechanisms (such as
Schroeder's hardware Implemented rings for Multics) can
provide effectlive as well as efficlent protection of the
security kernel. Thus, as Implied by our second design
principle (lsolation), an antagonist could have complete
freedom wlithin the remainder of the system without
compromising the protection provided.

Prospect for the Future

In the Alr force we are pursuing a development effort
for providing secure shared systems in the next few years.
in cooperation with the MITRE Corporation, we are already
applying our three deslign principles to shared
communications processors In the laboratory, and we have
begun to extend these ldeas to a design for a shared,
general purpose computer system.

We are confident that from the standpoint of
technology there 1is a good chance for secure shared
systems In the next few years. However, from a practlcal
standpolint the security problem will remain as long as
manufacturers remain committed to current system
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architectures, produced without a firm requirement for
security. As long as there is support for ad hoc fixes
and securlity packages for these Inadequate designs, and as
long as the illusory results of penetration teams are
accepted as a demonstration of computer system security,
proper security will not be a reality.






ON THE DESIGN OF SECURE SYSTEMS

SECTION 1 PHILOSOPHY

Our intent is to provide a basis for the design of
multiuser computer systems Iin which there exist security
mechanisms that provide: 1) a useful degree of flexible
security and 2) a high degree of confidence 1In the
Integrity of the mechanisms.

The problem of computer security is well recognized
and a number of systems and system designs have been
proposed. However, it 1Is often difficult to evaluate
these efforts without wunderstanding the assumptions
implicit in the system design or recognizing what portion
of the security problem the system purports to solve.

Hence, we briefly state in general terms our
conception of that part of the current military computer
security problem that we will consider, and later restate
this general conception more exactly. The kind of
security that 1Is currently desired is not complex in its
functional capability. We do not demand the ability to
handle the problems of aggregation, Inference, or mutually
suspicious subsystems. We do not attack those problems
which seem to requlre a monitoring and general
understanding of the use to which information will be put,
excepting rather simplistic controls 1lke read, write and
execute, and hence are satisfied by a set of simple
declision rules which operate on information recorded In
the system, not unlike the class of facilities that a
number of timesharing systems provide today.

The critical requirement Is extremely high Integrity:
great confidence that the specified design of the security
facilities of the system are In fact guaranteed. We
recognize, of course, that the system must provide useful
capabilities, since otherwise a guaranteed design or
implementation is vacuous. That Is, the proposed security
controls must allow the Implementation of a multluser
computer system with functlional capabilities not unlike a
number of today's common commerclally available time
sharing systems.
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In an attempt to fulfill these goals, the following
strategy 1Is proposed: develop a simple loglcal design
whose correctness can be verified, and whose elements are
both simple enough and c¢lose enough to real system
features so that Implementation of the model is reasonably
stralghtforward. :

As the abstract model Is developed, we shall be guided
by the idea of a kernel. We lIhtend : to 1isolate that
portion of the system responsible for security and place
It In a protected part of the system, in a manner
analogous to the way 1in which current supervisors are
segregated from user programs. It will be necessary to
demonstrate that this segregation Is performed in a way
that guarantees the kernel's integrity and also guarantees
that the kernel Is always Invoked to arbitrate attempted
references. These tasks are eased by the fact that we
will design our security model so that it can aid in
protecting itself, '

By segregating the responsibility for security, the
problem of verifylng the system's security mechanisms
becomes that of: 1) demonstrating that the kernel is
always invoked, and 2) verifying that the kernel operates
properly, The problem has been greatly reduced from that
of verifying properties of an entire operating system to
that of verifying a (presumably) small portion of it.

The design model should consist of several levels of
abstraction. The top level Is a 1logical description of
security systems; the lowest level closer to a possible
machine Iimplementation. Higher levels are more machine
independent than lower levels. The intent is to prove the
correctness ot an upper level machine independent model,
and demonstrate that translations to lower, more speclific
levels preserve the relevant properties of the top level.
Through the use of this top down informal structure, we
hope to demonstrate the correctness of an implementable
design for a secure system. Lest readers labor under any
misconceptions, it should be polinted out that while the
"proof" structure Is top down, the system design certainly
is not. Falrly well defined 1Ideas of the desired end
product exlist. The top down approach is primarily for
purposes of description and proof.

A remark should be made concerning the meaning of
"correctness", and ‘'“proofs of correctness". A system
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cannot, In a vacuum, be proved correct. |t may, however,
be possible to demonstrate that a system deslign agrees
with, or fulfills, certaln gxternal criteria, that Is,
conditions which are not explicitly part of the design.
These external criteria specifically characterize that
“computer security problem" which we consider,

We will demonstrate that 1In certain cases these
explicit, external criteria can be made part of the system
design, in such a manner that they are always applied,
reducing the problem of an informal correctness proof.

A last constraint is placed on the design by the need
for efficiency. The security mechanisms should not
markedly degrade the price/pertormance characteristics of
a system. The effect of this constraint is more apparent
as discussion moves closer to implementation.
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SECTION 2 - A SECURITY META-MODEL

Introduction
The following approach Is intended as a guide for the
logical design of computer security systems. The

description applles to a wlde class of security systems,
including most of those in practice or proposed today.

Naturally, then, the meta-model does not provide an
Instance, or Iimplementation, of a useful secure system.
Using the meta-model, for example, one can provide
Inappropriate standards for correctness, or one can design
a system that Is not useful. As a case in point, whether
or not provision |Is made for the operatlon of
“"cooperating, mutually suspicious process'", Is Irrelevant
to the meta-model.

However, the security meta-model allows one to relate
various speciflc models, and provides a specific guide to
those actions necessary to guarantee the correctness of a
security design.

Notation

In the following discussion, some non-standard
notation is used to linearize formats. Several
conventions should be pointed out. Subscripts are
enclosed In square brackets. Sets are labelled by capital
letters, and elements of that set are generally labelled
'by the same letter, but In 1lower case and subscripted.
Hence alj] refers to the j-th element of the set A.

It Is occasionally necessary to speak of the names of
members of a set, rather than the members themselves. The
set of names which corresponds to a set of elements is
denoted by an underline. So, for example, the set A, with
elements a[j]l] 1Iis a set whose elements are names,
corresponding to the set A.

Last, the power set of a set X Is written P(X).
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Brief Description

The model Is described iIn set theoretic language, and
has six major components. Flrst Is the set 0 of security
i : the elements of the model, reflecting those
physical or 1logical parts of a computer system that need
to be controlled, protected, or whose status needs to be
guaranteed. The objects are partitioned into disjoint
classes, each containing objects of similar
characteristics. An tncomplete 1ist of examples Includes
‘terminals, communication i1lnes, processes and files,

Second, a set A of access tvpes is presented. Each
access type Is a program which effects a particular
varlety of access, such as read, write, or execute. An
attempted access operation Is then completely specified by
an access type and some meaningful collection of objects,
1.e. a particular process being directed from a glven
terminal attempting to reference a specified page In
memory.

Third, a collection of descriptive data D[k], from
the set of all possible descriptive data collections D is

required. DLK] specifies the information that forms the
basis by which securlity decisions will be made. The
subscript k indicates a time dependency.

Fourth, an evaluation program, E decides, for any
meaningful grouping of objects, what operators are to be

allowed.

Fifth, an update program ] is characterized
separately. This program ls the means by which the

descriptive data are changed. Operationally, this Is the
manner by which access decisions may be altered.

In many real Implementations, the distinction between
the evaluation program and update program may not be
clearcut, since the descriptive data 1Is 1llkely to be
stored and protected like any other security object. Both
programs are treated here so that thelr similar nature Iis
apparent, Nevertheless, the distinction will be useful
since Implementations of the two programs may dilffer. E,
while likely to be software implemented, calls upon access
programs to do Its actual work, and these may be at least
partly if not wholly built In hardware. ¥ on the other
hand In many cases will be almost exclusively software and
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actually changes the formatted descriptive data.

Last, external correctness criteria are required.

These are a set of rules, or standards T, by which the
system Is to be adjudged correct. These standards must be
external to the system description up to this point In
order to be meaningful.

A securlty system S Is then specified by the
six=-tuple:

, S = (01 A, D, E, Ua .
Ihe Components of the Model

Security Objects

The flrst component of the model, the security
objects, is a finite set O:

0 = fo[1], ol2], ..., o[z]%.

These are the only objects to which access will be

controlled by the model, and by a resulting
Implementation. :
Access Tvpes

. The second componentiof the model is a set of access
types: :
|

| A= f'afbjc 3[111 aE?]l es ey aEWJg

Each a[l]l is a program whose effect will be to provide a
particular variety of access, read, write, or execute for
example. The 1lst of arguments for each a[l] must be
finite and contain names of security objects. in
addition, afol]l 1Is designated as the pull access program.
This program will be Iinvoked when access Is to be denied.
It can keep audit trails, set up warnings to
adminlistrators, etc.
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Descriptive Data

The third component, the descriptive data, is merely
a set of tuples:

DLk] = f dlk,11, d[k,2], ..., d[k,v] €,

with some finite upper bound set on v. We depa?t somewhat
from our strict set theoretlc notation by speaking of the
structure of a tuple.

Each tuple is only assumed to have a bounded number of
entries, the first of which acts as a "data descriptor" to
distinguish among tuples of different formats and content.

For example, one type of tuple might be an encoding
of a matrix entry In Lampson's model [L]; the entry
expressing an access relation between two security
objects. Another might express a property: user x belongs
to project y, or has clearance z. A property may also be
valld only for several users jolintly. Such circumstances
do not flt naturally Into a matrix representation of the
descriptlive data, so tuples are preferred here.

Explicit use of the structure of the descriptive data

will not be made - in the following discussion of

correctness, although It is necessary in the more detailed
proof. The finiteness of both the length and number of
tuples will be useful here, however.

