A Secure Distributed Operating System

Thomas A. Casey, Jr., Stephen T. Vinter
BBN Laboratories
10 Moulton St.
Cambridge, MA 02238

Abstract

This paper! discusses some issues in distributed system security,
in the context of the design of a secure distributed operating sys-
tem. The design is targeted for an Al rating. Some new develop-
ments in formal verification methods are reported. Distributed
system security is contrasted with single-host and network secu-
rity, and described in the context of the TNI. Problems unique
to distributed system security are discussed. An argument is
made for implementing security features in higher layers, corre-
sponding roughly to the session thru application layers of the
OSI model. A new security policy, based on message-passing
rather than reads and writes, is described. The SDOS design is
summarized.

1 Project Summary

The objective of this project was to investigate multilevel secu-
rity issues as they relate to distributed operating system design.
The required deliverables included a security policy, a formal
model, and a formal top level specification for an Al class secure
distributed operating system, and documentation of the issues
and possible solutions that were discovered in the course of the
project. In support of these objectives, we devoted some effort
to producing a high-level design for a secure distributed operat-
ing system (SDOS). (The project report [BBN88] contains more
details on all of the topics discussed in this paper.)

Working entirely in the abstract is difficult and often unpro-
ductive. Therefore we chose to investigate multilevel security
issues in the context of an existing, operational distributed op-
erating system. The existing system that we chose is Cronus
[Schan86]. Cronus is an object-oriented distributed operating
system, that can operate across a heterogeneous set of networks,
hosts, and operating systems. Cronus is more than a distributed
file system. It provides such features as authentication, object
name to address binding, and dynamic object locating. It has a
set of runtime features that provide good support for the writing
of distributed applications, and it has an internal architecture
that allows those features to be implemented reliably and effi-
ciently. By basing our SDOS design on Cronus, and preserving
as much as possible of its feature set and internal architecture,
we felt assured that the resulting design would be usable and
implementable as well as secure.

A distributed operating system is built on top of a set of single
hosts, which are connected by a network. There has been a
great deal of research in the areas of single host security and

!Phe work reported in this paper was supported by the Air Force Systems
Command at Rome Air Development Center, under contract F30602-85-C-
0056.

CH2558-5/88/0000/0027501.00 © 1988 IEEE

27

D.G. Weber, Rammohan Varadarajan, David Rosenthal
Odyssey Research Associates
301A Harris B Dates Drive
Ithaca, NY 14850-1313

network security. It is our conclusion that, while distributed
system security is related to these other two areas, and in fact
depends on them for its success, it is a distinct area with a set
of problems unique to it. Exploring the distinctions between the
three areas has helped increase our understanding of distributed
system security.

Our research has uncovered a number of problems unique to
distributed system security, and identified some possible solu-
tions to them. They are mentioned briefly here, without any
supporting arguments, in order to define the scope of the dis-
cussion. They are treated in more detail in the subsections that
follow.

A distributed system security policy must be defined in terms
of message passing between active entities, rather than the tra-
ditional (Bell and LaPadula) [Bell76] read and write operations
of an active entity (process) on a passive entity (file). The con-
cept of a distributed TCB, running in the higher layers (above
the communications and host operating system layers), must be
supported by the security services provided by the communica-
tions and host operating system layers; that is, the distributed
TCB must be implementable within the security restrictions im-
posed by those lower layers. The distributed nature of the TCB,
particularly the fact that parts of the TCB can drop out of and
later rejoin the system, as hosts go down and come up, presents
some security problems, especially in the area of object replica-
tion. The access class range (system low to system high) can, in
general, be different for each host and each inter-host path; fur-
ther, within each host it becomes useful to talk separately about
the access class ranges for active entities (processes), passive en-
tities (objects), and messages sent to, and received by, the host.
This has implications for the multilevel security policy. There
are a number of covert channels that are brought into existence
by the distributed operating system’s attempts to make its dis-
tributed nature transparent to application programs and users,
and its attempts to operate efficiently, minimizing delays due
to inter-host communication. The desirable objective of having
the SDOS operate across a heterogeneous set of networks and
host operating systems presents some security problems, espe-
cially when the various networks and hosts vary in the degree of
assurance of their security features.

In the area of formal specification and verification several sig-
nificant results were achieved. Our basic goal was to write the
Formal Top-Level Specification of the design of SDOS, and to
prove formally that it satisfied multi-level security. To a large
extent, this goal was met.

We based our definition of multi-level security on an emerg-
ing theory of information flow security being developed at ORA
[Ulysse87|. This theory defines information flow in terms of the
deductions that can be made about unseen (higher security level)

events in a system’s history. A basic result of that theory is the
discovery of a composable security property: two subsystems hav-
ing the property can be hooked together to form a larger system
also having the property. This fact can be used to add MLS ser-
vices and MLS hosts to a distributed system in a secure manner.

Our work in this project has extended the theory of informa-
tion flow security in two main ways:

1. We have proved theorems that enable one to break the pri-
mary security property into simpler sub-properties;

2. We have developed a technique for demonstrating the sim-
pler sub-properties using the Gypsy Verification Environ-
ment.

Some of the results of this project’s research into formal methods
are discussed in [Weber87.

1.1 Design Summary

SDOS, like Cronus, is an object-oriented [Jones78] system. Ob-
Jjects are instances of abstract data types. The definition of a
type includes the set of operations that are possible for objects
of that type. There is a hierarchy of types: types inherit op-
erations from their parents. Clients (processes acting on behalf
of users) access objects by invoking operations on them. The
invocation of an operation is the only way to access an object.
Operations are implemented by object managers. A manager
hides the internal representation of an object from a client, and
provides a precisely defined high level interface to the object.
All resources in the system are represented by objects, and all
operations are carried out as described above.

The SDOS TCB consists of the kernel, and a set of trusted
managers that provide system services. The trusted managers
operate according to the object-oriented abstraction described
above. Since the kernel is the entity that implements the object-
oriented message delivery service, that service is not available for
use within the kernel.

The kernel consists of the message switch, the locator, the
process manager, the security database, the object database, and
the process table.

The trusted managers include the file manager, catalog man-
ager, authentication manager, and trusted interface process.

A more detailed description of the SDOS design can be found
in Section 3.

1.2 Distinction Between Network and DOS Secu-
rity

In our view, a distributed system is different from a network, and
thus distributed system security is different from network secu-
rity. The difference ic that a distributed system is built on top
of a network. It is implemented in and above the higher layers of
the OSI model. A distributed operating system (DOS) provides
runtime services that support the running of distributed appli-
cations. It attempts to identify those functions that are common
to most distributed applications, and implements them n the
operating system, relieving application programmers of the task
of implementing them in each application. Some of the services
provided by Cronus (the DOS on which this project was focused)
would be identified with the three highest layers of OS{ (session,
presentation, and application); others would be located in still
higher layers. The DOS attempts to hide the distributed nature

28

of the environment from application programs. For example, it
provides the same interface for accessing local and remote data
objects. A security policy for an SDOS must be stated in terms of
the subjects, objects, and operations implemented by the higher
layers in which the SDOS exists, and not in terms of the entities
of lower layers.

It is useful to put this discussion into the context of the ter-
minology and concepts in the TNI [TNI87]. Section 1.3.2 of the
TNI describes two network views: the interconnected accredited
AIS view and the single trusted system view. An SDOS is more
closely related to the latter than to the former. However the col-
lection of underlying hosts and networks upon which the SDOS is
built may appear to conform more closely to the interconnected
accredited AIS view. The nature of this hybrid view will be made
clearer in the sections that follow.

