
A Two Sna shot Al orithm For Concurrency Control
i’ %nMulti- evel Secure Databases

Paul Ammann Frank Jaeckle Sushil Ja@ia

Center for Secure Information Systems
and

Department of Information and Software Systems Engineering
George Mason University, Fairfax, VA 22030-4444

Abstract

We offer a concurrency control algorithm for replicated,
secure, multi-level databases. In securedatabases,single
copy techniquescannotavoid indirectchannelswithout
subjectinghigh level transactions to starvation due to
malicious low level processes. However, multi-version
and replicated databases can avoid starvation problems
without introducing indirect channels by maintaining
stable copies of old low level data vahtes for use by high
level transactions. The algorithm presented here
improves on two comparable techniques, a direct multi-
version approach of Keefe and Tsai [10] and full replica-
tion scheme of Jajodla and Kogan [9]. In the latter, each
security level has a container that holds a copy of all
lower level data. This paper shows that only a constant
number of old copies - two, as it turns out - need be
maintained.We arguecorrectnessof our algorithmand
demonstratethatthe algorithmis free of indkect chan-
nelsandstarvation.

1. Introduction

In a multi-levelsecuredatabase,theissueof correctness
is compoundedby indirectchannelsand starvation.If
transaction histories are not serializable, then the
scheduling algorithm is incorrect and therefore unin-
teresting.If high-leveltransactionscan signallow-level
transactions,perhapsthroughclever manipulationof the
scheduler or through a Trojan horse in the database
software, then the system is insecure. Finally, if low-
level transactions can effectively block high-level tran-
sactions from making progress, the system is subject to
starvation. In this paper we present a replicated con-
currency control algorithm that addresses each of these
three concerns.

1.1. Overview of the 2-Snapshot Algorithm

Thealgorithm presented here uses copies or replicates of
data elements that are collected into snapshots. A
snapshot is a complete and consistent copy of a database
from which data values can be read, but to which
updates are not made, except when subsequent snapshots
are taken. There are a variety of standard techniques for
constructing snapshots [5].

The fully enumerated name for the algorithm in this
paper is “A Two-Snapshot Multi-Level Secure Con-
currencey Control Algorithm”. We use an abbreviated
term, the 2-Snapshot Algorithm. As the name suggests,
the 2-Snapshot Algorithm requires two snapshots of the
database at each security level. In addition, there is a
full working database at each security level. Since there
are no transactions that “read down” to the highest
level, the algorithm does not keep snapshots of the
highest level database(s).

High-level transactions access snapshots of low-level
data instead of accessing low-level data directly. Period-
ically, new snapshots ae taken at specified security lev-
els and high-level transactions are methodically given
access to the new snapshots. During a brief transition
period, certain transactions access the old snapshots,
while other transactions access new snapshots. Eventu-
ally transactionsno longer access a given snapshotand
thesnapshotis discarded. When all old snapshotshave
been discarded,the set of new snapshotsassumesthe
role held by the discardedold snapshots,and the algo-
rithmrepeats. A numberof issues, such as how many
snapshots are needed, when and how to take the
snapshots, how to grant access to the snapshots, and how
often the algorithm repeats, require attention. Before
elaborating these issues, we discuss two comparable
algorithms.

204
0-8186-2825-1192$3.00@1992IEEE

1.2. Comparison To Other Algorithms

In [10], Keefe and Tsai present a multi-version times-
tamp algorithm for concurrency control in multi-level
secure databases. The 2-Snapshot Algorithm, although
slightly different in applicability, improves on the solu-
tion in [10] in three res~cts. First, in the Keefe and Tsai
solution the number of old versions of a data element
that must remain directly available to high transactions
is unbound~, in the 2-Snapshot Algorithm, all high
transactions access one of two copies of a low-level data
element.t Second, the Keefe and Tsai solution explicitly
relies on timestatnp ordering, and the 2-Snapshot Algo-
rithm is more general. Although the 2-Snapshot Algo-
rithm is naturally implemented with timestamp ordering,
other scheduling algorithms, such as two-phase locking,
can be used for transactions executing at a given security
level. Finally, if low-level schedulers in the Keefe and
Tsai solution divulge actual timestamp values to other
low-level processes, perhaps through a Trojan Horse,
then a signaling channel is available. We note in passing
that this third problem is not inherent to the general
scheme proposed in [10] and can be addressed with a
more sophisticated timestamp generation scheme, such
as the one in [3].