Let X+ be the set of all allowed tuples, and D =
P(X*) the power set of X*. Then D[k] is some member of
P(X*),

Evaluation Program

The third portion of the model 1is an evaluation
program E which uses descriptive data to make decisions
concerning access. For any evaluation program, the list
of arguments Is composed of some fixed number of objects
from each partition of the security objects 0, and an
access type; the name of an element in A. For
convenience, those objects are denoted by 6.

The task of the evaluation program 1Is to decide

whether or not the specified objects may be assocliated Iin
the manner expressed by the access type and to indicate an
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appropriate action. That indicatlion Is done by selecting
the appropriate access program and specifying 1Its proper
arguments.,

The evaluation program E takes a 1ist of object
names, a particular descriptive data configuration, and
the pame of an access type (names of elements are
underlined); and returns the allowed access program
together with the argument list for that access program.

B Is composed from an access rule E. E Is a fairly
arbitrary program that is assumed only to 1) termlnate,
returning true or false, and 2) be read only.

The intent 1Is  that E describe conditions to be
fulfiltled in order to allow access. It may be an
arbitrary function of lts arguments, although often such
programs are falirly simple.

Then the program E may be written as follows:

l‘! :kp.r_qs.l(e, DCk], alil) returns list;
OCK;

E(e, DLk], alil)
then begin unlock; call a[j](8) end;
gﬁig begin unlock; call af[o](8) end;

The 1ist which Is returned specifies an access type
and the argument list for that program. The arguments for
E are the same as for f ltself. :

The functions logck and -are understood to act
on a single semaphore, as Dijkstra's operators P(x), V(x).
it Is necessary to coordinate the operation of fF and ¥ so
that E 1Is not reading D[k] while ¥ Is updating D[k].
Otherwise, It would not be possible to prove that E and V¥
perform in all cases as clalimed.

Update Program

The update program Is the means by which descriptive
data 1is changed. Hence it 1Is the manner by which
decisions that the evaluate program makes can be affected.
Let ©6' denote the set of arguments for the update program

which are security objects, DLy] is the current
descriptive data, and Dfz] 1Is the data to which it is
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desired to change. Y ylelds either the original data,
prohibiting the change, or the new data, having allowed
the change.

The update program, foo, is compdsed from some
effective procedure U, simlilar In purpose to E, and so the
update program ¥ may be wrltten as:

W : proc (e', Dfy]l, D[z]) returns element of D;
lock;
1f U(e', DLyl, D[z])
then begin unlock; return D(z] end
else begin unlock; return D[y] end
The argument; for U are the same as for the procedure
itself,

Ihe Correctness Criteria

The security objectives of the access control system
are the qualities that it Is necessary to guarantee, For
a certain well defined class of criteria, there is a
straightforward method of taking a loglcal description of
a security system and altering that model to provide a

derived system model iIn which the given correctness
criteria hold.

The correctness crlterta are expressed as a set T of
predicates:

T = {tcl], tEZJ' co ey t[Q]3~

These are the predicates that must be proven true for the
system.

In this model, predicates may be expressed In one of
two forms, and so T Is partitioned Into two subsets Tl and
T2 corresponding to the two alternatives.

T; tfil Is in Tl then It may be any predicate
expressible In the following functional form:

tlil] : @ x D x A -> ftrue, falsel.

The interpretation of predicates In Tl is that the object
list from 6 may be assocliated with access type aljl in A

and a glven D[k] in D only if t[i] is true.
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If tfi] is in T2, then it may be any predicate
expressible in the following functional form:

tfil : 8' x DLjJ x DLk] -> ftrue, false®
The interpretation 1is that the descriptive data D{j] may
be changed to D[k] by the objects expressed by 8' only if
tfi] is true.

Let

71 = And (t[i]) for all t[i] in T1 and

let
T2

Tl and T2 take the same arguments as the t[i] and t[i],
respectively., ’

And (t[j]) for al1l t[;] in T2.

To demonstrate that a system 1is correct, it Is
necessary to guarantee the truth of T1 and T2. Below, a
simple way Is shown to take any security system S and
derive from It a system S' for which the given T1 and T2
are true.

Derivation of Correct System

System Specification

As described, a securlity system S is a tuple:
S =1(0, A, D[ol, E, ¥V, T)

0 Is the object set, A Is the set of access types, DLol is
taken as the set of tuples which comprise the initlal
descriptive data, E Is the evaluation program, ¥ Is the
update program, and T is the set of predicates to be
guaranteed. }

For a particular system S, the entries A, E, ¥, and T
are fixed. The descriptive data D[k] may be varied by use
of ¥, Then the state of a security system S can be
completely expressed by Its descriptive data DLCk], for
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some k. The update program is the means by which a system
S may change states and the compound predicate 72
expresses the constralnts on allowed state changes. The
evaluation program £ "interprets' a particular state, and
T1 expresses the constralnts on E.

Given a securlity system S = (0, A, D[o], E, ¥, T),
system S' = (0, A, D[fo], B', V', T) is produced by the
following Inclusion step.

E' is derived from E by the follow]ng change.
Replace "E(...)" by "E(...) and T1(8, D, a(i])".

¥' is derived from ¥ by the following change:
Replace "U(...)" by "U(...) and T2(8', D[y], DLz])".

Correctness Proof
First It is helpful to define a few terms.

A state D[n] of a system
S = (0, A, D[o], E, ¥, T)
is yalid iIf and only If D[n] can be obtained from D[o] by
a finite number of applications of ¥ and, for each such
transition from state DCk] to D([k+11,
T2(8', DCk], DLk+1]) = true
for some 6'

Second, a state D[k] ls accurately Interpreted if and
only If for any 8 and any j:

p(e', DLk], D[j1) = (8', alo]) whenever
71(95 D[kl, aCJJ) = false (where alo] is the null access
type).

Then to say that a system S is gg;ngg Is meant the
following:

1) Every state obtalnable from D[o] is valid, and

‘ 2) Every vallid state Is accurately interpreted.
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We now state the following (system correctness)

theorem;

Glven a security system
s = (0, A, D[ol, E', ¥', T) with T partitioned
into T1 and T2;
and S$' = (0, A, Dlol, E'; ', T) derived from S
by the Inclusion step
then §' Is gorrect.

An easy way to prove the theorem is by contradiction.
Suppose the theorem false. Then, by definition of
correct, S' reaches an Invalld state, or a valid state is
inaccurately interpreted.

1: Assume an Invalid state. Label that invalld
state D[k1. Then there must exlst a sequence of states
brol, 0r11, DL21, ..., DCLK]l such that ¥ (O8(1J, DLiT,
DCi+1]) = DLI+1] for all i<k, since Y makes the transition
from state to state.

Now D[ol is valid by definition. D[k] is invalid by
assumption. Then there must exist a non-negative Interger
j, less than k, such that D[jJ Is valid and D[Cj+1]) s
invalid. Hence, by definition of vailid, 7T2(8, DLj],
DLj+1]) is false. But ¥(e, DLj], DCj+1]) = DLj+l11. By
inspection of V¥, these two conditions cannot hold, and
hence a contradiction Is reached. :

Case 2: Assume an inaccurately Interpreted valid
state. Call that valld state D[k]. Then by definlitlon of
an accurate lInterpretation, for some O8LiIJ and aljl, the
following Is true.

71¢6C17, DLKk], aLlj]) = false and

g (8Ti1, DCkl, atjl) # (8, alol)
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By inspection of F, this is a contradiction. Hence every
valid state is accurately interpreted.

Both cases are Impossible. Hence the theorem cannot
be false.,
qed

This proof is of course nearly tautologic in nature.
Discussion

This security meta-model and the inclusion technique
are intended as an ald in the design of secure multiuser
computer systems. Hence some of the assumptions and
implications inherent 1In the cholice of language, model
and technique ought be made explicit.

The primary influence Iin this meta model was the
realization that its value Is solely in its ability to aid
the Implementation of a demonstrably secure system. Hence
the model and its elements must conform to the modules and
capabilities of computer systems not unlike those in
existence today. At the same time, a simplicity and
coherence was desired, reasonably free of implementation
questions, that would provide some understanding of the
contemporary security problem. 1t is felt that the basic
concepts explicated here are a reasonable start toward
these goals, although It is freely admitted that
exposition, notation and other details may require
improvement.

A number of implementation implicatlions of this meta
model can be mentioned.

First, it should be pointed out that effective
procedures exist for the update and evaluation programs,
the predicates from which they are composed, and the
predicates which make up the correctness criteria. This
fact is a result of the finliteness of all the sets
involved in the meta-model. That effective procedures
exlst for all the predicates in the theorem set T makes
the 1iInclusion technique actually useful. In certain
actual Implementations of course, it may be possible to
demonstrate the truth of some of the correctness criteria
without dynamically verifylng them at run time.
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No claim of efficiency is made In this model, since
for any particular system the predicates may be complex
and the descriptive data specified in a manner that
requires a great deal of work to check the given
predicates. On the other hand, as will be demonstrated in
a companion paper, the correctness criterla predicates for
certain real problems are rather simple, and careful
design of the descriptive data can greatly aid efficiency
while remalning faithful to this meta-model. It 1Is this
fact which really guarantees the effectiveness of the
Incluslion step.

The next abstract level is sketched In a companion
paper In order to demonstrate that a useful security
system can be described wlth the 1language of the
meta-model, showing that the meta-model is not vacuous.