The discussions of connection-oriented abstraction and sub-
jects and objects in section 1.3.2.2 are related to entities of layers
lower than SDOS. (In the SDOS design, connections are owned
by TCB partitions and are used for communication with their
peers on other hosts.) Section 1.4.3 mentions four types of se-
curity policies that may be supported by a network component:
mandatory, discretionary, supportive, and application. It gives,
as an example of an application security policy, a policy sup-
ported by a DBMS that is distinct from that supported by the
underlying system. It goes on to say that application level poli-
cies will not be considered further in the TNI. We consider the
relationship between the SDOS security policy and that of the
underlying network to be similar to the relationship between the
DBMS security policy and that of the underlying system: from
the point of view of the network, the SDOS security policy is
an application policy that is distinct from that supported by the
underlying network.

Further, in some cases the SDOS security policy is in conflict
with that of the underlying network (as outlined in the TNI), and
therefore the SDOS layers must be privileged (i.e., they must be
part of the TCB), so that they can enforce the SDOS security
policy. The legitimate communications between these privileged
layers must not be hampered by the network security policy.
One example of such a conflict is the set of restrictions in B.4.1
of the TNI, two of which are that a subject is confined to a
single network component and that it may directly access only
objects within its own component. The SDOS deliberately tries
to mask all distinctions between components (hosts). At the
level of abstraction of the SDOS, a subject is logged in to, and
authenticated for, the entire SDOS, and may access all objects in
the SDOS, subject only to the restrictions of the SDOS security
policy. This policy is one which preveuts information flow from
high secrecy to low secrecy entities and from low inlegrity to
high integrity entities, where entities are the subjects and objects
implemented by the SDOS. This discussion is continued in the
section entitled Distributed TCB, below.

1.3 TCB Boundaries

In a traditional single-host secure operating system, the TCB
begins ai the top of some layer, and extends down through all
intervening layers to (or into) the underlying firmware and hard-
ware. Thus we think of the traditicnal TCB as having only an
upper boundary The TCB must protect itself against untrusted
(and possible hostile) software running above this boundary.

In contrast, the partitions of a distributed TCB (i.e., the parts

running in each host) each have both an upper and a lower
boundary. In the general case, the partitions must exchange
messages via some untrusted communications medium, and they
must use some technique (most likely cryptographic) to protect
the secrecy and integrity of the data that they transmit over
the untrusted medium. Thus, by default, the lower boundary of
each TCB partition is located at the beginning of the untrusted
medium. The TCB must protect itself aginst possibly-hostile
entities (either hardware or software) operating below this lower
boundary.

The default location of the lower TCB boundary could be at a
number of different places, depending on implementation details.
For example, it could be at the beginning of an unprotected wire
or an antenna. It could be at the host side of a hardware device
driving the wire or antenna. If one or more of the lower layers of
communication software run in a front end processor rather than
in the host, the lower TCB boundary could be at the interface
between the host and the front end (provided that no security-
related functions are implemented in the lower layers).

It seems clear that the location of the lower TCB boundary
should not be allowed to be determined by default, but rather
that the best possible location should be chosen for it, taking into
account a number of factors. These factors include the objective
of minimizing TCB size, thereby maximizing assurance and min-
imizing implementation and verification cost; and choosing the
architecturally best layer in which to locate each security fea-
ture. If the lower TCB boundary location is chosen such that
some lower layers are outside the TCB but still within the host,
some implementation technique (dependent on the host operat-
ing system) must be used that will protect the TCB from these
lower layers even though the TCB calls them.

1.4 Object References

In a single-host system, object references {for example, file reads
and writes) are typically handled by the TCB because the I/O
system and file system are in the TCB. (Even if the full 1/O
and file systems are not in the TCB, some primitive object-
management system, on which fully-functional I/O and file sys-
tems can be built, is in the TCB.) In a distributed system, on the
other hand, object references are typically handled by untrusted
processes on the hosts involved, which exchange messages with
each other via the TCB. (In Cronus and SDOS, the process that
issues the request on behalf of a user is called a client process,
while the process that responds to the request, on the remote
host where the object is located, is called a manager process.)
The requirement for a two-way exchange of messages between
the untrusted processes can sometimes cause security problems,
because of mismatches between the access classes of the two pro-
cesses and the object being referenced.

Consider, for example, the case of a high-secrecy process at-
tempting to read a low-secrecy object. This is, on the face of
it, a legal operation. In the single-host case, the read is im-
plemented entirely within the TCB. In the distributed case, the
read could involve the sending of a message from a client process
on one host to a manager process on another host. Consider
the constraints on the access class of the manager process. If
it is of lower secrecy than the client, then the sending of the
read request is in violation of the SDOS security policy (which
forbids the flow of information from a high secrecy entity to a
low secrecy entity). If the manager process is of higher secrecy

29

than the client process, then the response to the read request
would be in violation of the security policy. Clearly if there is
to be a two-way exchange of messages between the single-level
manager and client processes, they must have identical secrecy
classes. But now consider the relationship between the secrecy
classes of the manager process and the object(s) that it manages.
If the manager has a higher secrecy class then the object, then
it may read but not write the object. On the other hand if the
manager has a lower secrecy class then the object, it may write
but not read the object. Clearly if the manager is to be able to
both read and write the object, the manager and object must
have identical secrecy classes. (The analogous argument for in-
tegrity [Biba77] classes also applies, but it is omitted here for
the sake of readability.) It seems that clients can communicate
only with managers having access classes identical to their own,
and that managers can both read and write only those objects
having access classes identical to their own. Thus, in the absence
of some solution to this problem, clients can access only those
objects that have access classes identical to their own. This is
inconvenient.

This problem arises from the replacement of object references
via the TCB, in the single host case, by object references via
unprivileged manager processes, in the distributed case. We see
two possible solutions to this problem: move the manager process
into the TCB, or provide a set of manager processes (potentially
multiple instantiations of the same executable code) at and above
the access class of the object. The former has the drawback that
an object manager is inherently an application program, and it
is an objective of the SDOS design (and a feature of Cronus) to
allow users (or at least using organizations) to define new ob-
ject types and implement managers for them. The latter has the
drawback that it leads to an unmanageably-large number of man-
ager processes: one for each of the possible client access classes.
Our design allows a using organization to choose either of these
solutions, according to their own requirements and resources.
We neither require nor forbid the use of multilevel-secure (MLS)
object managers to support multilevel object types. An organi-
zation that has the expertise and resources to implement MLS
object managers may do so. The alternative of using single level
managers, one for each client access class, is also available. The
problem of host operating system limits on the number of ac-
tive processes is addressed by providing for the dynamic activa-
tion of manager processes in response to requests from clients.
The resulting performance problems are addressed by providing
a least-recently-used manager deactivation algorithm similar to
traditional page replacement algorithms, and by using various
ad-hoc techniques to speed up the activation of manager pro-
cesses.

1.5 Distributed TCB

We have identified a number of problems unique to distributed
system security, and some possible solutions to them. We have
chosen the term “Distributed TCB” (DTCB) to refer, collec-
tively, to those solutions. The term was chosen deliberately to
emphasize the difference between the DT'CB and the Network
TCB (NTCB) described in the TNL. The DTCB runs in higher
layers than the NTCB. Conceptually, the DTCB could be imple-
mented either on top of an NTCB, or on top of a collection of
interconnected accredited AIS. (In practice, the implementation
of the latter would be the more difficult.) The distributed oper-

ating system implements a number of abstract entities (subjects
and objects); the DTCB enforces a mandatory security policy
that controls the flow of information between those abstract en-
tities.