In [9], .lajodia and Kogan present a replicated data con-
currency control algorithm. (Costich presents a related
algorithm in [6].) Each security level has associated
with it a container that holds the working database at
that level and also a copy of each lower level database.
Updates from lower levels are propagated through the
containers by an algorithm that guarantees one-copy
serializable transaction histories. Depending upon the
lattice, the 2-Snapshot Algorithm may require fewer
copies of the low-level databases. The more levels the
lattice contains, the greater the savings in space. For
example, in a lattice with N strictly hierarchical levels,
[9] requires IV(N-1)/2 copies of various databases; the
2-Snapshot Algorithm require. 2(N–1). The 2-Snapshot
Algorithm may also use less space than a fully replicated
architecture on lattices with a small number of levels.
For example, consider a lattice in which N incomparable
high security classes access a single low database. The
2-Snapshot Algorithm requires 2 copies of the low data-
basw the fully replicated architecture requires N copies.

~ It is ~NmnI ~ nue thatthereis nota boundon thentmtber
of old valuesof a dataelementthatthe 2-SnapshotAlgorithmmust
maintain.Thereis only a boundon tie numberof values to which
acsxss is granted. There is a cmcial practical difference between the
two criteria.

Fig. 1 shows three related architectures for a standard
security lattice of Unclassified (U), Confidential (C),

a) Unreplicatcd Database

Replicate
of S for TS

1Replicate
of U for SL1Replicate

of C for TS

u

Replicate
of U for TS

b) Full Replicated Database

ZizJpiq piz!q
c) 2-Snapshot Database

Fig. 1: ReplicationComparisonIn 3 Architectures

205

Secret (S), and Top Secret (TS). Fig. l(a) shows a simple
non-replicated database such as one might find in a ker-
nelized architecture [2], Such an architecture is known
to face either starvation problems or indirect channels.
Fig. l(b) shows a standard replicated database [2] in
which each security level has a private copy of each
lower level database. Fig. l(c) shows the 2-Snapshot
solution in which a high transaction accesses either an
old or a new snapshot of a given low-level database.
Fig. 1 illustrates the general organization of non-
replication, full replication, and the intermediate 2-
Snapshot replication.

1.3. Definitions

We adopt the standard lattice model [1,4,7] for specify-
ing the set S of security classes. There is a set T of sub-
jects (transactions) and a set D of objects (data ele-
ments). Each element of D andeach transactionin T is
associatedwith exactly one security class in S. The
mappingL describes this association. If d is a data ele-
ment in D and L (d)=Si, then we say that the level of d is
Si. Similarly, if T is a tmnsaction in T and L (T)=Si, we

say that the level of T is Si.

There is a partial order on the security classes; we use
the symbols > and > to denote this ordering. A security
class Si dominates security class Sj if the relation Si > Sj
holds. Strict domination is indicated by Si > Sj. We
consider the relations > and 2 to be transitive.

We consider a system secure if

(1) Transaction T cannot read data element d unless
L (T) 2L (d).

(2) Transaction T cannot write data element d unless
L (T)= L (d).

Note that the second constraint, which allows a transac-
tion to write only at its level, is a restricted version of the
*-property, which allows transactions to write up to
higher levels. In the database context, the constrained
version is desirable for integrity reasons.

It is not sufficient to prohibit high-level transactions from
directly writing low-level data. In addition, we must be
concerned with indirect violations, including covert and
signaling channels.t For example, it is not permissible

t We distinguish signating channels from covert channels as
fotlows. A signaling channel is a means of information flow inherent
in the basic algorithm or protocol, and hence appeam in every

implementation. A covert channel is a property of a specific
implementation, and not the general algorithm or protocol. T)MS a
covert channet may be present in a given implementation even if the
basic algorithm is free of sigrtating channek.

for a high transaction to lock a low data item for the
duration of the high transaction, as would be required in
a standard two-phase locking protocol. The difficulty is
that a low-level tmnsaction could repeatedly query the
data item to determine whether or not it is locked. By
choosing either to lock or not to lmk the data item, the
high transaction can sigml the low transaction. Such
channels are well known and have been extensively
reviewed [7]. The 2-Snapshot Algorithm is designed to
avoid signaling channels.

We define a transactionas a sequence of atomic opera-
tions on data elements. An operation on a data element
x e D is either a read, denoted ri [x], or a write,denoted
~i[~]. For the bulk of this paper, we are not concerned
with recovery issues, and so we ignore the commit and
abort operations, ci and ai.

We adopt the serializability theory for replicated data
from [5]. We summarize definitions informally where
possible; the reader is referred to [5] for a complete for-
malism. We use the notation oi (or Pi) to denote an
operation of a transaction Ti, i.e., Oiis either ri or ~i.

To execute a tmnsaction on replicated data, we must first
translate every operation on a data element into an
operation on one (in the case of a read) or several (in the
case of a write) operations on copies of that element. Let
h be a tran.da[ionfunction, i.e., let h (ri[x]) = {ri[xi])
and h(~i[~]) = (Wi[xj,l, Wi[xj,]), where

‘P ‘J1’ -“*Xj, are copies of x. Thus, the translation of a
given operation on a data element is a set of operations
on copies (a singleton in the case of a read). To simplify
notations, let h (Ti) denote the union of translations of
all the operations in Ti, i.e., h (Ti) = u~,ixl=T, h(Oi[X]).