-1t Is Lmnm:mmmgigmmwﬂm
everything that this model contains, and
else. Hence the meta model defines the boundaries
of the kernel, and the ability to use the kernel to
protect parts of Itself will allow one to provide
carefully controlled access to the kernel itself.

sSummary

The meta model provides a language for describlng a
useful class of securlty systems. It easily lends itself
to the wuse of a technique which  guarantees that the
objectives of the system are fulfilled by the model. The
concepts of the model are relatively simple and bear a
reasonably close relation to the kinds of computer systems
in existence today, suggesting the possibility of
providing, with high confidence, a faithful implementation
of the model. An accurate implementation of a desired
security design is, after all, the primary goal of all of
this work .
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MUSINGS CONCERNING A SPECIFIC SECURITY MODEL

(The - following thoughts were sketched under
significant time constraints and are released in their
present form only with considerable reluctence.
" Nevertheless, it Is hoped that a wuseful partial
explication is provided of the applicability of the ideas
previously presented, speciflcally the kernel and the meta
model design approach.) '

With the general outline of the security meta-model
in mind, we sketch a model of a particular security
system. It is not an extremely general one, but rather Is
intended as a statement of current military needs In a
context that- both provides a basis for a proof of
correctness and can lead fairly directly to an
implementation. To make it clear that Iimplementation |is
possible, the flavor of the structure is taken from the
exlisting file system of Multics.

A few notes should be made concerning the intended
environment of this model. An on line multiuser computer
installation is expected, where the mechanisms proposed in
this model, directly or indirectly, check every reference
made to information contained in the system.

TI an ) ! P

The object set 0 might be partitioned into four
subsets: :

Ot = a set of terminals
Ou = set of users

0d set of data objects

Os set of security objects

Terminals are meant to be representative of the entire
class of 1/0 devices, and could Iinclude teletypes,

- printers, tape drives and the 1like. For every user

recognized by the system, there is an object in Ou; the
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"user process'". Data objects include both executable and
non-executable objects; the 1items that the system is
intended to protect. Lastly there are security objects.
Security objects contain the iInformation upon which
security declisions will be made. There are two
distinctions between data objects and security objects.
First, security objects will have a rigidly enforced
internal structure necessary for proper operation of the
security system, while data objects are format free -
completely free form iInternally. Second, security objects
will be accessed directly only by the decision and update
programs. ’ '

Names of objects wlll be requlired distinct, of
course. ‘

| _
The Dgsc:!g;iVe Data

As already mentioned, the descriptive data is
contalned In the security objects. This containment
provides a manner by which access to the descriptive data
itself can be controlled by the mechanisms of the model.

Any sécurity object os(i) iS an orderedf list of
descriptors _

os(i) = &d(1), d(2), ... d(n)¥
where a descriptor is an n-tuple, and n25
d(i) = [Q' _m' S_, 2' f‘(l), t’(2), ooy T(k)J

In any descriptor, @ is the name of a member of the
object set 0.

The second element, m is a mgmber of the mode set M.
M =§1, 2, 3, 4, 5, 6, 73
The compartment 1list is the third entry.
It is useful to be able to 1abel an object as a

member of any number of several areas, or compartments.
Hence a set of compartments is defined:
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¢! = fe(l), c(2), ..., c(17)3
and for convenlence we also defline
¢ = P(c) , the power set of c'.

Any compartment list Is the name of an element in C.

The remaining entries except for P are relations;
there will be an arblitrary number of them. To describe
relations, define first the access type set A',

A' ={copy, write, execute, read, update3
and also A = P(A').

Then any relation is a 2-tuple [ou, a] whose first entry
is a user name: of an object from Ou, and whose second
entry iIs the name of an element of the set A '

Each member of the access set can be thought of as a
program whose effect Is to provide a particular variety of
access. The necessary parameters are specified later, but
it Is assumed in this sectlion that these programs are
correct. What such programs actually do, of course,
provides the semantics for thelr names. :

It is Intended that the access types copy, write, and
execute apply to data objects: write and execute have the
usual interpretation, while copy Is synonomous with the
usual definition of read. Copy is a better mneumonic for
the actual ability provided. Read and update are access
types that refer to security objects, and will have the
suspected meaning. The last entry In the descriptor not
vet mentioned is p. This entry Is a specification of the
actual, machine dependent 1locatlon of the object whose
name is the first entry In the descriptor.

The format of the security objects' internal
structure has now been Informally defined. Some additions
will be required 1ike indicators of the number of
relations in a descriptor and the number of descriptors in
a security object. Additional restrictions, on the actual
content of security objects, will be Imposed by initial
conditions and the updating procedures. '
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Before continuing, It may help to dlscuss the
motivation for the format selected, and the Iintended use
to which the data will be put by the access and update
programs. One will be able to represent the total
descriptive data by a tree, where the nodes are security
objects, and the edges from father to son are indicates by
descriptors whose mode entry Is s, for security object. A
tree 1ink l1ies between a securlty object named by the
entry. Descriptors with other modes specify terminal
leaves: the other objects, terminals, users, and data in
the model. This tree structure provides the manner by
which access to descriptive data can be controlled, slince
each node contains the Iinformation relevant to access
control for each of its sons. Access to the root node s
treated differently - 1[It will be free for read, but not
possible to change. :

The update program will guarantee that the name
actually stored in a descriptor 1Is unique: no two
descriptors will have the same name entry.

‘The totality of information about objects ' that the
security system will employ to make access decisions is
contained in the descriptor.

The Evaluate Program

The program is the manner by which the descriptive
data is interpreted to control access to data objects.

First, we assume the existence and correctness of the
programs which make up the access set.

Each such procedure takes as arguments a user name, a
terminal name, and a data object name. |Its action is to
perform those hardware and/or sof tware operations
necessary for the access to take place. :

In addition, we assume the existence of two correct
procedures, user and terminal, which return the name of
the wuser object which has initiated the current access
request, and the terminal from which the request was
initiated, respectively. In addition, we assume the
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existence of a gccess tvpe program, that returns the kind
of access requested: the name of an element in A; and a
reference program that returns the name of the data object
to be referenced. (These two programs need not be proven
correct.) We also assume the existence of a program nuyll
which may be a nop, but may also initiate recording of
certaln parameters for later (Inspection. Null is only
guaranteed not to grant any access.
|

The evaluate program In its 1initial state is
relatively 'simple. To keep questions of implementation
buried for the moment, we assume the existence of another
correct program.

Relation (b, ¢, d) has arguments b=data name, c=user
name, and d=access type name, the name of a program in A'.
This program vreturns true |ff: 1) there exists a
descriptor entry specified by b, and 2) there 1is a
relation tuple [c, kI 1In that descriptor, where k
speciflies a subset of the access types which Iincludes d.

An Initial evaluate program might then be written
following the outline in the security meta model, but with
relation (reference, user, access-type) replacing E in the
evaluate program E. Note that while the terminal involved
In this activity has not been Included iIn the check, It
would be a simple matter, given the existence of the

routine terminal.

T Upd
To more eaSlly describe the update program at this
level we again assume the existence of several programs:

create (o, 0s) creates the object with name o
and adds a descriptor In os with default sensitivity and
compartment list.

delete (o, 9s) destroys the object 0o and removes
Its descriptor from gs.

read (os, 1, j) returns the value of the j-th
entry in the i-th descriptor in security object gs.
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write (os, I, j, val) sets the contents of the
j-th position in the I-th descriptor in securlty object os
to val, If there exists an i-th descriptor.

We assume that the above programs are correct. We also
assume that there is some mechanism, not required correct,
by which a user program may communicate its wishes to the
update program. The set of arguments with which the
update program must be invoked are: 1) the name of the
object whose descriptive data it Is wished to change, 2)
the name of the security object to which the object
belongs, 3) the operation that is desired (which program
to invoke), and 4) the relevant input parameters to that
program (the desired new values in a descriptor).

It should be fairly straightforward to sketch an
update program, given the outline in the meta model and
the above correct routines.

Iheorems

It is now necessary to specify the objectives of the
system design. These, {in some reasonably specific
language, are the criteria to which It is desired the
system conform. We first state the requirements, as
currently understood, in rather informal English, and then
begin to formalize them In terms of the specific model at
hand. These requirements are relatively simple, and do
not provide some of the guarantees that are currently
desired by some segments of the computer community.
However, at this point, it Is believed that current and
short range future military requirements would be
satisfied. Informally, there are four requirements. 1)
No user shall have any access to an object if the
sensitivity rating of the user, at the time that Initial
access is attempted, is less than the sensitlvity rating
of the object. 2) No user shall have any access to an
" object If the set of compartments associated with the
object at the time of initial attempted access is not
contained by the set of compartments associated with the
user. 3) No wuser shall have any access to an object
unless authorized by a "need to. know" specification at the
time of initial attempted access.

The problem of demonstrating that these criteria are

always applied in this model can be approached in the
following way. First prove that the format, or structure
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of the data base will have the properties that are
described in the descussion earlier. This amounts to
proving a number of assertions about the effect of the
update program.

Then state theorems one through three
algorithmically. Modify the decision process 1in the
access program to invoke the above algorithms as part of
the decision process litself in such a manner that a) it is
simple to show that the algorithms are always applied In
the decision process, b) the parameters they are supplied
are appropriate, and c) the result of the algorithms has a
controlling effect on whether or not access Is granted.

As an example, we restate the first two requirements
below, using the notation: sensitivity (x) and
compartment (x) to mean the sensitivity and compartment
entry in the descriptor for object x, respectively.

proc label-check (user, object);
check <~ true:;

if sensitivity (object) > sensitivity (user)
then check <- false;
if compartment (object) ¢ compartment (user)
v then check <- false;
return check; ,
end;

In the above, the symbol > means the binary
arithmetic operator 'greater than". The symbol ¢ is the
negation of the set theoretic property of "contained in",
It is presumably clear that programs for all of the
operations and checks required for the procedure
label-check are straightforward in 1ight of the data base
provided by the security objects.

The decision program Is then modified by replacing
"relation (...)" by

"relation (reference, user, access type) and
label check (user, object)".

The truth of the three requirements can be guaranteed
in this manner, If In addition a consistent data structure
is assumed for the security objects.
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This approach is equivalent to dynamic checks at run
time of the state of the system. Certainly it is possible
that careful construction of the logical structure of the
system could obviate the need for some run time checks, in
a fashion analagous to certain programming 1languages.
While that approach might be more efficient, these checks
do not appear particularly costly. Also, the logical
correctness of the system probably could be more easily
demonstrated under these circumstances, particularly in
the face of changes to the system.