Given that a partition of the DTCB resides in each host, it is
useful to consider the meaning of the access class range of each
host. If a host is assigned system-high and system-low access
class limits, what do they mean? Do they delimit the range
within which that host’s DTCB partition is trusted? Or are they
intended to place limits on the range within which unprivileged
processes may run, or within which objects may be created? We
will use an example to motivate the answer to this question.

Consider a very high speed computer that is dedicated to
making weather predictions and continually updating a database
containing world-wide weather information. Although accurate
weather information could be of some value to an opponent, it is
inherently of low secrecy. Further, it must be classified at least
as low as the lowest clearance of any of its legitimate users. So
in this example we will assign the weather information an access
class containing a level of confidential, and an empty category
set. The intention is that only the confidential weather infor-
mation will reside on this host, but that clients of higher secrecy
classes, on other hosts, will be able to request and receive weather
information.

It is not possible to state this policy using a single access class
range for each host. In fact, we need three ranges for each host,
plus one for the system as a whole. System-high and system-low
will refer to the SDOS as a whole, and will limit the range of
information that can exist in the system, and also limit the val-
ues that the per-host ranges may have. On each host, there will
be message-high, message-low, process-high, process-low, object-
high, and object-low access class limits. Message-high is an up-
per limit on the messages that may be sent to the host, while
message-low is a lower limit on the labels that may be put on
messages leaving the host. Process-high and process-low limit
the range of unprivileged processes that may run on the host,
while object-high and object-low limit the range of objects that
may reside in the permanent storage managed by the host.

In the case of the weather system, both object-high and object-
low would be set to confidential. If the weather database has
a MLS manager, then both process-high and process-low would
also be confidential; however if there are single-level managers for
the database, process-high would be set to the highest secrecy
level from which client requests will be accepted. Message-high
would be set to system-high of the SDOS, or to some lower value,
if dictated by weak physical security at the weather host, or by
“Yellow Book” [DoD-G85| restrictions.? Message-low would be
set to the lower of the two values of process-low and object-
low. (Message-high and message-low actually correspond quite
closely, in their effect, to the system-high and system-low param-
eters of a single-host secure system.)

The effect of having three ranges per host is to allow the plac-
ing of separate constraints on unprivileged code and the DTCB
partition in each host. The DTCB partition is trusted to process
information of higher secrecy than any unprivileged program on
the host. This allows the expression of complex policies, taking
into consideration the different physical security and need-to-

2Note that this would prevent very-high-secrecy clients from requesting
weather information. This is not an unreasonable restriction, if the location
for which weather is being requested could compromise a critical mission, if
revealed to an opponent through weak physical security at the weather host.

30

know characteristics of each host in a distributed system.

1.6 SDOS Covert Channels ’

Any system will have covert channels in it as a side effect of its
implementation. There are, however, a number of covert chan-
nels that occur in SDOS only as a result of its distributed nature.
These channels, or similar ones, would probably be found in any
distributed system. There are two broad classes of channels that
are of interest here. The first class consists, in general, of the
ability of a low secrecy process to detect the existence or recent
use of an object, coupled with the ability of a high secrecy process
to modify those pieces of information. The second class consists
of ways in which an untrusted process could signal to a confed-
erate who is listening to an insecure medium within the network
underlying the SDOS. These covert channels, like most others,
can be fully understood only in the context of a detailed descrip-
tion of the design in which they occur, and such a description
is given in the final SDOS report [BBN88]. The nature of these
channels will be briefly sketched here.

When a client invokes an operation on an object, the system
must locate the object before carrying out the operation. In our
design, this involves a broadcast to all hosts, requesting a re-
sponse from the one on which the object resides. This causes a
real-time delay for the requesting client, and possibly a through-
put problem for the system as a whole if these broadcasts are
done with unnecessary frequency. To solve this performance
problem each host maintains a cache containing the locations
of recently-used objects. This cache introduces two covert tim-
ing channels. (It is suspected that under ideal conditions the
existence of the cache would allow the operation of sequencing
channels.)

A high secrecy client can read a low secrecy object, causing its
location to be placed in the cache; then a low secrecy client on the
same host can invoke an operation on the object and detect, by
measuring the time delay, whether or not the object’s location
was in the cache. This allows a covert communications proto-
col to be implemented, using a previously agreed upon group of
objects to transmit the 1’s and 0’s of a message.

A high secrecy client can create and delete high secrecy ob-
jects at will. If the write-up operation is allowed by the SDOS
security policy, a low secrecy client could detect the existence or
nonexistence of a high secrecy object by repeatedly attempting to
write it. An existing object would have its location cached after
the first attempt, resulting in lower time delays for subsequent
attempts. A nonexistent object would never have a cache entry
and would always cause a long time delay before the operation
completes (even when success or failure of the operation is not
reported to the low secrecy client).

Various solutions suggest themselves: disallow all write-up op-
erations; introduce random delays into the completion of selected
operations; eliminate the cache completely; classify cache entries
and allow only those processes who are cleared to read them
to benefit from their contents. These solutions all have obvious
functionality and performance disadvantages.

The second class of channels involves the ability of untrusted
software to signal by modulating information visible on an un-
trusted medium. A distributed application, having a global view
of its goals, and possibly some foresight into its future behav-
ior, could make good use of the ability to influence the behavior
of lower layers in ways that would globally optimize the use of

scarce resources such as communications bandwidth. (Lower lay-
ers can, at best, make local aptimizations based on past history.)
However, the ability of a higher layer to influence the behavior of
a lower layer by passing detailed control information across the
interface has the drawback that it allows untrusted software to
deliberately modulate some of the information that is necessarily
clearly visible on untrusted media—message destinations, rout-
ings, lengths—the sort of information that traffic flow analysis
looks at. Current layered protocols provide some ways in which
higher layers can direct the behavior of lower layers to achieve
optimization. Current work in DOS research suggests that layer
interface enhancements allowing the passing of even more control
information to lower layers would be useful. However the closing
of these covert channels would require that downward informa-
tion flow be shut off by providing even less ability to pass control
information than exists in current protocols. This conflict is un-
resolved, and it is one of the topics suggested below for future
research. The work of Girling [Girl87] on Covert Channels in
LAN’s is applicable to this problem.

Solutions to these covert channel problems all involve tradeoffs
of functionality and performance on the one hand against secu-
rity on the other hand. The parameters involved in the tradeoff
(the value to application programmers of a particular item of
functionality, the performance implications of any design change,
and the bandwidth of a particular covert channel) can only be
estimated during early design stages. The choice of solutions
should be put off until the prototype implementation stage.

1.7 Problems Arising from Heterogeneity
1.7.1 Heterogeneous Networks

It is a design objective of SDOS that its hosts be able to commu-
nicate with each other over heterogeneous networks, rather than
being restricted to one particular set of network hardware and
software technologies. The main benefit of the use of heteroge-
neous networks is to allow the use of existing networks. Many
existing networks are not secure. Thus the objective of network
heterogeneity becomes the objective of being able to maintain
security within SDOS while using insecure networks for commu-
nication between SDOS hosts. Encryption can protect higher
layer data, but some lower layer information must travel the in-
secure networks in the clear, for the simple reason that header
information of the lower three layers of the OSI model (or the
equivalent thereof) must be interpreted in the course of message
processing within each insecure node of an insecure network (for
example, ARPANet IMPs). The information handled by those
layers is subject to traffic flow analysis, and also provides a po-
tential covert channel, as outlined in an earlier section. These
problems are addressed, to some extent, by the SDOS design,
but further research would be beneficial.