Also, let II(T) = ~: ~ h(Ti). TWOoperations oi[Xk] and

oj[XJ conflict with each other if they are on the same
copy of a data element (x~) and at least one of them is a
write.

A replicated data history H over a set of transactions T is
a partial order with ordering relation <~ that is con-
sistent with the order of operations within transactions
and that orders all conflicting operations.

Given a replicated data history H over a set of transac-
tions T and transactions Ti, Tj G T, we say that Ti reads-
x-from Tj if wj[Xm] c H, ri[Xm] = H, Wj[Xm] <H ri[xm],

and there exists no k such that ~j[x~] <~ w~[Xm]
c~ ri[XJ . Two replicated data histories over transac-
tions To, T1, Tm are said to be equivalentif they have
the same read-from’x i. e., if Tj reads-x-from Ti in one
history, then this relationship holds in the other history
as well.

206

A serial history H is a totally orderedreplicateddatahis-
tory such that for every pair of transactions Z’iand Tj in
T, eitherall of Ti’s operationsprecedeall of Tj’s in H or
vice versa. We say that a replicated data history is one-
copy serializableif it is equivalent to a serial execution
in a one-copy database. An execution of transactions is
correct if its replicated data history is one-copy serializ-
able. One-copy serializable histories hide all aspects of
data replication from user’s transactions and give tran-
sactions a one-copy view of the database.

To test for one-copy serializability, one usually makes
use of a replicated data serializationgraph,defined as
follows.

Definition 1. A serialization graph for history H is a
directed graph G(H) whose nodes are transactions in T.
A (directed) edge Ti+Tj is in G(H) iff for some x in D

and integer k, oi[Xk] 6 H, pj[Xk]G H, Oi[X~l+ pj[X~l,
andoi[%] conflictswithpj[x&]. ❑

Informally, an edge Ti + Tj is included in G(H) if Ti

and Tj have conflicting operations such that the opera-
tion of Ti precedes that of Tj in history H. Letv and w be
nodes of a a directed graph G. If there is a path from v to
w we denote this fact by v +w.

Definition 2. A replicated data serialization graph
(RDSG) for history His a directed graph whose nodes
are transactions in T and whose (directed) edges consti-
tute a superset of edges of G (H) such that for all x c D
the following conditions hold

(1) if Wi[X] G Ti and wj[X] 6 Tj, then either Ti+Tj
or Tj+Ti;

(2) if Tj reads-x-from Ti, Wk[X] ET~ for some k
(k # i, k #J), and Ti+T~9 then Tj+Tk. ❑

There is the following correspondence between replicate
data serialization graphs and one-copy serializable his-
tories [5]: If a replicated data history H has an acyclic
RDSG, then H is one-copy serializable,

We now supply the formalism for snapshots. We con-
sider there to be an unbounded sequence of snapshots,
even though the algorithm only requires that at ‘most two
snapshots be physically represented and available for
access at any one time. Suppose that Ti writes x. We
define the translation function applied to wi[~] as

{wi[xo]) U {wi[x~], wi[x~+ll,wi[x~+zl,““. J
where O is the index reserved to denote the working
database at a given security level and k is index of the

snapshot in which the effects of Ti are first reflected.t

We constrain the sequence of snapshots to be monotonic,
in the sense that if the effects of a transaction appear in a
given snapshot, they continue to appear in subsequent
snapshots until such time as the values are overwritten.
We model monotonicity as follows. Suppose that Ti and
Tj both write X, that the effects of Ti are first reflected in
snapshot k, that the effects of Tj are first reflected in
snapshot1,and that l>k. Then in all replicated data his-
tories that we ~IOW, ~i[~t] <H wj[~l]. Informally,if Ti

and Tj update X, and Ti updates x in a snapshot that Tj
never writes, then Ti mustserializebefore Tj. Thus in all
snapshots which Ti and Tj both update .x,Ti must update
x before Tj.

For subsequent discussions we require the following
lemma.

Lemma 1. Lettransaction Ti read X, transaction Tj write
x, and Ti read art older snapshot of x than Tj wtites. M k
be the snapshot Ti reads, and 1 be the first snapshot Tj
writes.Formally,

ri [Xk]

V m ● m>l => Wj[XJ

l>k

Then Ti + Tj in the corresponding RDSG.

Proof. There exists some transaction TOfrom which Ti
reads x, and we thus have

To + Ti

It is necessarily the case that To writes Xk, and, since
l>k, To also writes xl. To and Tj conflict since both
write xl. The monotonicity property requires

To+ Tj.

By part 2 of definition 2 above, we have Ti + Tj. •l

Lemma 1 is repeatedly employed in the examples below
to argue dependencies in replicated data serialization
graphs.