-The preceding sketch has been Intended only as a
resonability argument in support of the viabllity of the
security meta model. There is no claim here of the
accuracy of the detail. Rather, it Is only argued that
the highly modular, tree structured proof structure for a
security kernel is a viable and effective manner to deal
with the task of correct security system design.
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CHAPTER 1 INTRODUCTION
1.1 Secure Operating Systems - General Goals

The security aspect of shared computer systems has in
the past not recelved preeminent concern. Questlions of
efficiency and flexlbility have forced it Into the
background of the design process,

The mitlitary, however, iIs faced with the spectre of
lrrevocable compromise of classified Information, should a
flaw exist In the system's security. A single cunning and
maliclious user may employ a bug to penetrate or degrade an
essential system, which, once penetrated in secrecy may
even be covertly.and contlinuously tapped for Intelligence.

As an example, Goheen and Fiske (4) report a
successful penetration of an IBM System/360 operating in a
classified environment. At the end of the study, the
entire system was essentially open to the penetrators In
complete secrecy.

In the past the military has insured protection of a
sensitive computer facility by segregation of the
equipment, 1imiting physical access to the equipment, and
‘forcing on-site usage. Today the problem 1Is to .insure
security in a modern time-shared multi-access,
multiprogrammed system In which remote users with
different clearance levels can run concurrently with data
files and programs of varyling clearance levels.

The military wlil1l adopt in the near future
extraordinarily hlgh standards for security certification
of equipment and software. Some steps have recently been
taken toward analysis of the milltary computer security
problem, and toward articulating methodology for designing
certifiable security systems (8), (9), (10).

Schell (10) has proposed three design principles for
security mechanisms: gcomplete mediation, lsolation and
simplicity :

(1) The system must provide immedlate and gcomplete
mediation between reference to and retrieval of
information, validating all such references using a
speclal subsystem.
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(2) This subsystem, the "security kernel", must
thwart any attempt at forgery of ldentity, and must
protect its own valldation algorithms.

(3) The securlty kernel must be simple enough for
effective logical certification, and Implemented In a
small set of simple primitive operations.

In addition, Schell stated a robustness criterion for
-adjudging the effectliveness of kernel operation: It must
be "...so designed that even an antagonist could provide
the remainder of the system wlithout compromising the
protection provided."

The need for these principles can be seen from the
findings of the 0S/360 penetration study (4), where lack
of a centralized, simple and certifiable kernel was
adjudged to be the source of the system's vulnerablility.

In Chapter 2 of this paper we propose a conceptual
model of the kernel's operation and organization, and In
Chapter 3 we particularize the model to the military
security problem. Our maln objective Is to design a
logically veriflable kernel subsystem to guarantee
operating security.

1.2 Design Methodology

We imagine the deslgn process to move from needs to
implementation 1In a serlies of levels of abstraction, each
level moving closer to a concrete machine reallzation.
The topmost level, level zero, conslists of a mathematical
model of general protection mechanisms, Independent of

particular security requirements. The mathematical
objects In the level zero model are fupctions which are

expressed In terms of (virtual) primitives unanalyzed at
level zero. That is, at level zero, the security kernel
is factored 1Into a number of components (modules). Some
components remain to be analyzed further in 1lower 1levels
of abstraction; 1level zero describes how the components
synthesize to achieve the system goal. At the same time,
subgoals ' are established for each of the unanalyzed
modules,

At level 1, the process is repeated on each of the
modules unanalyzed at level zero. Level 1 codifies the
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1,“ .

speclific requirements of a military security kernel, and
identifies still "smaller" unanalyzed primitive components
to be analyzed and factored at still lower levels.

The term factorlzation 1!s appropriate for this
process, since at each level the unanalyzed components do

indeed compose with other functions in order to realize
the goal for that level.

This top-down design approach allows us to make
design declisions in an orderly manner -- the cholce of
factors or modules at each level, and the scheme of
synthesis amount to design declisions, and determine
constrained subgoals. The approach allows us to separate
Issues germane to protection from those which are
particular to a machine or system.

By far the most important advantage of this approach
Is that it allows for orderly yerification of each level.
Verification proceeds in a '"bottom up" manner at each
level: assuming that the unanalyzed modules behave as
hypothesized, then the synthesized function at the level
does such-and-such. Having verified the 1level, the
Inductive subgoal Is now to factor and verify the modules.

At level 2 we envision describing level 1 in terms of
a MULTICS~1ike file directory hierarchy. The notions of
directory, segment descriptor and process descriptor are
introduced, but 'paging" Is Invisible at this level. Our
task at level 2 will be to show that a file directory
hierarchy structure reallzes the access retrieval function
defined at level 1. ‘

Levels zero and one are described in detail in the
following chapters. We belleve that the utility of the
chosen design methodology 1is fllustrated in these
chapters. :
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CHAPTER 2. | LEVEL ZERO

2.1 A Kernel Model |
2.1.1 The Accession Relation Components of the Model

‘ We employ a protection model based on the work of
Lampson (7) and Graham and Denning (6).  We have a set of
security objects 0 (fliles, programs, devices, etc.) a
subset S of the set 0 of subjects (processes) and a set of
A of access attributes ('read', 'write', 'control!',
'owner', etc.). Access of subjects to objects Is
controlled by an. don .relation R which Is a subset of
S x 0 x A. For example, R (s,0,a) or "(s,o0,a) In R" is
intended to convey that s has attribute a with respect to
object o. Lampson regards R as represented in the form of
a matrix. o

m:e S x 0 => P(A)

with entries in the power set P(A) of A. We wish fo
postpone questions of representation until later.

In this model we assume that the accession relation
involves a single subject and a single object. That is,
we allow In our system a relation 1like

(1) "s1 can ‘'read' ol"
but not ,
(2) "s1l can 'read'! ol only from device 02"

which would involye three objects.

Assoclated with each type of object is a monitor, a
program which actually performs the desired accession.
Here we wish to illustrate the difference between our
visualization of the security system and that of Graham
and Denning. :

In thelr model, depicted In FIGURE 1, when a subject
's Initlates access a to object o, the system supplies the
triple (s,o0,a) to an appropriate monitor. The monitor
Interrogates the accesslion "matrix" to determine whether s
has a access to o and, If so, the monitor performs the
requested function.
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We wish, on the other hand, to propose a plicture
which isolates the process of access attribute checking,
and which separates thls process from the monitor
functions. Thils effectively factors out the followlng
processes: the Interpretation of a subject request with
attendant system mediation, the search for and retrieval
of access attributes (which depends upon the way In which
the Iinformation of R is stored), the checking of retrieved
attributes against the accession request, and finally the
operation of Individual monitors. The situation Is
depicted in FIGURE 2.

Below we address the questions of deslign and
certification of the Access Evaluator (E), the Attribute
Retriever (F), and the Update Monitor (U).

We do not Investigate the operation of G, the Access
Request Generator. |t is the mechanism which guarantees
system mediation In all requests for protected objects.
As the entryway into the kernel, G must provide a
requesting subject with a nonforgeable identification
interpreted by the kernel. .

Nelther can we consider the operation of the
monitors. Belng concerned with security, we are
fundamentally Interested in forblidding unauthorlzed access
to any supervisory module. Thus we do not address the
possibility of faulty operation of the monitors
themselves. The correct operation of the securlity
checking mechanism should guarantee that no program can
access the il1l-gained fruits of a monitor bug.

2.1.2 Accgession

When a program requests an access to a monitor, it
requests that a service be performed for It by the system.
As such It actually requests an entry to the monitor
program. '

We imagine the kernel to Interpose itself between the
requesting program and involved monlitor. The kernel must
interpret the type of request, identify the objects
involved, and perform the requested action or a violation
recovery action. It is the functlion of the Access
Evaluator E to retrieve appropriate data, grant or deny
the request, and transfer to the approprliate monitor (the
violation handler Is considered a separate monitor). In
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our description of the function performed by E, we say
that function e returns a fupnction mx, where mx Is the
function performed by monitor Mx. We use upper case to
denote programs (system modules); corresponding lower case
to denote the actions (functions) which they perform.

, Let e be the function realized by program E, and let
f be the function accomplished by the program F which
fetches the accesslion data. Then '

e: SxOxA =-> {m(O),m(l),..,m(x)}
f; SxOxA => B (1)

tells us some information about e and f -- their types.
1t does not explain the details of their action, but shows
at least the nature of thelr Inputs and outputs.

Given the required accession relation R, F operates
correctly if we can guarantee that

(1) ¥s.¥o.¥a. f(s,o0,a) =1
iff R (s,o0,a).

This just states that F has correctly stored and correctly
retrleves the accesslion data.

Suppose h(o,a) retrieves the index of the proper
monitor function m(h(o,a)) among m(1),...,m(x). For
example, if o is a data file and a is 'read', then h(o,a)
is the index of the file system manager.

Assuming f,h are verified to operaée correctly, then
e can be correctly reallized by

e(s,0,a) = if f(s,0,a) = 1 then
m(h(o,a)) else m(0).

llotice that m is a mapping which takes the name of a
rionitor program and returns the mapping realized by this
program. In an implementation this might mean: fault to
an appropriate location in a protected program.

(1) B = 51,0} or flpgg,fglseg is the set of bits.
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Summarizing, we have the maps
f: SxOxA => B
h: OxA => {1,2,...,x%
m: $1,2,...,x3 => fm(1),...,m(x)¥
m(i): unspecified functions

The arguments and values of the m(1l) (their tyvpes)
depend upon their respective duties, and clearly Involve
data external to the kernel. For example, the memory
addressing hardware monitor will need to know where in the
requesting program to return the contents of an address.
By leaving these detalls unspecified, the most we can say
Is that e returns one of a finite set of explicit
functions. Further analyses may now enumerate, factor and
describe the Iimplementation of the m(i). What we have
done is to get them out of the access-checking game,
concentrating on their "natural" roles.