1.7.2 Heterogeneous Hosts

It is a design objective of SDOS that the host-resident software
be portable to various processors and operating systems. The
benefits of this heterogeneity of hosts include the ability to pro-
vide varying amounts of processing power to meet the needs of
various applications, the preservation of investments in existing
0S8 and application software, and the ability to take advantage of
new processors and operating systems as they become available
from manufacturers, (Naturally, the hosts on which SDOS is

31

built must have hardware and operating system features capable
of supporting multilevel security, which implies a rating of B2 or
above as defined by [DoD85].)

The problems arising from the heterogeneity objective fall into
two areas: implementation costs and architectural questions.
There are two kinds of implementation costs: the cost of ac-
tually porting SDOS to a new host, and the cost of designing
an interface that allows it to be ported easily. It is our feeling
that, while the former cost should be borne by the various using
organizations that have a requirement to run SDOS on partic-
ular hosts, the latter cost (portable design) should be a part
of the initial development of SDOS (in other words, we believe
that portability to a heterogeneous set of hosts is an important
requirement).

The architectural questions that are raised by heterogeneity
could be viewed as merely higher level portability issues, al-
though they do have a more fundamental impact on SDOS func-
tionality. These questions have the common property that they
involve decisions between using security features in the multi-
level secure host operating system or ignoring those features and
implementing analogous, but slightly different, features in the
higher SDOS layers. The economic advantage to using existing
features is obvious. The disadvantage is that various parts of the
SDOS security feature set become constrained by the details of
the host operating system security features. One example is the
size of access class labels: the number of different levels and cat-
egories that can be expressed in labels. These architecture/cost
tradeoffs must be made, even if SDOS is designed to run on only
one type of host. The requirement for heterogeneous hosts makes
these tradeoffs even more difficult.

The cost tradeoff problems discussed in this section are far
from fundamental topics for computer security research, but they
are important nonetheless. Users of secure systems have as their
fundamental objective the doing of the job that is their orga-
nization’s reason for existence. Security is merely one of the
constraints within which they must operate; cost is another con-
traint. Design decisions involving cost must be given serious
attention if a secure systems project is to succeed.

1.8 Problems Related to Object Replication

Data replication, or the maintenance of several copies of data
on different hosts, is the primary technique for achieving data
availability in the event of host or communication failures. Data
replication is achieved by coordinating reads and writes across
all copies of the data. Much research has been directed toward
developing algorithms for supporting data replication. The algo-
rithms vary with respect to the degree of availability, consistency
and performance that they offer. The consistency, availability
and performance requirements of distributed, highly available
applications also vary. The replication scheme that satisfies best
an application’s data requirements is dependent on the applica-
tion. As a result, replication mechanisms are commonly placed in
the resource management software component that understands
the semantics of the data. In object-oriented systems such as
SDOS, these mechanisms are placed in object managers, and the
object is the granularity at which replication is supported. If
replication mechanisms were placed in the Object Database in-
stead of object managers then it would be impossible to tailor
the management of replicated objects in an application-specific
way.

In addition to the data stored in an object, there is a sig-
nificant amount of administrative information that needs to be
associated with an object. For example, all objects in SDOS
have access control lists and security labels. Additionally, the
set of hosts where copies of a replicated object reside needs to be
maintained. Objects that are replicated must have this adminis-
trative and security-related information replicated as well, both
to avoid bottlenecks and to provide high availability.

Security labels are stored separately from objects in the Se-
curity Database within the TCB. Access control lists are main-
tained with objects in the Object Database. The design decisions
that led to this placement reflected the considerations of the de-
sired functionality and criticality of the information. We have
come to understand that there are additional trade-offs to con-
sider when the objects are replicated.

When the adminstrative information is maintained with the
object by the object’s manager (in the case of SDOS, the access
control lists), the application developer may be given control over
the policy that governs how copies of the information are main-
tained. In the case of access control lists, a variety of different
policies are conceivable. For example, strict consistency would
ensure that changes to an ACL are propagated to all copies atom-
ically. However, this would prevent an administrators ability to
remove a client from an access control list when some copies are
unavailable. Regardless of the particular policy adopted, placing
the information with the object provides the maximum amount
of flexibility possible for setting the replication maintenance pol-
icy.

Security labels cannot be maintained by object managers be-
cause they are critical to the enforcement of the mandatory secu-
rity policy and they are used by other kernel components. Plac-
ing them in the Security Database forces the security database
to support their replication. This has several implications:

e The security database (i.e., the kernel) must implement al-
gorithms to maintain consistency between the copies of an
object’s label. While it is necessary to implement a single
policy for maintaining security label replicates, placing these
algorithms in the kernel complicates it. It also requires the
security database to maintain a list of where all copies of an
object (or more specifically, its labels) reside.

o The policy setting the consistency and availability of objects
may differ from the policy determining the consistency and
availability of their labels.

e The replication of objects must be coordinated with the
replication of their labels. As a result, both the Object
Database and security database must support operations
to replicate and dereplicate an object and its label, respec-
tively. Furthermore, only the object database may invoke
the security database replicate and dereplicate operations;
otherwise, label and object copies could be created or re-
moved in an uncoordinated fashion.

The policy on the replication of security labels is loose con-
sistency: updates to security labels are propagated as permitted
by the connectivity of hosts. Since only the System Manager
may update security labels, we believe this policy is appropri-
ate despite connectivity problems. This policy also simplifies the
replication management performed by the Security Database.

Section 2.3 discusses the complications security features intro-
duce for replication management based on our experience with

32

the formal specification of the Catalog Manager.

2 SDOS Security Policy

The SDOS security policy was formulated in response to per-
ceived threats to security. The resulting policy rules can be di-
vided roughly into three groups:

o A discretionary policy, designed to control the use of SDOS’
abstract operations on the basis of client identities;

e A mandatory policy, controlling the flow of information on
the basis of DoD security levels;

e A configuration policy, defining the system’s security “con-
figuration” in terms of a set of “policy parameters”, and
controlling the modification of those parameters, both by
system users and by changes to the network connectivity.

The mandatory policy, in turn, is composed of two parts:

1. A policy controlling message passing between entities. Each
DoD security level indicates both secrecy and integrity ac-
cess classes. Each system component has a set of levels,
called its lebel, which records the levels of data the compo-
nent is authorized to handle. A component may only send
a message with a level from its label, and it may only re-
ceive a message if the message’s level is in its label or can
be upgraded to be.

The system components are divided into two groups: those
that are certified to handle multi-level data (MLS entities),
and those that are not. Those that are not have singleton
labels.

2. A policy controlling information flow within each MLS en-
tity. The policy we chose is composable, which means that
the controls on local information flow, taken together, imply
controls on global flow for the entire system.

Several aspects of this policy are noteworthy. First, the
mandatory and discretionary policies are cleanly separated. The
discretionary policy is stated in terms of abstract operations of
the object model that SDOS supports. The mandatory policy
refers to the message passing operations which are used to im-
plement the object model.

Second, it is a global policy, giving requirements for the entire
system rather than for individual hosts.

In the following sections, we discuss some ways in which policy
concerns in SDOS differ from those in a centralized system.