1.4. Outline Of Remainder Of Paper

Theorganizationof theremainderof thepaperis as fol-
lows. In section2, we explainwhy a singlesnapshotis
inadequate. In section 3, we derive the conditions
requiredfor snapshotcreation. In section4, we obtain
the rules for grantinghigh-level transactionsaccess to
new low-level snapshots,andwe presentthe2-Snapshot

T There is a pracxical diffkutty in that the value of k is not
known at the time 7’, writes xO, and so a possibly unbounded set of. .
values for x must be maintained to tpfate the physical snapshots.

Although this point requires attention, it is not a serious difficulty.

207

Algorithm. Infection 5we discuss concurrency control
at a given security level. In sections 6 we develop a

rationale for why the algorithm is correct, Section 7
concludes the paper.

2. The Two Snapshot Framework

In objection to the 2-Snapshot Algorithm, it can be noted
that storage space is required for each snapshot. In this
section we address the question of why the algorithm is
based on two snapshots instead of one. In addition, there
are periods during which concurrently executing high-
level transactions read different snapshots of low-level
data. The schedulers must ensure that the resulting his-
tories are correct. Certainly space requirements would
be smaller and concurrency control would be simpler in
a l-Snapshot Algorithm.

Unfortunately, as the example below demonstrates, a
straightforward implementation of a single snapshot
scheme leads directly to an unpleasant choice between
unserializable histories, signaling channels, starvation,
or low concurrency among transactions. The first three
alternatives are unacceptable, and the last afiemative
requires the abortion of certain transactions that are
executing at the time a switch to a new snapshot is made.
In this context, we regard such a radical solution as unin-
teresting and do not address it further.

Notation For The Examples

For the examples given below, we consider a multi-level
secure database with the three hierarchical security
classes of unclassified (U), confidential (C), and secret
(~. The names and classifications of the data items
involved are given in the format of d: L where d is the
name of the data item and L is the classification level.
Subscripts on d have the following interpretations: The
subscript O is used to indicate that the copy of d being
accessed is in the working database. The subscript old
indicates that the copy of d is in what is currently
regardedas the old snapshot. Similarly,the subscript
new indicatesthatthe copy of d is in what is currently
regarded as the new snapshot. Note that new and old are

~ It turns out that transactions that do not read data from lower

levels need not be aborted; however, as wilt be shown in the next
section, in this case care is still required as to which transactions may
be projected into the new snapshot. A correct, but low concurrency,
algorithm is

1) Delay atl new transactions
2) Abort atl active transactions that miss a given deadline
3) Produce a new snapshot at each level of the database
4) Execute delayed and new transactions (steady state)
5) Repeat

indices, and that it is always the case that new-old = 1.
Finally, the subscript k is used to indicate that the copy
of d being accessed (written) is in some unspwified
future snapshot. In the examples, it is always the case
that b-new, and so we may apply Lemma 1 to argue the
dependency Ti + Tj where Ti reads x- and the first
snapshot of x that Tj wtites is x&. Transactions are indi-
cated by Ti[L], where Ti is the transaction name and L is
the level at which the transaction executes. Operations
in transactions follow the format defined in Section 1.
Histories are denoted Hi, and replicated data histories
are denoted RDHi. Transaction names in histories are
abbreviations for the entire sequence of operations in the
transaction.

The special operation Sn@L, where L is a classification
level, represents the creation of a new snapshot of the
database at level L. i%?apLis an abbreviation for the
sequences of writes to the new snapshot as well as the
correspondhtg writes to all subsequent snapshots. The
writes in the sequence correspond to those L level tran-
sactions that are associated with the new snapshot. It is
important to note that, in two snapshot databases, the
creation of a new snapshot at level L does not neces-
sarily imply that transactions above level L immediately
begin to use the new snapshot. Quite to the contrary, the
correctness of the complete algorithm depends upon
carefully controlling access by high transactions to new
snapshots.

Updates To A l-Snapshot Database

Clearly, the snapshots must be updated in some fashion
or else high-level transactions can never access new
low-level information. Suppose that a new snapshot of
the U database is created (i.e. the event Snapu occurs).
Since there is only a single snapshot, transactions at the
C and S level necessarily access the new snapshot.
Example 1 illustrates problems that arise in this scenario.