Returning to the question of certification, what If
(1) is violated, 1.e., f does not adequately reflect the
desired accesslion relation R? Popek (9) has suggested

(the lngluslon techniaue) that we add to the antecedent of
e S

1f f(s,o,e) = 1 then ...
all of the extra checks demanded by R, aftef writing a

suitable routine d to store and retrieve these checks. We
will then have another program

e'(s,0,e) = |f f(s,o0,e) =1 and d(s,o0,e) =1
then ...

which will now operate correctly. But this amounts to
constructing a retrieval function f' satisfying

f'(s,0,e) = f(s,0,e) and d(s,o,e).
what is evidently needed is a correct retrieval function f

satisfying (1). In a practical system, It is the
structure of f which is of utmost Importance anyway.
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In a later section we analyze the function f with
particular emphasis on a military security model, and
Introduce the notions of locks and keys in the operation
of f.

2.1.3 Updation

As the system evolves over time, the security state,
represented by the accession relation R, Is modified by
the attentions of the update monlitor U. Available for the
use of subjects are various security state updation
commands (delete, grant, destroy, etc.) which request
changes to attributes, destruction of subjects and
objects, etc, ‘

A destroy subiect s2 command by subject sl is, for
example, Interpreted by G as a request to wrlte to the
(protected) accesslon data F. The Information (sl, F,
'write') Is passed to the Access Evaluator E which
determines whether sl Is allowed to change any items at
all in F. If control s passed to U, U must now do
further careful checking to:

(a) retrieve the name of the particular subject
s2 which is to be destroyed; :

(b) determine whether sl is allowed to destroy
s2;

(c) perform the desired action, or else refuse,
with attendant action.

Operation (a) Is performed with no difficulty, but
operation (b) requires some explanation. The internal
logic of U determines the type of access attribute sl
needs vis-a-vis s2 In order to destroy s2, say ‘owner'. U
then interrogates F with the request (sl,s2,'owner'), and
if this triple is part of the current security state, U
then updates F in the required fashion (deleting s2 from
the data base) and passes control to further non-kernel
systems for housekeeping dutles.

The monitor U, being jnside the kernel, Is "trusted"
by E, and there is no need for U to go through G or even E
In order to access F. Hence U may successfully "disguise"
itself as sl for purposes of reading sl's privileges.
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Other types of updation can be handled In a simllar
fashlon.

Notice that In this model the detailed study of
F-updation privileges Is done by U, which must take into
consideration a larger context of Information than E; but
U has F at its dlsposal.

The correctness of an Implementation of U depends
upon a full descriptlon of the clircumstances under which
the system is to honor a request to alter the security
state. These clrcumstances are Imposed on the design from
without, In the form of a set of updation constraints. It
must be demonstrated that.any change which U makes results
in an acceptable security state within the updation
constralints.

Updation constralnts are described in a logical
language, and codify just those rules which the designer
wishes to place upon U In its making of updation
decisions. '

Assoclated with each updation command Is a pr
true If and only If the command can legally be executed by
the requesting process.’

: delete ('read',s2,0) Is a command uttered by s
and asking that attribute 'read' be withdrawn from s2
vis-a-vis o. There Is an assocliated predicate

DEL €SxAxSx0.

DEL(sl,'read',s2,0) Is true iIf and only If sl Is allowed
to delete s2's 'read' privilege to o.

An example of an updation constraint Is:
¥s1.¥s2 [R(sl,s2,'control') -->
¥o.¥a DEL (sl,a,s2,0)]
which séys In words "For every sl and s2, If sl has
'control' access to s2, then for all objects o and
attributes a, sl can delete s2's a-access to o." Or

better: "If sl has 'control' of s2, then sl can delete
any of s2's privileges to any object."
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Other examples follow which may readily be translated
by the reader:

¥sl.¥o.[R(sl,o,'ownerf) =>
¥s2.¥a.GRANT(sl,a,s2,0)]
Vs.Vo[R(s,o,fowner') -> DESTROY (s,0)]

Within U are a series of programs, called updators,
Wi,...,Wz. These effect the actions requested in the
commands by users. The actions they perform are denoted
wl,..,wz. U also has as a factor a program V, the

h » which matches an updation request
agalnst the updation constraints, suitably Internalized.
FIGURE 3 illustrates the situation, and FIGURE 3a shows
the parallel nature of E and U.

V employs the retrieval program F to make Its
decislons. Its internal logic should be designed from the
(fixed) updation constralnts as outlined above. Obviously
Its operation cannot be Illustrated without a predefined
set of constraints to work from. However we can give an

Example Suppose we have the updation constraint
¥s.¥o.R(s,o0,'owner') -> DESTROY(s,0)

and let W2 be the "destroyer" program. Then the
description of V will Include in part the line

ees If f(s,o,'owner') = 1

then w2 ...

As in the case of e, v outputs one of a set of functions
Wl, ° e .'WZO

Now providing that V operates according to the given
constralnts and provided that the Individual updators
perform thelr assigned tasks correctly, U will operate
correctly, and the system will never enter a state which
compromises security. Why? A correct, satisfactory, or
secure system Is defined by the set of updation
constraints. U merely enforces them.
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A1l the above assumes that the constraints form a
conslistent set. For an example of an Inconslistent
constraint set, imagine both

"sl may never a-access o3"
and , .
¥s[GRANT(s0,s,a,03)]. o

Then lt(ls clear that s0 could, quite innocently, grant sl
access a to o3.

No kernel or system will ever be able to enforce an
inconsistency.

Clearly a design prerequisite Is a complete

description of commands and their logical
Inter-relatlonships( expressed In the updation
constraints. This "requirements" 1ist must first be
checked for consistency. Provided it is so, V may be
encoded to check that each constralnt is satisfied for
each updation request. This provides another example of
Popek's (9) Inclusion Technlque.

2.2 Modeling Access Data Retrievatl

In this section we focus upon the operation of the
retrieval program F. We glive some attention to the
possibilities of factoring this program into (perhaps)
more simply verifiable components.

The function of F Is to represent and retrieve the
information contained in the accession relation R - the
securlty state of the system. Since the numbers of
subjects S, objects 0, and access attributes A are all
finite, R Is in principle "just a big table" and F "just
a big table look-up". Thils might satisfy an automata
theorist but not a systems desligner.

(1) Flrst, there Is an enormous amount of
Iinformation contalined in R =~ the triples (s,o0,a) not in R
are as Important as those [n R.

(2) Second, R Is sparse as a table, or even as a
matrix '

r: Sx0 => P(A),
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suggesting that In practical cases a great deal of
structural constraint obtains among the entries.

(3) Third, the amount of Information is so large
that present-day systems employ both dynamic and static
storage techniques In its retrieval. For example, in the
MULTICS segmented memory, with its dynamic linkage
facility, part of the protection Information Is stored in
the environment of a process; the rest Is distributed
throughout the storage system and available for later
dynamic recall. In future systems there may well be a
requirement to segment this information base.

(4) Fourth, people group and use Information
according to behavior..patterns and In established
structures. For example, very few systems development
programmers call a llnear regressions package, and many
data flles group naturally together with the assoclated
project which developed them.

For all these reasons, we believe in careful
structuring of the program F with a view toward certifying
Its operation. Below we make a start toward this
analysis. ‘

2.2.1 A Model for Data Conflguration
2.2.1.1 Mathematical Language

In this model we do not discuss issues of
implementation, but do wish to develop a theory for the
structuring of data used in the securlty kernel.

From our point of view, set theory is not
an adequate tool for the expression of notions in
computing. The most primitive semantic notion for
programming Is that of function or mapping. A set, as a
primitive, orderless collection can never be realized on a
computer, whereas a function, the characteristic function
of the set, can be so Implemented. That is, set S cannot
be "in" the machine, but a map ¢: S->B can be reallzed as
a bit string if the size of S is small; as a linked list
if large, etc.
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If S,T are finlte sets, (S=>T) represents
the set of all possible maps from S to T. The statement

c: S=>B
means that ¢ is jn (S->B), a set. Whenever we write
f: (A=->B)=>C or say "f in ((A->B)->C)", we are expressing
the type of f as a mathematical object. This glves only a

1imited amount of information about f -- its domaln and
range ~- but is frequently useful.

Another concept used all the time is that
of cross=-product of two sets SxT. Slnce this Is just a
set and not representable on a machine, we think of It as
a function
p: SxT->B
defined to give 1 for all pairs In SxT.

On a machine we cannot really make sense. of
an ordered palr. Palrs must be stored, and in some order.
We adopt the fact that

(SxT=>U) = (S=>(T=->U)).

That Is, by convention an S,T matrix of U-values is stored
as an S-list of T-lists of U's.

2,2.1.2 Examples

‘ We glve here some examples of the way in
which F might be arranged as a program.

%L;_a? A securlty system using Access Control Lists
ACLs).

The accesslon relation is stored by object,
then subject, then attribute. The accesslon function is

f: 0=> (S=>(A=->B))
Given an o in O,

f(o): S->(A->B)
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is an ACL =-- the ACL of o -- and is itself a functioﬁ.

Given a subject s,

(function)

associated with o and s.
as a bit string.
returns a bit.

f(o)(s): A->B

f(o) finds an access attribute list

This list might be represented
The point is that f(o)(s), given an a,

How it does this is Implementation. A
pictorial diagram of the above might be given for MULTICS

in FIGURE 4.
ACLL
Sl nnl
52 i
OBJECTS )
01 .
ACL2
02 T 7SI ]
- 52
FIG. 4

fl0

f(01) (S1)

A

V=] D ~

The bundles of linking arrows represent the functions
f, f(o), f(o)(s), and may not be simple pointers, but some
complex hashing scheme.

Notice that in MULTICS, the object collection itself
has a further structure, the flle directory hierarchy, not
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shown here.
Ex, b, A System with Capabillity Lists (C-1ists)

R Is stored by subject, then object, then
attribute: :

f: S=>(0->(A->B))

The C-1list for subject sl |s a map
f(sl): 0->(A->B)

which returns, for an object 02 a map
f(sl)(o2): A->B

the attribute 1list.