2.1 Restriction: Hook-up Security

The part of the mandatory policy that controls messa.gé passing
eliminates direct downgrading of data. However, it is the other
part, the policy for each multi-level secure entity, that prevents
information compromise via covert channels. That policy must
guarantee that the levels an MLS entity assigns to each message
are not underestimates of the sensitivity of the message’s content.
We describe that policy now.

We have used the multi-level security policy of McCullough
[McCull87]. That policy defines security in terms of information
flow. Information flow is defined in terms of the deducibility of
facts about the history of inputs received by a component. A

system component is secure if it does not allow information to
flow from high security levels to lower ones.

The McCullough policy goes beyond this, however. It has
the additional property of composability: two MLS components,
when hooked together, form a larger component that is also MLS.
A component with this property is sometimes called “hookup
secure”, but in this paper, we have called these components re-
strictive. (Other properties exist that limit deducibility and are
also composable in the above sense.)

The SDOS policy requires that the collection of all MLS en-
tities be restrictive. Since restriction is a composable property,
it is sufficient to verify that each MLS component is restrictive.
The fact that security verification can be decomposed in this
fashion is a tremendous advantage when trying to verify security
for a distributed system such as SDOS.

The fact that MLS components must be restrictive is also an
advantage when a secure system is to be extended. Extensions
may include either new hardware or new software. In SDOS,
extensibility means adding new object managers to the system
to define new classes of objects and new abstract operations on
those objects. If a new component is added to SDOS, and if it
is verified to be restrictive with the same degree of assurance
as the original system, then adding the component will create a
new system that is also restrictive. The information flow security
of the new system can be guaranteed with the same degree of
assurance, and without a re-verification.

Our work on SDOS is almost certainly the first attempt to
verify the property of restriction for a secure operating system.

2.2 Read-down and Write-up

In a distributed system, a “read” operation will often not be
considered a fundamental operation. A “read” may be composed
of a pair of messages: a request-to-read, followed by a response.
If reading data from a lower level entity is to be considered secure,
as it is in Bell-LaPadula, it is because the request to read message
causes no harm. However, the fact that a request to read has
been sent is in general as sensitive as the reader itself, and in
general it will downgrade information.

There are two approaches to this problem. One may demand
assurance from the message’s sender that the request is overclas-
sified, and can securely be sent at the lower level. On the other
hand, one may demand assurance from the message’s receiver
that the information in a high-level request to read will not be
used for any purpose other than initiating the read operation it-
self. Either approach can be developed. For SDOS, we have used
only the former approach: a request to read can be downgraded
in some cases if a human being decides that it is secure to do so.

With regard to write-up’s, we have taken the approach that the
existence of an entity will in general be as sensitive as the entity
itself. This was done to allow clients to delete entities at their
own level. However, the approach has a drawback: for a “write-
up” operation, i which the client’s level has to be dominated
by the object’s, the location of the object cannot be found if the
search is carried out at the client’s level.

We provide a “write-up mode” in which write-up operations
are treated as special. In this mode, a client chooses to upgrade
an operation so that it can be carried out completely at the
object’s level. The client does not know what level that is, and
gives up any hope of seeing a meaningful acknowledgement. Once
the request is upgraded, though, the system can find the object’s

33

level and can carry out the operation. It would be insecure to give
an acknowledgement indicating, for example, that the request
had arrived at some manager, because it would convey to the
client that the higher level object exists and has been located.
Modulating an object’s existence could then be used as a covert
channel. As a result, it is not possible to build a reliable write-up
operation.

2.3 Object Replication

Section 1.8 considered the impact of object replication on the
management of security labels. In this section we consider the
impact of security on the management of replicated objects. Our
formal specification of the design of the Catalog Manager, which
maintains replicated directories, provided an opportunity to ex-
periment with a particular replication management (i.e., concur-
rency control) mechanism. We first consider this experience, and
then generalize these results to more general replication manage-
ment mechanisms.

The catalog manager locks out all but one concurrent update
to a replicated directory. A significant fact emerged from the
verification exercise: concurrency control as used in the catalog
manager, will not interfere with multi-level security. The follow-
ing two points explain this:

o When a client mnvokes an operation on a higher-level ob-
ject, the SDOS message switch does not try to guarantee
that the client can use manager services at the its own level.
Instead, the client must choose to let the invocation be up-
graded to the object’s level, and surrenders any expectation
of an acknowledgement from the object manager. Because
such invocations either fail or are upgraded to their object’s
level, the catalog manager is guaranteed to receive only in-
vocations at levels that dominate the level of their object.

e The only invocations that can succeed at levels strictly
greater than their object’s level are requests to read
(“Lookup”) a directory. In the catalog manager as specified,
both read and modify operations are atomic when applied
to a single directory replica. Therefore, a read (Lookup) will
never be blocked because a distributed update is in progress.

The concurrency control mechanisms used by the Catalog
Manager, then, only block operations which write directories at
the same level as the concurrent invocations. Since the clients of
these requests are blocked by the activity of clients at the sarne
level, the concurrency control mechanism does not act as a covert
channel.

In general, since accesses to an object may come from clients
at many levels, a concurrency control mechanism that prevents
access of one client because of accesses of other clients at higher
levels will be insecure. The specific problem that arises is that
clients reading down to objects may cause lower level (writing)
clients to be blocked, and this execution delay is a covert channel.
For example, read/write locking is insecure, because higher level
clients can lock an object for read and cause lower level writing
clients to be blocked. [n contrast, voting algorithms do not block
read-downs, and therefore are not insecure.

2.4 Configuration Policy

The need for a configuration policy follows naturally when con-
sidering security in a distributed system context. The system’s

security is configured by a set of values called here policy param-
eters. These parameters include the security labels of system
components, discretionary access control lists, and the results
of specific choices such as whether audit records are kept, and
whether the system can be extended with new trusted software.
The system’s security configuration may change with time. The
configuration policy constrains who may cause these changes,
and what consistency is required between security configurations
on different SDOS hosts.

3 SDOS Design

3.1 Overview of Design

The SDOS TCB consists of the kernel, and a set of trusted man-
agers that provide system services.

The kernel consists of the message switch, the locator, the
process manager (so-named for historical reasons—it is an inter-
nal part of the kernel, and not an object manager), the security
database, the object database, and the process table.

The trusted managers include the file manager, catalog man-
ager, authentication manager, and trusted interface process.

The function of each of these TCB components is briefly de-
scribed below. More detailed descriptions may be found in
|[BBN&S].

e Message Switch: Routes messages between entities, both
locally and remotely. Enforces the mandatory security
policy governing the passing of messages between entities.
Communicates with its peer message switches on other
hosts, and cooperates with them in the passing of messages
and the enforcement of the security policy.

e Locator: Locates objects that do not reside on the local
host. Provides this service only to the local message switch.
Maintains a cache containing the locations (remote host IDs)
of recently used remote objects. Remote objects are located
by broadcasting a request for the object to all hosts. If no
positive response is received after a suitable interval, failure
is reported to the message switch.

e Process Manager: Creates and destroys processes, and
maintains (sets and shows) process bindings. Process bind-
ings is the term for the set of information that includes a
user’s identity, and mandatory and discretionary access con-
trol attributes.

o Security Database: The collection of data needed for the
enforcement of the mandatory security policy. This infor-
mation includes, for each entity on a host: an access class
label; a switch indicating single-class or multilevel-secure;
for a replicated object, the number of replicas in the sys-
tem; and for an object type, information about its manager,
including: whether local managers exist, whether they are
active, and the location of their executable code.

e Object Database: Provides storage for all objects that
reside on the local host. Used by object managers.

s Process Table: Contains information about all active pro-
cesses on the local host, including the process bindings.
Maintained by the Process Manager. Consulted also by the
Message Switch, when making mandatory access control de-
cisions.