Example 1- Updates In A l-Snapshot Database
Data
X:u
y:c

Transactions
T1[U]: Wl[x]
T~[c]: r~[x] w~r.y]
T~[S]: r~[x] r3~]

Histories
HI: T1 rz[x] Snapu T3 wz~]
Hz: T1 rz[x] Snapu w2~] T3

208

Replicated Data Histories
RDH1;
WI[Xol r2[%fl -WI [x-l ~3[%wwl ~3r.Ymewl~2uol
RDH2:

W’l[xol ~2[xokil ~l[%wl W’zryol~3r%+l ~3rY?le$+J
RDSG Dependencies

Z’l + T3 because T3 reads XW from T1
T3 + T2 since T3 reads y- and T2 first writes yk,
k>new T
T2 + T1 since T2 reads xOldand T1 first writes x-,
new Bold

Cycles in RDH1 and RDH2
T~+T3+Tz+T~

Discussion
Both HI and Hz are included to illustrate that the timing
of T3 does not affect the serialization problem, which is
that the RDSG’S for both RDH1 and RDH2 are cyclic.
Suppose we attempt to avoid the cycle by aborting the
tmnsaction that would complete the cycle if it were
allowed to commit. As HI shows, the transaction T2
could be the victim. If T2 is aborted due to the detection
of a cycle, then a signaling channel from S to C has been
introduced. Thus an optimistic solution that allows T3-
type transactions to proceed is not acceptable. Suppose
we attempt to avoid the cycle by delaying transactions at
the S level. If T3 is delayed until after the T2 write of y~,
then C level transactions may starve S level transactions
that read from both the U and C snapshots. Thus a pes-
simistic solution that forces T3-type transactions to delay
is also not acceptable. ❑

Updates To A 2-Snapshot Database

In a single snapshot database, the only correct solution
that does not suffer from either signaling channels or
starvation is to delay and/or abort transactions each time
a snapshot is introduced. The two snapshot database
offers an alternate choice, All active and certain new
transactions can simply continue to use old snapshots.
Other new transactions can use the new snapshots. Tran-
sactions can gradually be weaned from the old
snapshots, and eventually the old snapshots may be dis-
carded. Before we describe the requirements that drive
the process of constructing, introducing, and discarding
snapshots, let us revisit Example 1 to see how a two
snapshot approach improves the amount of concurrency
without introducing undesirable side effects.

t Recall that the T2 write of y, oeeurs during some subsequent
SnupCoperatioa. The dependency follows fmm Lemma 1.

In Example 1, it is transaction T3 that is the real culprit,
since T3 simultaneously needs to serialize before T2 and
after T1. As discussed in Example 1, if T3 is to serialize
after Tz, then T3 is subject to delay, and, in the single
snapshot scenario, starvation. In the two snapshot
approach, we need not delay T3. Instead we may force
T3 to serialize prior to both T1 and T2 by requiring T3 to
read xO&j.The desired (acyclic) replicated data histories
are

RDH3:
WI[xo] r.2[xOu]wt [x-] r3[xOzd]r3~01d] w2~o]

RDH4:
WI[xo] r2[xOM]WI[xWW]wz~o] r3[xOu] r3&ou]

Note that the new U snapshot can be used by new C-
level transactions without difficulty. For example, a new
transaction T4 at the C level is allowed to access the new
U-1evel snapshot. It turns out that transactions at the S
level must continue to use the old U-level snapshot until
several further conditions are met. We derive such con-
ditions in section 4. However, we tirst turn to the ques-
tion of what is permitted to be in a snapshot.

3. Snapshot Creation Requirements

We now turn to the question of what requirements a
snapshot must satisfy, either by itself or in relation to
other snapshots, so that serialization conflicts or other
problems do not occur. The actual construction and
representation of a snapshot is beyond the scope of this
paper. Standard techniques apply [5].

Committed Transactions Requirement

We do not allow a snapshot to reflect any writes made by
uncommitted transactions. If such writes were reflected
in a snapshot, and the transaction in question was subse-
quently aborted, the snapshot would be invalid. High
level transactions that referenced the ultimately invalid
snapshot would either be forced to delay or participate in
cascading aborts. Thus if uncommitted values were per-
mitted in the snapshot, low level transactions could mali-
ciously starve high level transactions. Since starvation is
unacceptable, we do not allow the effects of uncommit-
ted transactions to be reflected in a snapshot.

Serialization Prefix Requirement

Simply requiring a snapshot to reflect only committed
transactions is insufficient, as Example 2 demonstrates.

209

Example 2- Serialization Prefix Requirement
Data

X,y; u

Transactions
z’~[u]: w~[x] rlr.y] c1 ~
T~[u]: lvJy] C2
T~[c]: r~[x] rgry] C3

Histories

HI: Wl[x] rlljJ] T2 c1 T3
H2: Wl[x] rllj] T2 SnapU c1 T3

Replicated Data Histories
RDH1:
Wl[xl)] rlljl)] W’zlyo]C2 c 1 r3 [xol~]r3~o/d] C3
RDH2:
W’l[xo] rl~l)] wz~o] C2w21j&w] c1 r3[xm] r3~m] C3

Dependencies in RDH1
T1 + Tz since T1 reads yO before T2 writes y.
T3 + T1 since T3 reads xO[dand T1 first writes xk,
k>old
T3 + T2 since T3 reads yOld and T2 first writes y!,
l>old

Dependencies in RDH2
T1 + T2 since T1 reads yObefore T2 writes y.