An oversimplifled example is given from MULTICS In
FIGURE 5,

Multics actually consists of a complex of both
techniques. |Initially the system checks the descriptor
segment for an object. |If it Is not present, a missing
segment fault occurs, the flle directory hierarchy is
searched for the object and the descriptor segment is
updated with the object identification and access
information.

2.2.2 Generalized Locks and Kevs
2.2.2.1 pefinitions

Frequently the sparse structure of R or any
of its representations discussed above can be exploited to
factor the retrieval problem. Indeed, both natural
groupings of subjects (think of projects) and natural
groupings of objects (think of master files) may exlist.
The idea of key and lock exploits this observatlion: why
treat each subject or object as a separate security
entity, when coarser groupings may be more efficlent?

. Let K be a finlte set of keys, L a finite
set of locks. The only thing we require iIs that these
sets consist of distinguishable objects (e.g., bit

positions in a word). A key assignment is a map

V=22



DESCRIPTOR

SEGMENTS
DSEGL f(S1)
Sl .
S2 -

ACTIVE .
PROCESS :
TABLE

Sl 4

S2 T——01

W f(S2)

“-—ﬂ51H01l4:§:?

oi=s|lo|=
)
-

«  f(S1)02)

msm-‘
ll/
| (o] et

FIG. 5
k: S => (K=>B)
and a lock assignment a map
1: 0 => (L->B).

A subject may thus be issued several keys; and an
object may have several independent locks.

We also have an unlocking relation which tells which

keys are adequate to which locks
t: KxL => (A=>B).

Thls Is not a one-to-one relation, nor even a function;
for a passkey may open many different locks, and a lock
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may be opened by a hlerarchy of passkeys of varying power.

Subject s has access a to object o If and only if
there are k1,12 such that

k(s) (kl) =1,
1(o) (12) =1

and

t (k1,12) (a) =1,

SUBJECTS KEYS LOCKS OBJECTS

FIG6.
We may depict an accession relation as in FIGURE 6.
Notlce that any accession relation represented using

intermediate locks and keys can of course be realized by
an accession matrix
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m: Sx0 => (A=->B)

rmerely by defining m(s)(o)(a)=1 if and only if there are
k1,12 such that k(s)(kl)=1l, 1(o)(12)=1 and t(kl,12) (a)=1l.
But this misses the point. Locks and keys, which look
like a fatuous complication in the abstract, are
introduced in practice for natural reasons leading to
greater efficiency. 1In an application it may prove more
efficient to calculate k, 1, and t than to look up entries
in a tree structure such as those of 2.2.1.2.

2.2.2.2 Example; A Military Security Model

In an application, the notions of lock and key may be
used to store one component of the accession information,
while other techniques are used for the remainder.
Possibly complex overlays of various storage
representations may be used if efficiencies result. The
problem of a military security data base is a good
example.

Three factors govern the control of access to
protected information.

(a) clearance/classification, A document, file
or program (information) is said to be ¢classified U,C,S or
TS. A user or subject Is said cleared for U,C,S,TS.

Below we represent these security levels by integers
0,1,2,3.

(b) compartmentalization. As a refinement of

(a), information and users are further assigned one or
more compartments, reflecting the kinds of classified
information to which they be long or have access. The
military employs 16 compartments P={1,..,16¢, e.g.,
cryptographic, AEC, etc.

(c) need to know. The flinest resolution of the
security question occurs at this level. For each subject
s and object o, the military requires that some authority
grant s an "a-need to know" for o before s can a-access o.
Examples might be "need to read", '"need to execute", etc.
From our point of view, the various ''needs to know'" are an
application of the notion of access attribute for a
subject/object pair. The informatlion is stored In the
underlying accession relation for the system.
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Clearahce/classiflcétion may be modeled by the
following lock/key arrangement (the key/lock functions are
denoted by the same symbol In this example).

c: S=->C

c: 0->C

t: Cx C ->B

wheré €=50,1,2,35 and
t(i,j)=1 If and only if {>j.
Compartmentalizatlon is represented by

p: S=->(P->B)

p: 0->(P->B)

¢ (P->B) x(P->B) =->B

where z(p(s),p(o))=1 If and only If p(s) and p(o) = p(s).
Here and represents the bit mask of lists.

Finally, as noted above, need-to-know must be handled

by explicit retrieval, structured however Is convenient.
We deplict the situation in FIGURE 7.
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CHAPTER 3 A MILITARY SECURITY MODEL

The purpose of this chapter Is to propose the
requirements of a military time-sharing system operating
in multilevel security mode. DOD 5200.28-M deflines
multilevel security mode as:

"A mode of operation under an operating system
.+s Which provides a capablility permitting various levels
and categories or compartments of material to be
concurrently stored and processed in an ADP system. In a
remotely accessed resource-sharing system, the material
can be selectively accessed and manipulated from variously
controlled terminals by personnel having different
security clearances and access approvals..."

The model will be independent of implementation In
the 'sense that it will be possible to interpret the rules
of the kernel as being enforced by a human security
officer handiing documents, not necessarily by a computing
system. The model will be formulated using exlsting
military security requirements for document control (AFM
205-1), as well as requirements which have been
established for existing military computer systems (WWMCCS
GCOS, DOD 5200.28-M). Below, in referring to the
manual svystem, we shall mean present military procedures
for physically handling classified documents, as specified
in AFM 205-1.

3.1 General Consliderations.

3.1.1 Ihree Dimensions of Security |

In the military three factors control access to
protected information, as discussed in section 2.

3.1.1.,1 Clearance/Classification

Possible clearances are{b= 0,1,2, i} With each
object is associated a clearance or classlflcation via the
nap.

c:0=->C
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3.1.1.2 Compartmentalization

Compartments are P=fl,2,...,16}. Each object is
assigned to a 1ist of compartments by the map.

p:0=>(P=>B)

Thus if o is In 0, p(o): P=>B Is o's compartment
list. ’

3.1.1.3 Needs-to-Know

We regard this as equivalent to the notion of
access attribute. Given an attribute set A (discussed
below) the function f:0->(S->(A->B)) assigns to each
object 0:0 a list of needs=to-know f(0):S~->(A=>B)
classified by subject. Notice that we are proposing an
Access Control List structure for f (Cf. section
2.2.1.2).

Evidently clearance and compartment information
could be stored implicitly In the access retrieval
function f (Cf section 3.2.3), However, for purposes of
access checking and updating this would neither be
efficient nor would it model the exlsting military manual
system., As a consequence we factor the accession data as
indicated.

3.1.2 ibili

In designing requirements for a military multilevel
security system, we must declde at the outset the role of
the kernel in transactions Involving secure data.

a) The Responsible Kernel

The kernel itself is responsible for the
control, classification, declassification and manipulation
of information within the system. It employs automatic
rules to assign classifications to newly created files,
maintains a history of each user's security environment
and watches each user to maintain operating consistency.
This approach is illustrated in Weismann's paper (11).
.The kernel from this point of view becomes a super
bureaucrat. '
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b) Ihs_Reaegnslhlg_useL

The assumption Is that an authorized user of
classified information has full responsiblility for its
control whtiile operating with It, Thus destruction of
copies, reclassification of altered flles, etc., become
duties of the user which must be performed before he logs
off. The kernel, after granting Initial access, makes no
attempt to monitor the use to which data Is put.

Whichever role the kernel Is designed to
play, the system of rules which the kernel enforces must
be simple enough and so clearly stated that each user
understands the full implications of each security state
updation command, and his responsibilities in employing
it.

The assumption of user responsibility is the

one which agrees most readily with the present manual
system, and will underlie the design discussed here.

As a consequence of the "responsible user"
assumption, certain possible "security compromises" of
concern to Lapadula and Bell (8) are nelther detected nor
prevented by our proposed system. To use their example,
suppose sl Is cleared for TS, s2 for S and let file o3 be
classified S. Suppose sl writes some top secret
information in 03, but falls to explicltly upgrade o03's
classification. The kernel cannot detect the "violation'.
At some future time, s2 could be granted 'read' access to
03, and s2 would be reading "forbidden" information.

Our feeling Is that any attempt to make the
kernel responsible for detection and prevention of such
occurrences would either (1) Involve the kernel in
deciding complex questions of sensitive data aggregation,
or would (Ii) require the adoption of an arbltrary
"high-watermark" rule (e.g., sl operating under a TS
clearance can only write TS files). The latter approach
is adopted by Weissman (11), who does not allow for the
possibility of declassifying files.

Here we only require the kernel to enforce
existing manual security regulations which place the onus
of responsibility upon the user of a document to make
necessary changes to its classification or compartments.
Since we demand that the kernel allow rec]assificatien on
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some authority, compromises of the kind illustrated above
will always be possible on some level. We have chosen to
trust completely every authorized user. The kernel is
non-suspicious ~- if a subject is granted access rights by
the kernel, the subject has the full implications and
responsibilities attendant on those rights.

Another, more technical, way of phrasing this
is that the kernel uses only subject/object ID's,
classifications, compartment lists, and access attributes
in reaching its decision. The kernel does not interpret
or deduce any implications from an authorized access or
update request,

For example, If sl accesses an object o2 for
which it has inadequate clearance, a security violation
occurs. But if sl obtains upward reclassification from an
“incompetent" but authorized subject s2, and then accesses
02, no violation, from the system standpoint, has
occurred.

3.1.3 Separatlion of Accession and Updation

'As discussed in the previous chapter, the processes
of granting "normal'" access, and the granting of updates
must be kept distinct, since the latter action Is more
complex. It follows that the data used and modified by
the updation procedures, the accession relation R, should
be kept distinct from ordinary protected data files. For
one thing, it will have to be maintained in a rigid format
interpretable by the kernel. For another thing, it is
part of the kernel itself, since its compromise would
compromise the entire system. Lastly, it may be stored in
a radically different manner - perhaps in special
hardware.