34

e File Manager: A multilevel secure manager, allowing the
write-up and read-down operations. Also implements cre-
ate, delete, open, and close operations.

e Catalog Manager: Provides an abstract space of sym-
bolic names for objects. Translates from an object’s sym-
bolic name into its UID. (The UID is used to reference an
object when invoking an operation.)

o Authentication Manager: Implements login and logout
requests from interactive users. Sets appropriate process
bindings for users logging in.

e Trusted Interface Process: Implements a trusted path
between the system and an interactive user at a terminal.
Maintains the state of the terminal, with respect to whether
or not a user is logged in. Relays login requests to the
authentication manager. Relays the requests of a logged-
in user to other parts of the system. Could be called the
Trusted Terminal Manager.

3.2 Enforcing Security
3.2.1 Location of Security Mechanisims

One of the fundamental decisions in the design of a secure sys-
tem is the choice of locations for the implementation of security
mechanisms. In the case of the mandatory controls in SDOS, the
choice was rather clear. The mandatory security policy is based
on message passing; the message switch is the entity which is
responsible for the passing of messages; therefore the message
switch is the natural place to implement the mandatory controls
when the identity of a message’s sender is involved. In general,
MLS controls on message passing are enforced by every compo-
nent of the DTCB, including the message switch, but also by
other kernel components and by every trusted MLS manager.
For discretionary controls the choice was more difficult. The
SDOS discretionary control scheme, which is based on that of
Cronus, allows, in general, for a different set of discretionary con-
trol rules for each object type. The SDOS discretionary control
scheme is summarized here and in the following section and dis-
cussed in greater detail in a companion paper [Vinter88]. Briefly,
an ACL consists of a list of entries, each of which consists of
some client identification information {details omitted here), and
a specification of the set of operations which the bearer of that
identification is permitted to invoke on the object. The set of le-
gal operations is different for each object type. Therefore the set
of operations that can be specified in an ACL entry is different
for each object type, and the code that searches and interprets
an ACL must be different for each object type. This argues for
placing ACL interpretation in the manager of each object type.
However, managers are assumed to have low assurance, being
writable by users. The idea that it is acceptable for DAC to
have lower assurance than mandatory controls has gained some
acceptance recently, but to suggest that DAC be implemented
in user programs of no assurance whatsoever would be going too
far. In fact, we do not suggest this. Elsewhere in this paper, we
discuss the possibility that using organizations would in some
cases have to develop the expertise required to write multilevel
secure managers. We here suggest that all using organizations
that wish to extend the system by defining new types and writ-
ing managers for them will need to have the capability of writing
managers of at least C2 assurance, in order to provide acceptable

discretionary controls. We have developed a technique for mak-
ing it easy to implement managers that provide C2 assurance
for discretionary controls on hosts that provide hardware rings
usable by application developers [Vinter88].

The choice of location for the encryption mechanism was fairly
straightforward. Encryption of data being sent out over an un-
trusted network is done in or near the IP sublayer of the Network
layer. This is the lowest place in the OSI model where end-to-
end encryption can be done across the internet. Encryption at
a lower point would interfere with the operation of the network
layer in untrusted network nodes. Encryption at a higher point
would result in the passing of more unencrypted information in
message headers, and require individualized encryption mecha-
nisms for each of the higher layer protocols.

3.2.2 Discretionary Controls

The SDOS discretionary access control mechanisms are based
on access control lists. However, several aspects of their design
distinguish them from conventional approaches, including their
support of roles, nondiscretionary rights, direct operations, in-
termodule connection control, and proxies.

Discretionary controls are type specific, as each type defines
the privileges clients may have to invoke operations. Clients are
identified by a principal (user) and project (task or group). A
client may be associated with several different projects (though
always acting on behalf of exactly one), and in a different capac-
ity in each project. For example, a client may be an operator
for one application but a developer for another. The different
capacities, or roles, in which a client acts determine the oper-
ations that are available to the client to access objects. Roles
tend to have similar meaning across many different types, thus
providing an aspect of uniformity to the type independence of
SDOS access control.

The operations in an access control list are divided into discre-
tionary and nondiscretionary categories. The degree to which an
operation is discretionary reflects the extent to which its entries
in access control lists may be modified. Discretionary opera-
tion entries in an access control list may be modified by a group
of users for a type having the Controlling Group role. Nondis-
cretionary operation entries in an access control list may only
be modified by the System Manager. Since intervention by the
System Manager is expected to be rare, the extent to which mod-
ifications to nondiscretionary operation ACL entries may change
is highly constrained.

Direct operations are operations which only may be invoked
by a trusted Terminal Interface Process. Thus, operations which
should only be invoked by humans can be protected from inad-
vertent or malicious invocation by application software.

Object-oriented systems invariably create instances of nested
object invocations, where client A invokes an operation handled
by manager B, which in turns invokes an operation handled by
manager C. For example, a process authenticating itself causes
the Authentication Manager to invoke a nested call to set its
process bindings for discretionary access control. In many in-
stances, the nested call should be made on behalf of (i.e., using
the identity of) the original client. Clients may send proxies, or
a highly constrained part of their identity, to managers, which
can then act on behalf of that client’s limited identity. Proxies
constrain the behavior of malicious managers and assure that
managers cannot take on illegal or forged identities.

Module interconnection controls refers to the control of which
modules (clients) can call other modules (managers). For exam-
ple, only the Authentication Manager should be able to invoke
the SetProcessBindings operation for a process. SDOS dis-
cretionary controls allow a manager to sletermine the identity of
the client, even when the client is acting on behalf of another
client by using a proxy.

See [Vinter88] for a more complete discussion of the SDOS
discretionary control design.

3.3 Host Operating System Security

SDOS, like Cronus, is a collection of higher layer software that
is implemented on top of an existing operating system in each
host. Unlike Cronus, which is implemented on top of a variety
of commercially available operating systems having ratings of D
through C2, SDOS must be implemented on top of a multilevel-
secure host operating system. This is necessary in order to pro-
vide the required assurance that the SDOS security features can-
not be tampered with. The Criteria mandate at least B2 assur-
ance for multilevel security. The design objective of SDOS is an
A1l rating. Thus, the host operating system(s) on top of which
SDOS is implemented must have a minimum of a B2 rating, and
ratings of B3 or Al are more desirable.

3.3.1 Advantages and Disadvantages of MLS Support

Operating systems having B2 through A1l ratings will have mul-
tilevel security policies built into them. These policies will all be
different from the one designed for SDOS. Some may be similar,
while others may be completely incompatible. The reason for
building on top of a secure system is to benefit from its assur-
ance. The policy comes with it for free, and we must decide what
to do with it—use it or ignore it. The temptation is strong to
use it, for economic reasons. This may or may not be possible,
depending on the policy of the particular system chosen. Any
decision to use the policy of an existing system will involve some
changes to the designed SDOS policy. These changes may range
from changes so fundamental as to be unacceptable, to changes
in unimportant details.