T3 + T1 since T3 reads x- and T1 first writes xk,
k>new
T2 + T3 since T3 readsym fromT2

Cycle inRDHz
T~-+Tz-+T3+T~

Discussion
NotethatHI is recoverable and serializable. There is no
reason not to permit it, although it is noteworthy that in
this execution the order in which the transactions com-
mit differs from the order in which the transactions seri-
alize. However, RDH2 illustrates a serialization conflict.
The problem stems from the timing of SnapU, which
contains eftkcts from T2 but not from T1, even though T1
must serialize before T2. ❑

Example 2 demonstrates that it is insufficient for
snapshots to merely reflect the effects of committed

f IQ.~.fiat CO~tit. .E e.@tittY identified in this eXaMple

only. The scheduler at a given security level determines whether a
transaction may commit based only on the operations carried out on
the working database at that level or on snapshnts at lower levels.
Thus, transactions commit bejore the corresponding updates to the
(new) snapshot at the transaction’s own level occur. There are two
justification for allowing this. From a practicat perspective, there is no
integrity difficulty with allowing the transaction to cummit. From a
theoreticrd perspective, we may consider dtat the transaction
completes its updates to the appropriate snapsbor before the snapshot
in question physically exists.

transactions. Snapshots also must not reflect the effects
of any transaction that must follow an uncommitted tran-
saction in any serialization order. In other words, a
snapshot must reflect a committed prefix of some seriali-
zation order.

This requirement is not difficult achieve in practice in
that most schedulers can easily produce an explicit seri-
alization order [9]. Timestamp ordering schedulers seri-
alize transactions according to the explicit dtnestamp.
Two phase Iccking schedulers serialize tmnsactions by
the timing of the first Icck release. Thus if the scheduler
at a given level is either timestamp ordering or two
phase locking, it is possible to determine which trartsac-
tions maybe reflected in a given snapshot.

Preconditions For Snapshot Creation

The previous two requirements on snapshot creation,
namely that snapshots reflect committed transactions and
that the snapshots reflect a prefix of a serialization order,
are static requirements in the sense that they can be
satisfied for any state of the database. These require-
ments can be satisfied independent of which snapshots
current transactions access. However, there is an addi-
tional requirement that must be satisfied prior to
snapshot construction. The requirement is illustrated in
Example 3 below.

Example 3 - Precondition On Creating A
Snapshot
Data
X:u
y:c

Transactions
T1[U]: WI IX]

T2[C]: rJx] w~~]

T3[S]: r3[x] r3~]

Histories
HI: T1 r2[x] SnapU Snapc w2~] T3
Hz: T1 rz[x] Snapc w2~J SnapU T3

Replicated Data Histories
RDH1 :

WI [XOI rz[x.d WI [xwwl W2LYOI r3[xml r30ml
RDH2:
WI IXo] r2[x0/d] W2~o] W1[XW] r3[XW] 73~m]

Dependencies in RDH1 and RDH2
T, + T3 because T3 reads x- from T1
T3 + T2 since T3 reads ym and T2 first writes yk,
k>new
T2 + T1 since T2 reads xOldand T1 first writes x-,
new >old

210

Cycles in HI and H2
T1+T3+T2+T1

Discussion
Both histories have the same serialization conflict. It is
the intent ofthisexample to illustrate the case in which
wewishfor T3 toaccess newlow level data. Since there
must be some point where transactions atthe Slevel can
read updated low data items, we are not content to sim-
ply serialize T3 before T1 and T2 by forcing T3 to access
xOldand yOM.There is nothing suspicious abOttt either
the content or timing of T3, and so the difficulty must lie
in the construction of the new snapshots. Indeed, the
problem arises because (hapc occurs while there is an
active transaction at the C level, namely T2, that is
accessing the old U level snapshot. To avoid serializ-
ationproblems in this example, Snapc must occur after
T2 has committed so that Snapc may reflect the effects of
T2. Indeed, Snapc must reflect the effects of T2 for the
snapshot to be usable. •l

The conclusion from example 3 is that a new snapshot
may not be constructed for the database at level L while
there are active transactions at level L thataccess old
snapshots at levels dominated by L. In general, this
implies that there is an order in which snapshots must be
generated. New snapshots are generated first at the
lowest security level and progressively later for higher
security levels. There is a delay involved in snapshot
generation while transactions that accessed old data are
permitted to terminate.

The delay requirement on the construction of new
snapshots brings out an underlying assumption in the
algorithm. The assumption is that transactions are not
permitted to execute for arbitrary periods of time.i In
particular, we assume that if a transaction executes
longer than a certain time period then we are free to
abort that transaction. Note that this assumption does
not introduce a signaling channel, since the decision to
abort a transaction is not dependent upon activity at a
higher level, but is instead dependent on a fixed dead-
line.