In our model this data is stored in the access data
retrieval program (F). Ve see nho reason to treat it as an
object (compare Popek's (9) security objects), since it
deserves such special status.

3.1.4 'Control' and 'Owner' Access Attributes

The notions of 'control' and 'owner' access
attributes occur in Lampson (7) and Graham and Denning
(6). One subject sl 'controls' another, s2, if sl can
read from and write in s2's row of the matrix m:S =>
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0->(A->B), i.e. If sl can read and modify s2's
capabilities, If, in addition, sl may destroy s2 or grant
to other subjects any access to s2, then sl is said to
have 'owner' access to s2. Thus sl 'owns' s2 when sl may
read from and write in s2's column of the access matrix.
Issues immediately arlse concerning multiple 'owners' and
the transferability of 'control', which are surveyed by
Graham (5).

We shall not Introduce these attributes. The
relation of sl 'owning'! s2 can be replaced by granting sl
all possible attributes for s2. Obviously then, multiple
'‘owners' are possible.

If sl can 'control' s2, this implies that sl can
obtain and modify all s2's capablilities - the list of all
objects to which s2 has access. |In our model, access
attributes will be stored in ACL form (Section 2.1.2,
example a). There is no way for sl to convenlently learn
s2's privileges, short of listing all objects and
requesting the ACL of each. (This is exactly the
situation in MULTICS.) We see no apparent reason for
introducing the ‘'control! facility.

Furthermore, in the military manual system,
possession of document Implies "control" of it and
responsibility for it. A possessing subject can give it
away, garble It, etc.

We choose to introduce the simple attribute ‘'update'.
Subject sl with 'update' attribute for o2 (subject or
not), may modify the security data concerning o2 (access
attributes to o2, clearance, compartments). There will be
no facility for one subject sl to affect a second
subject's attributes vis-a-vis an object 02, unless sl has
‘'update' permission for 02. When sl has 'update'
permission for s2, sl can only limit accesses by other
subjects o s2. :

Update permission may be passed to other subjects
like any other attribute.
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3.2 Elements of the Model

3.2.1 Access Attributes (A)

The set A consists of five attributes

A={fr,e,w,u,13

with the following meaningsi

Attribute a , if f(o)(s)(a)=1 then

r 's can read the contents of object o,
- ~implying -that s can copy oO.

e - s can execute the (executable) object
o. s must know the calling sequence
for o, since s cannot read o.

w ‘ s can write to o, altering It, adding
to it, even zerolng it out.

u s can update (write on) the descriptor
: : (see section 3.2.4 below) of o, adding
to it or deleting from it.

1 s can look at the contents of the
: descriptor (see section 3.2.4 below)
of o, without affecting its contents.

3.2.2 Modes (K)

The mode (1) of an object is an indicator of the kind
of object it is -- terminal, process, data file,
directory, etc. Depending on the characteristics of the
computer system, there may be different modes, each
usually associated with a special subsystem or monitor for
handling objects of the same mode. We choose a mode set

(1) Called by Burke (2) a type. We have used type in a
more technical sense, so we employ Popek's (9) term mode.
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K={tlplfld!

and ‘a function k:0->K asslgning to each object an unique
mode, with the following meanlngs:

Mode K1 If K(o)=K1 then o is
t | ’ a terminal
P a process, i.e., a subject
f a flle, i.e., a protected block of
data not interpretable by the
system.
d a directory, a specially formatted

file which may be interpretable by
the system.

Other modes may be introduced depending upon the
particular system.

3.2.3 Access Data Retrieval (F)

In the military security model, the data used by the
kernel to determine privileges is stored In a factored
accession matrix, as In section 2. 2 2.2, We represent it
by the three functions

f:0=->(S=->(A=->B))
c:0->C
p:0->(P->B)
where c={0,1,2,38
P=f1,...,16%
A=fr,e,w,u,1%

There are three different relations, all devoted by £,
which will be useful below:

(1) <: C x C=>B
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denotes the usual Inequalit& on integers.
(it) £:(P=->B) x (P->B) =-> B

denotes the subset relation on the compartment lists:
object r Is a member of (P->B). (1)

(ifi) £ (A=>B) x (A->B) -> B

denotes the subset relation on access lists; object
a is a member of (A->B).

A convenient abuse of notation will allow us to
identify sets in P(A) with functions in (A->B). For
example, fu$, which usually denotes the singleton set Fuf

in P(A), will mean for us the function §u$:A->B given by
fuf(x)=1 if x=u
: 0 If xpu

Either point of view is seen to be equivalent, but we
believe that the "1ist" notation (A=->B) Is more
suggestive.

3.2.4 Descriptors |
A useful auxiliary notion Is that of descriptor of an
object, as used by Popek (9). For each o in 0, d(o), the
descriptor of 0, is a quadruple of functions
d(o)=(c(o0), plo), f(o), k(o))
or, equivalently
d(o0) (1) =c(o)
d(o) (2)=p(0)
d(o) (3)=f(0)

d(o) (4)=k(0)

(1) The notations P(A), 2 exp A, and (A->B) may all be
considered equivalent. We use (A~->B) because it‘reminds

us we are dealing with fynctions.
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Thus d has type
d:0->C x (P->B) x (S->(A=>B)) x K

This is one way to model the storage of access data. A
descriptor Is a sort of generalized Access Control List.
(ACL), and Is particularly appropriate when a MULTICS=-1ike
file directory hierarchy is contemplated. Descriptors are
then naturally stored as elements of directory segments.

While at this stage nothing forces us to introduce
the notion of descriptor, It will be convenient,

3.2.5 The Access Evaluator (E)

Normal accession requests, not involving updation,
pass through E, whose function Is easily described. In
our informal programming language, we shall be sure to
declare the types of all functions mentioned in the
program. Let M=fm(0), m(1l),...m(x)¢ be the set of
monitors, m(0) the violation handler, m(1l)=V the access
checker. Let h:0 x A->§1,2,...x$ be such that h(o,u)=1
for all o in O.

e(sl,ol,b)
e: S x 0 x A->M
sl: S
cl: O
b: A
f: 0=->(S=>(A=->B))
: 0->C
: 0=->(P=->B)
: 0 x A=>71,2,...%
£ 30,1,2,...5->M
:C x C->8B »
:(A->B) x (A=->B) =->B
:(P->B) x (P=->B) =>B
f c(sl)>c(ol) and p(sl)2p(ol)
and f(0l)(sl)>%bg¢ .
then m(h(ol,b))
else m(0)
end e

3.2.6 Updation Commands

A user program desiring to effect changes to the
descriptors requests the kernel to perform the service for

c
p
h
m
2
2
2
i
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him by Issuing an updation command. The updation program
verifies the user's authority to make the change, and
performs the service for him using its updators.

The commands and their intents are:

Command lntent
write (o,s,a) sets the access list f(o)(s)
’ ‘ ‘ to a:A->B, destroying the previous
list.
read (o,w) writes clearance, compartment,

access list and mode of o in w.

clear (o,n) " sets the clearance of o to n,
destroying the previous value.

compt (o,r) sets the compartment list of o to
the list r:P->B, destroying the old
1ist. '

create (o0,2z) creates an unique ID for o and

assoclated descriptor with C(0)=0,
p(o)=p full access privileges for
creatling subject and K(o)=z.

destroy (0) nullifies the descriptor of o,
’ erases the 1D and the object
contents.
3.2.7 Updators (Wi)

These are the kernel programs which actually perform
operations on the descriptors, and which call any further
system monitors needed for allocatlon, garbage collection,
etc. There will be an updator corresponding to each
command:

"wr, rd, cl, cp, cr, and ds

The constraint checker V calls the updators, as
illustrated in the next section.
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3.2.8 The Update Monitor (U)

In the programs below we shall not agaln declare
c,p,f,{,m(0). Two functlons mentioned below make(o) and
break(o) are left undefined. They are responsible for
housekeeping duties assoclated with creation and
destruction of objects

V(sl request ol,s2, al WNon,z,r)
sl:S
s2:S
ol:0
request:fwrite,read,clear,compt,create,destroyf
al:A->B
w:C x (P=>B) x (S=->(A=>B)) x K
' n:C
r:P->B
z:K
if request='write'then
begin
\ if c(sl)2c(ol) and p(sl)>p(ol) and
f(ol)(sl)2fu¥ and c(s2)>c(ol) and
p(s2)2p(o0l) and not (ol=s2 and al)>fu?)
then wr(s2,0l,al)
else m(0)
end ‘
else if request = 'read' then
begin ‘
if c(sl)2c(ol) and p(sl)>p(ol)
and f(ol)(sl)>71¢
then rd(ol,w)
else m(0)
end
else if request = 'clear' then
begin
If c(sl)2n and c(sl)>c(ol)
and p(sl)2p(ol)
and f(ol)(sl)yfug
then ¢l (ol,n)
else m(0)
end
else if request = 'compt!' then
begin
if p(sl)>r and c(sl)>c(ol) and f(ol)(sl)ziu}
then c¢p (ol,r)
else m(0)
end
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else

else

else
end V

wr (s2,

end wr

rd (ol,

end rd

cl (ol,

end cl

cp (ol,

end cp

cr (ol,

end cr

if request = 'create' then cr(ol,sl,z)

If request = 'destroy'! then

begin
if c(sl)2c(ol) and p(sl)>p(ol)
and f(ol)(s1)>fu%
then ds(ol)

end

m(0)

ol,al)

s2:S

0l:0

al:A->B
f(ol)(s2)<-al

w)

0l:0

w: C x (P=->B) x (S=>(A->B)) x K
w <= (c(ol),p(ol),f(0l),m(0l))

n)
ol: O

n: C
c(ol)<-n

r)
ol: O

r: P->B
p(ol)<-r

sl,z)
ol: 0
sl: S
z: K
make (ol)
f(ol)(sl) <~ fr,e,w,u, ]3

c(ol) <= 0O
p(ol) <~ P
k(ol) <- z
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ds (ol)
ol: O
f(ol)<-p
c(ol)<-0
p(ol)<-p
break(ol)
end ds

3.3 Requirements of Military Security

3.3.1 ‘m_u_qnng_g_:n_eis_

The security state (1) of the system at any time i is
described by the classifications, compartments and

attributes of all the objects
q(i) = (c,p,f)

The system is initialized in some state q(o), (2) and by
servicing updation commands evolves to security states
q(1),q(2),...etc.