A decision to ignore the policy of an existing system also has its
drawbacks. The security mechanisms in the existing system will
continue to operate and contribute to overhead, even if SDOS is
built on top of it in such a way that the existing policy does not
restrict SDOS (for example, by labeling all SDOS entities with
the same access class label in the existing system’s label set).
This decision will also tend to increase the SDOS implementation
cost.

3.3.2 Desirable Host Operating System Properties

A secure operating system that is a good candidate on which to
implement SDOS will provide the following:

e assured process separation — the ability to prevent direct
interprocess communication that is not controlled by the
system;

e non-interference with process operation — SDOS processes

responsible for security must not be tampered with;

o stable storage — data needed for enforcing security, such as
user authentication data, must be stored in a fault-tolerant
and protected manner.

In addition, the good candidate will have a multilevel security
policy that lends itself to being used to implement the SDOS
policy, rather than being ignored.

3.4 Network Security
3.4.1 Open vs Closed Networks

A closed network is one whose nodes and inter-node communica-
tions media are under the physical control of the using organiza-
tion, such that their security can be assured, making it practical
to implement multilevel security in the nodes. An open network,
on the other hand, uses public communications media (such as
phone lines or radio signals) and public nodes, such as those in
commercial packet switched networks or in the ARPANet. Phys-
ical security of the nodes and media of a public network can ob-
viously not be assured, so multilevel security is impractical. It is
a design objective of SDOS that the system be able to maintain
its own security even when it is operating over an open network.
The reason for this requirement is a practical one: open net-
works are prevalent, and becoming more so every day. Closed
networks are relatively rare, usually unavailable, and costly and
time-consuming to construct and maintain.

3.4.2 Encryption

Encryption is the usual solution to the problem of maintaining
security of communications across an open network. Two classes
of encryption are of interest here: link encryption and end-to-end
encryption.

Link encryption protects data on an insecure medium that is
being used for communication between two secure network nodes.
Messages being relayed through several nodes to an ultimate des-
tination are decrypted and re-encrypted at each intermediate
node.

End-to-end encryption is used by higher layer entities to pro-
tect data from untrusted lower layers or from untrusted nodes in
an open network. Messages are encrypted by the sending higher
layer entity, decrypted by the receiving higher layer entity, and
remain encrypted while moving through lower layers and inter-
mediate network nodes.

End-to-end encryption has the advantages that the encryption
and decryption are only done once for each message, and that lay-
ers below the encrypting layer, and intermediate network nodes,
do not have to be trusted. It has the disadvantage that message
headers for the layers below the encrypting layer travel the net-
work in the clear. The information in these headers is subject
to traffic flow analysis. Further, as suggested earlier, there is a
potential covert channel if untrusted software above the TCB is
able to exercise control over lower layer operation in ways that
would modulate the lower layer header information.

Link encryption has the advantage that all information carried
on the insecure medium is protected. It has the disadvantage
that all layers down to the physical layer, and all intermediate
network nodes, must be secure. In other words, link encryption
implies a closed network.

Since the use of open networks is a requirement for SDOS, we
have chosen to use end-to-end encryption, in the IP sublayer of
the Network layer. This is the lowest point at which end-to-end
encryption can be done without interfering with the activities
of the network layer in intermediate untrusted nodes of an open
network. This allows layers below the point of encryption in each

36

SDOS host to be untrusted. Layers at and above the point of

encryption, up through the TCB/application interface, must be
in the TCB.

4 Formal Methods

One of the goals of this project has been to formally verify that
the SDOS design meets the requirements of the SDOS security
policy. This would give high assurance that the design is “se-
cure”. Much of our work toward this goal has focussed on veri-
fying the part of the mandatory policy requiring constraints on
information flow.

We have formalized the design of SDOS as a program in Gypsy
[Good78]. To prove, using the Gypsy methodology, that a pro-
gram meets it requirements, one must express those requirements
as assertions that are true at particular times during the execu-
tion of the program. We found, however, that the information
flow constraints of the SDOS policy cannot be directly expressed
in this way. Other approaches were needed.

4.1 A New Security Methodology

Our emphasis on mandatory information flow security is a re-
sult of the emergence of a new methodology for security verifica-
tion. The aim of this methodology is security verification through
analysis. In other words, large designs can be decomposed into
smaller ones, and the security of the larger can be inferred once
the properties of the smaller are known. This approach has ob-
vious merits, but it is only recently that it has been applied to
formal specifications for information flow security.

The work of McCullough [McCull87] is a particular case of
this new methodology. In his work, system components are de-
fined in terms of their possible behaviours; the approach he used
simplified and slightly modified the approach of CSP [Brook84].
The hook-up, or composition, of two components is defined as in
CSP. McCullough searched for, and found, a property that cap-
tures many desirable features of information flow security and
is also a composable property: the hook-up of two components
with the property is a new component with the property. We
have called his security property restrictiveness, or restriction.

The verification work done for the SDOS project ties into the
new methodology. The SDOS security policy requires that the
entire trusted part of the system be restrictive. We have endeav-
ored to show that the multi-level secure processes that comprise
SDOS are each restrictive, so that the restrictiveness of the en-
tire system can be inferred from composability. However, the
problem of demonstrating the restrictiveness of each MLS pro-
cess remains. One way in which we have handled this problem
is to find other, simpler, properties, which when taken together,
imply the restrictiveness property. These simpler properties are
then proved, using Gypsy, for each component. We needed to
develop special techniques for proving some of the simpler prop-
erties using Gypsy.

Other than restrictiveness, we formally defined several prop-
erties that are “security-like”, in the sense that they also limit
deducibility, and hence, information flow. Of primary impor-
tance is the property called weak non-interference (WNI). The
WNI property limits deducibility in a way that is similar to the
Goguen-Meseguer model [Goguen82]. However, WNI is both
weaker than restriction, and not composable. By conjuncting

several other simple properties with WNI, however, we can in-
fer restriction. A proof of this claim is given in the final SDOS
report [BBN88|, and is outlined in [Weber87|.

As stated earlier, Gypsy is ill-suited to direct verification of
properties such as restriction and WNI. Each is a property of the
form: “Given any history e, there must be a history b such that
P(a,b) holds.” Essentially, one is required to show the existence
of particular histories of a component. Gypsy embedded asser-
tions, though, state requirements of individual histories, taken in
isolation. They never directly imply the existence of any history.
However, simply changing the specification language was unlikely
to solve the problem: other popular specification methodologies
used for proving invariant properties of state machines would
fare no better.

We developed a technique for proving that WNI holds for a de-
sign expressed in Gypsy. The technique does not supply embed-
ded assertions for the design itself, but rather, it first transforms
the design into a new form, and then supplies assertions about
the new form that imply WNI. The restrictiveness of a design
is to be inferred from the fact that it satisfies WNI, plus other
simpler properties. This “program transformation” technique es-
sentially shows that an alternate history exists by constructing it
from the actual history. The transformed Gypsy design contains
the state variables and control structure of the original design,
but replicated, so that the two histories can be constructed in
parallel.

Decomposing restrictiveness into simpler properties can now
be seen as an advantage, since these simpler properties turn out
to be easier to handle in this program transformation technique.

In verifying the information flow security of various SDOS
components, we found that the definition of security as restric-
tiveness may not always be appropriate. We needed generaliza-
tions of the property to permit the following:

e limited downgrading of information via covert channels;

o special protocols used in communication between compo-
nents;

e assumptions about the boundary between the assured sys-
tem components and process and users with limited or no
assurance.

This project achieved some successes in these directions. How-
ever, the subject is far from closed.