The fixed period for which transactions are allowed to
execute determines the rate at which low level data per-
colates up to high level transactions. Snapshots at suc-
cessive levels are separated in time by one period, since
we are required to wait precisely one period for

~ Transactions at the lowest level(s) are exempt from the
requirement to terminate by a set drndline. However, low level
transactions that mn for long periods can force high level transactions
to read arbitrarily old low datavalues.

termination of transactions that begin just before a
snapshot is taken. Thtts if a security lattice is N levels
deep, it is necessary to wait N periods for an update at
the lowest level to become readable at the highest level.

4. Switching New Transactions To New
Snapshots

In this section we consider various strategies for decid-
ing which set of snapshots new transactions at a given
level may begin to use. By means of counterexamples,
we show that there is only one workable strategy,
namely for transactions at level L to view either all old
snapshots at lower levels or all new. Combinations of
old and new snapshots lead to serialization problems.

To see one such problem, consider Example 4 below, in
which an S level transaction attempts to read from the
new U snapshot and the old C snapshot simultanccmsly.

Example 4- Snapshot Selection Counterexam-
ple

Data
X:u
y:c

Transactions
T1[U]: WJl[X]
T2[C]: r2[x] w~fy]
T3[S]: r3[x] rq~]

History
HI: T1 T2 Snapu T3

Replicated Data History
RDH1 :
Wt [XI)] r2[Xo/d] W2~O] W’I [xUW] ~3[%w1 ~3boJd1

Dependencies in RDH1
T1 + T3 because T3 reads x- from T1
T3 + T2 since T3 reads yOldand T2 fMStwrites yk,
k>old
T2 + T1 since T2 reads x.ld and T1 first writes x-,
new >old

Cycle
T1+T3+T2+T1

Discussion
This execution results in a serialization conflict due to
the fact that T3 read from a new snapshot at the U level
but an old snapshot at the C level. ❑

Consider Example 5 below, in which an S level transac-
tion attempts to read from the old U snapshot and the
new C snapshot simultaneously.

211

Example 5 - Snapshot Selection Counterexam-
ple

Data
X:u
y:c

Transactions
T~[u]:w~[x]
T~[c]:r~[x]w’Jj]
z’~[s]:rq[x]t-~ij]

History
HI: T1 Snapu T2 Snapc T3
where T2 is assumed to use the snapshot created by
Snapu, but T3 is assumed to use the old snapshot at the
U level.

Replicated Data History
RDH1 :
Wl[xo] Wl[xw] T2[XW] W’2UOIWJ3WI r3[xokfl r31..yJIewl

Dependencies in RDH1
T1 -+ T2 because T2 reads x=. from T1.
T2 -+ T3 because T3 reads y- from T2.
T3 + T1 since T3 reads xO~dand T1 first writes XUW,
new >old

Cycle
T~+T2-+T3+TI

Discussion
This execution results in a serialization conflict due to
the fact that T3 uses a new snapshot at the C level but an
old snapshot at the U level. ❑

Examples 4 and 5 illustrate that mixing and matching old
and new snapshots from different levels leads directly to
serialization problems. High-level transaction must
view lower levels as either all old or all new. The
switching algorithm outlined below reflects this require-
ment.

Switching algorithm

We suppose that we have N security levels. We describe
the algorithm for a linear ordering of levels; however,
the basic algorithm may be modified for any security lat-
tice.

Initial State - Create an initial snapshot at each level.

While (Normal Operation)
Fori:= 1.. N-1

1: Create A Snapshot At Level i.
2: Let New Level i+l Transactions

Use New Snapshots At Levels l,,i
/* Old Level i+l Transactions Continue
To Use Old Snapshots At Levels l..i */

3: Delay One Period
/“ Allow Old Level i+l
Transactions To Finish*/

4: Abort Active Level i+l Transactions
Using Old Snapshots
/“ Deadline Has Expired’/

End For
Discard Old Snapshots

End While

To adapt the algorithm for arbitrary lattices, it is neces-
sary for the switching to take place in parallel across the
lattice.t The case where a given security level dominates
multiple other security levels does not pose a problem,
since synchronization responds to what may be viewed
as an external clock rather than to specific events at a
given level.

This paper is mostly concerned about concealing the
actions of high transactions from low transactions. In
some cases it maybe desirable to hide the very existence
of certain security levels. As the algorithm is formu-
lated, the number of dominating levels can be deduced
from the number of periods that pass between snapshots.
Each additional period reveals the existence of another
dominating security class. However, the algorithm can
be modified to meet the more stringent goal of hiding the
existence of high security levels. The trick is to make
the period at a given level half the length of a period at
the next lower level. Under these circumstances, addi-
tional security levels can be squeezed into the lattice
without af%cting the schedule for taking snapshots at
lower levels. Of course, the technique forces higher
level transactions to obey deadlines that grow exponen-
tially shorter in the number of levels.