Given certain security criteria to be discussed
below, our problem is to show that the system maintains
these criteria. This entalls two demonstrations

(i) Accession. Between changes in security
state, i.e., while the system occuples security state
q(l), the kernel enforces seairity requirements based upon
privileges (and prohibitions) implied in q(i). (e.g., "no
s can read o unless f(s)(o) > fr§"),

(ii) Updation. In honoring a command and
updating from q(i) to q(i+1l), the kernel observes any
updatlon constraints required by the performance criteria
(e.g., "no subject may alter its own security
classification".)

(1) This is identical to Lapadula and Bell's (8) notion of
security state (p. 18) except for their component b,

(2) A typical q(0) would have one subject s0 the system
administrator with full privileges to all system objects.
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If (i) and (ii) can be demonstrated, then by
induction on i, the system remains secure over time -- no
sequence of access requests and updation commands can
induce the kernel into a 'security compromise." (1)

Before we can demonstrate (i) or (ii), we must
delimit the criteria or rules which the kernel must
enforce. Another way to say this is that we must define
“"security compromise',

It is here that debate will occur over what
requirements to properly put upon the kernel. Based upon
the tenet of "“user responsibility" discussed above, we
will list a reasonable set of rules demanded by military
users. In section 3.3.2 we discuss the implications of
our rules, and in section 3.3.3 we discuss possible
alternatives.

The dichotomy (i),(li) shown above breaks the

criteria naturally into two parts - those regarding normal
accession, and those regarding updation.

3.3.1.1 Accession.

lLet q = (c}p,f) be a security state of the
kernel. The rules are

(a) No s shall have any access to an o
unless when access is requested

c(s)2c(o) and p(s)p(o)
(b) No s shall be able to read, write on,

execute, update the descriptor of or look
at the descriptor of an object o unless

f(o)(s)>2Tr?, fwi, {el,

fuf or {15, respectively.

(1) The notion of compromise, and thebpicture of the
system as an automation evolving over time with command
inputs, is due to Lapadula and Bell (8).

Iv-41



Proposition Provided

(i) all requests for access by subjects to
'objects are dlrected to the kernel

.(ii) the kernel correctly retrieves and
interprets the arguments of a request

| (ifi)  the kernel correctly identifies the
subjects and objects involved in a request

then |

the system satisfies rules (a) and (b).

Proof. Consider the Access Evaluator program e. Subject
s cannot access object o unless a system monitor performs
the function for it. But e is interposed between all
calls by s and the monitor. If (i), (il) and (iil) hold
e blocks access of any kind unless c(s)2c(o) and
p(s)>p(o), showing (a) holds. Given a request b €
fr,w,e,u,18, access to m(h(o,b)) is blocked unless
f(o)(s)>fb3, so (b) holds.

Q.E.D.
3.3.1.2 Updation

We list the updation constraints which
should operate in a military environment
|

(c) No s may alter the descriptor of an ob;ect
o unless f(o)(s)2fug.

(d) No s may alter or read the descriptor of an
object o unless c(s)2c(o) and p(s)>p(o).

(e) No access attrlbutes may be granted by sl
to 52 for o unless

c(s2)2c(o) and p(s2)2p(o0)
(f) No s may alter its own descriptor.
Proposition. Uﬁder the provisos (i) (ii) (iii) above and
provided that in the initial security state q(0) we do not

have f(s)(s)>fuf for any s, then the system satisfles
rules (c), (d), (e), and (f).
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Proof. Consider the Update Constraint Checker program V.
Wle take each rule in turn: :

(c). Descriptors may only be altered via the
updators wr, cl, cp, ds, The only calls to these

functions occur from clauses preceded by an explicit check
for f(o)(s)>fuf.

(d). Descriptors may only be altered or read by wr,
cl, cp, ds, rd. Each is called from a clause which
explicitly checks for c(s)2c(o) and p(s)>p(o).

(e). sl can grant s2 attributes for o only by a call
to wr(o,s2,=-). This call occurs only in a clause preceded
by the explicit check c(s2)2c(o) and p(s2)>p(o).

(f). s could alter its own descriptor only by
calling wr, cl, cp, or ds on o=s, but each such call is
preceded by an explicit check for f(s)(s)>fuf. Therefore
if we can show that it is never possibie to enter a
security state with f(s)(s)>fu3 for any s, we are done.
By hypothesis in q(0) we have no s with f(s)(s)>fu3s.
Suppose it were to occur in some q(i), and let i be the
first such i. Then in q(i-1), not f(s)(s)> ful., Hence V
must have serviced a command at i resulting in wr(s,s,al)
with al>fuf. But the call to wr(s2,0l,al) is preceded by
an explicit check not (ol=s2 and al>fu®) which Is
violated by ol=s2=s and al)>fuf{. Thus we cannot have
f(s)(s)2fu¥ in q(i) or in any successor state of q(0).

(f) follows.
Q.E.D.

3.3.2 1mplications. External Breaches.

In stating requirements (a) to (f) we have in
effect defined the notion of internal security compromise
- a compromise caused by the system's failure to meet
responsibilities. Certain compromises of security in a
larger sense can still occur through actions not under the
control or scrutiny of the kernel. Examples of such
external breaches are:

: (1) A 3-cleared user sl with r access to
3-classified file ol copies ol to 02, classifies 02 at O
level, and grants read access to s2. User s2 is cleared
only to 0. Even if the system could prevent direct
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"moving" of files In such circumstances, sl could still
bypass the system by processing ol into an altered form
before copying to o2, could aggregate sensitive totals
from ol and copy them in 02, etc. No system could
interpret all such possible evasions. Even If it could,
sl could still act by collusion as the direct agent of s2.
Evidently, if sl has privileged access to ol, no kernel
can keep him from abuse of his trust.

An alternative to this approach is to force created
files to be classified at the high watermark level of the
environment of sl., Then either explicit declassification
is prohibited, or, If not, this precaution is vacuous and
at best a default convenience.

We choose to accept the axioms of complete trust in a
priviliged user within the 1imits of his privileges and
complete responsibility of the user in assigning
classifications, compartments and attributes to files to
which he has fu} privilege,

(2) A user sl with clearance, compartments
and Zwf access for ol can, even without fu? access, alter
ol beyond repair, in effect destroying it. There is
therefore a good case for identifying the fwf and Tuf
attributes, merging them into a single fwf attribute. The
design of e and V could be easily altered to accomodate
this design decision, with essentially no changes in the
arguments of section 3.1.

Another argument in favor of w=u is from user
responsibility. |If sl can write in ol, sl ought to be
able to reclassify ol, since sl may well have appended
sensitive information to ol.

(3) A user sl with u to o3 can provide
another (suitably cleared) user s2 with any privileges to
03 he himself possesses, except sl cannot grant fuf for s2
to s2. Prodigal use of this facility by sl may result in
an external breach, but the system cannot be responsible
for making such distinctions.

3.5.3 Alternative Kernel Designs.
Certain other design possibilities can be

handled with case in our framework. In each case they
entail slight alterations of the e and V programs.
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(1) ldentifying fwf with fu?. This was
discussed in section 3.3.2.

(2) Allowing any subject sl with b
attribute for ol, but without Fuf attribute, to pass {bf
to other subjects. This is similar to the 'transfer!
ability of Graham and Denning (6). First we declare the
function

U : (A->B) x (A->B) =-> (A->B)

as the bitwise '"or" of attribute lists. Then we alter the
first conditional of V to read

if request='write' then
begin
if c(sl)>c(ol) and p(sl)>p(ol)
and f(ol)(sl)>fu? and
c(s2)2c(ol) and p(s2)>p(ol)
and not (ol=s2 and al>fu®)
then wr (s2,0l,al)
else if c(sl)2c(ol) and p(sl)>p(ol)
and f(ol)(sl)>al and c(s2)>c(ol)
and p(s2)>p(ol) v
then
begin
al<-al U f(ol)(s2)
wr(s2,0l,al)
end
else m(0)
end
else if request = 'read then ...

(3) Allowing more limited updation
privileges than those implied by fu®. Thus f(ol)(sl)>§nf
might allow sl to change only access attributes to, but
not clearance or classification of, object ol while
f(0l)(s1)>fj€ would be needed to reclassify.

(4) Enforcing a requirement that each
object ol have an unique 'owner' (Graham and Denning (6),
p. 420.). We can capture this idea by allowing only one
sl to have fuf to ol. Assuming this is the case in the
initial security state q(0), we build into V the check

if request = 'write' then
begin
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if c(s1)>c(ol) and p(sl)dp(ol)
and f(ol)(sl1)>fu? and .
c(s2)>c(ol) and p(s2)>p(ol)
~and not al>3uf
then wr (s2,0l,al)
else m(0)
end

Then an inductive argument shows that, since fuf can never
be '"passed'", no ol ever has more than one s with
f(ol)(s)>§h} Since every created object has a default
"owner" (its creator), the unlqueness requirement is
proved.

(5) In the view of Burke (2) access
privileges granted to sl for ol should depend upon the
mode m(ol). For example it is meaningless to grant fc?
access to a data file. Thus he proposes that the kernel
at update time check m(ol) and grant only the appropriate
attributes,

By adding further conditionals to the updators we can
accomodate this constraint. For example wr may be altered
to

~wr (s2,0l,al)
if m(ol)

then f(ol)(52)<- aln{e,u, 13
else if m(ol)=f

then f(ol)(s2)<- alrvir w,u,1%
«se €tC
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