5 Future Directions

The work described in this paper has only made a start toward
the development of a secure distributed operating system. There
is more work to be done, in a number of areas, ranging from the
very theoretical to the very practical. Several of these areas are
described below.

5.1 Prototype Implementation

The development of a prototype SDOS would have a number
of useful results. It would allow the concepts developed in this
project to be tested and proved in a practical setting. It would
uncover any ideas that look good on paper but prove to be im-
practical during implementation. It would allow measurements
to be made of performance-critical operations and of covert chan-
nel bandwidths, and experimental attempts to be made to speed

37

up the former and slow down the latter. It would allow experi-
mental applications to be developed using the facilities provided
by SDOS, to determine their suitability for use in practical ap-
plications. It would be a first step toward the deployment of an
operational secure distributed operating system.

5.2 Alternative Layering Schemes

Layering, abstraction, and data hiding are thought to be good
software design methodologies, and their use in secure systems
is mandated by the Criteria. In any layered software system
that is undergoing evolution and change, there arise occasions
where the addition of some function or the improvement of some
existing function requires the passing of information and control
across layer boundaries in ways that were not intended when
the boundaries were originally defined. Often some compromise
of the strict layering rules will be made to avoid the need to
completely re-modularize the system and redefine the layers to
accomodate the change being made. But it is usually thought
that such a layer redefinition could always be done successfully
if resources were available.

Layer violations in SDOS are especially troublesome, because
we depend to some extent on the restriction of downward infor-
mation flow between the layers to limit the bandwidth of some
covert channels. For this reason, careful attention must be given
to modularization and layering within SDOS. We have the layers
of the SDOS kernel and the trusted managers, the layers of the
multilevel secure operating system in the host, and the layers
of the OSI model. SDOS development involves the evolution of
the Cronus kernel into the SDOS kernel, the addition of secu-
rity features to the communications layers, and the integration
of these two sets of layers with those of the TCB of the host
operating system. It has been difficult to create a layer diagram
that clearly and correctly represents the relationships between
all of these components of the system.

Further work in this area might result in a redistribution of
functions between the layers, that resolves these problems. On
the other hand, it might result in the conclusion that the rela-
tionships between the entities in a system of this size and com-
plexity are too complex to be described by the one-dimensional
ordering represented by a traditional layer diagram, and that
some multi-dimensional representation is more appropriate for
describing their relationships.

5.3 Research into Formal Methods

Our work on this project developed several results of formal se-
curity analysis. We proved several theorems showing that the
interconnection of components with certain properties will yield
systems with known properties. These theorems effectively ex-
tend the theory of “hook-up security” begun by McCullough
[McCull87]. Clearly, the theory can be extended further with
theorems about other kinds of hook-ups.

Several points should be noted concerning the limitations of
the formal methods of verification discussed in previous sections.

e In practice, the Gypsy program transformation technique is
clumsy. The practitioner not only needs to combat the diffi-
culties of using Gypsy, but must also carry out many tedious
transformation steps manually. When an error is discovered
in the transformed program, not only that program, but the
original source must be corrected. Complicated assertions

must be given at many places in the text of the transformed
program. Many of the verification conditions have a repeti-
tively similar form.

None of this is intrinsic to the method. Many of these diffi-
culties could be relieved by automated support.

e In at least one place, the design of SDOS depends on non-
determinism for its security. (The security database uses
random numbers to generate identifiers securely.) However,
the methods we developed for proving non-interference us-
ing Gypsy are not applicable to non-deterministic designs.
Not only are Gypsy procedures intended to model just de-
terministic algorithms, but showing the existence of traces
in a non-deterministic system is a harder problem in general
than in the deterministic case.

o The method of decomposition called “input-limited restric-
tion” is only a simple example of a larger search: if two
components agree to communicate using some protocol, and
the security of each is made dependent on whether the other
obeys the protocol, what component properties and inter-
esting protocols can be used to hook together a restrictive
system?

o In cases that a covert channel could not be eliminated com-
pletely from an SDOS component, the component obviously
could not be proved restrictive. But leaving such a compo-
nent unverified is not satisfactory. Generalized versions of
restriction need to be found, such that limited violations of
security are possible. The severity of the violation can be
controlled and quantified. The work appearing at the end
of chapter 4 of [BBN88] is an attempt at such a generaliza-
tion. However, more powerful extensions can undoubtedly
be found.

Each of these points represents an avenue of possible future re-
search.

References

[BBN88] “The Secure Distributed Operating System Project,”
BBN Laboratories, Inc. Report No. 6144 Rev. 2.1,
January 1988.

[Bell76] Bell, D.E., LaPadula, L.J., “Secure Computer Sys-
tems: Unified Exposition and Multics Interpreta-
tion,” Mitre Corp. Technical Report MTR-2997, Re-
vision 2, March 1976.

[Biba77] Biba, K.J., “Integrity Considerations For Secure
Computer Systems,” Mitre Corp. Technical Report
MTR-3153, April 1977,

[Brook84] Brookes, S.D., Hoare, C.A.R., Roscoe, A.W., “A
Theory of Communicating Sequential Processes”,
Journal of the ACM, vol. 31, no. 3, 1984.

[DoD85] “Department of Defense Trusted Computer System
Evaluation Criteria” , DoD, National Computer Secu-
rity Center, Standard DOD 5200.28-STD, December
1985.

38

[DoD-G85)

[Giri87]

“Guidance for Applying the DoD Trusted Com-
puter System Evaluation Criteria in Specific Environ-
ments”, DoD Computer Security Center CSC-STD-
004-85, June 1985.

Girling, C.G., “Covert Channels in LAN’s,> IEEE
Transactions on Software Engineering, Vol. SE-13,
No. 2, February 1987, pp. 292-296.

[Goguen82] Goguen, J.A., Meseguer, J., “Security Policy and Se-

[Good78]

[Jones78]

[McCullg?]

[Schan88]

[TNI87]

[Ulysse87]

[Vinter88]

[Weber87]

curity Models,” Proceedings of the IEEE Symposium
on Security and Privacy, 1982.

Good, B.L, et al., “Report on the Gypsy Language,
Version 2.0,” Technical Report TR ICSCA-CMP-10,
Institute of Computer Science, University of Texas,
Austin, September 1978.

Jones, A.K., “The Object Model: A Conceptual Tool
for Structuring Software,” Operating Systems, An
Advanced Course; Lecture Notes in Computer Sci-
ence, Springer-Verlag, Editors Bayer, Graham, and
Seegmuller, 1978.

McCullough, D. “Specifications for Multi-Level Se-
curity and a Hook-Up Property”, Proceedings of the
1987 IEEE Symposium on Security and Privacy, May
1987.

Schantz, R.E., Thomas, R.H., and Bono, G., “The
Architecture of the Cronus Distributed Operating
System,” Proc. 6th International Conference in Dis-
tributed Computing Systems, IEEE, June 1986, pp.
250-259.

“Trusted Network Interpretation of the TCSEC”,
National Computer Security Center, NCSC-TG-005,
Version-1, July 1987.

“Foundations of Ulysses: The Theory of Security”,
ORA Tech. Report for RADC contract F30602-85-
C-0098, April 1987.

Vinter, S.T., “Extended Discretionary Access Con-
trols,” 1988 Symposium On Security and Privacy,
IEEE, April 1988.

Weber, D.G., and Lubarsky, R., “The SDOS
Project—Verifying Hook-up Security,” Proc. $rd
Aerospace Computer Security Conference, December
1987.