5. Concurrency Control In Each Working Data-
base

At each level L there exists a working database that seri-
alizes transactions at level L. We permit standard,
untrusted schedulers to manage these databases.

t In fact the algorithm can be adapted to partial orders, of which
lattices are a special case.

0,-,

However, the schedulers must be modified to determine
which snapshot should be accessed when a transaction
reads a low level value. To minimize the amount of
trusted code, we assume that the schedule sends a
request to a trusted monitor which controls read access
to each snapshot. (Updates to the snapshot need not be
done by trusted code). As was explained in the previous
section, the mapping to new or old snapshots is deter-
mined by whether a transaction begins before or after
access to the new snapshot is permitted.

It is also necessary for scheduler to resolve serialization
conflicts caused by access to the low level snapshots. In
particular, we require that all transactions that begin
before access to the new snapshot is granted be serializ-
able before any transaction that begins after access to the
new snapshot is granted. By way of illustration, we
describe a timestatnp oriented scheme to manage this
process. Note that there are no security considerations
that need be taken into account when designing this part
of the 2-Snapshot Algorithm.

One possible algorithm is

(1)

(2)

(3)

Assign each transaction a generation number
based on the current generation when the tran-
saction starts.t The current generation number is
incremented each time access is given to new
low level snapshots.

Attach to each data value item two values, the
generation number of the latest transaction to
read the data value and the generation number of
the latest transaction to write the data value.
Note that these records need only be kept for
data vatues at the security level of the scheduler.

Abort any (old generation) transaction that
attempts to access a data element “too late”, i.e.
after a new generation transaction has performed
a conflicting operation on the data element.

Note that if the scheduler at a given level is a timestamp
ordering scheduler, the algorithm above is just a subset
of the timestamp ordering scheduling that is performed
on all operations at that level. Thus timestarnp ordering
schedulers are a natural fit for the 2-Snapshot Algorithm.
However, the use of timestarrtp ordering is not strictly
necessary; other schedulers may atso be used.

Finally, we are in a position to describe what we mean
by a 2-Snapshot Algorithm. We define a 2-Snapshot
Algorithm to be the combination of

t Tbe notion of a “generation” is
section.

fosmatize.d in tbe next

213

(1) A snapshot generation algorithm.

(2) A snapshot switching algorithm.

(3) The modifications to the scheduling algorithms
at each level that ensure that transactions access-
ing old snapshots serialize before transactions
accessing new snapshots.

6. Algorithm Analysis

Prior sections have motivated the construction of the 2-
Snapshot Algorithm with (counter) examples that led to
constraints that necessarily must be satisfied if non-
serializability, signaling channels, and stmvation are
simultaneously to be avoided. Such a presentation gives
an explicit view of the requirements that guide the
derivation of the algorithm. However, satisfaction of
necessary conditions does not guarantee sufficiency.

We now turn to the task of showing that the 2-Snapshot
Algorithm has serializable transaction histories, does not
have signaling channels, and does not suffer from starva-
tion. That the latter two proof obligations are met can be
ascertained by inspection. The schedulers at a given
level are unaware of the actions at higher levels, and
thus the scheduling decisions of whether to abort or
delay a transaction cannot be used by high processes to
signal low processes. With respect to starvation,
snapshots are stable objects that high transactions can
access. Malicious low processes cannot interfere with
access to the snapshots, nor can they interfere with
snapshot construction. t

Thus the interesting proof obligation is to show that tran-
sactions histories are serializable. To discharge this obli-
gation, we first give an informal illustration of why the
2-Snapshot Algorithm is correct. A formal proof is
given in [8].

If we begin in a state that satisfies certain properties
(namely that transaction histories can be serialized in a
specified way), and show that eventually the 2-Snapshot
Algorithm returns us to a state that enjoys the same pro-
perties, then we have a strong basis for arguing correct-
ness. Specifically we employ the notion of a generation
to describe the transactions that execute during this tran-
sition period and show that all transactions in a given
generation may be serialized after the prior generation of
transactions and before any subsequent generation of
transactions. Whhin a given generation, we show that

t The reader is reminded that if transactions at the lowest
level(s) are not subjeet to deadlines then high level transactions may
be forced to use arbitrarily stale low datavalues.

the algorithm yields a serialization of transaction his- representcd by

tories. G:+ G!+ G8.

We define a generation to be a partition on the set of
transactions at a given security level as follows. Each
time access to a new set of snapshots is made available
to new transactions at a given security level, we mark the
event as the end of the old generation at that security
level. Transactions that begin before the snapshot event
have access to the old snapshot and belong to the old
generation; transactions that begin after the snapshot
event have access to the new snapshot and belong to
some newer generation. As a special case, we define an
old generation at the lowest security (which, of course,
does not access any lower level snapshots) level each
time a snapshot at that level is taken.

Since the 2-Snapshot Algorithm gives access to new sets
of snapshots to each security level in turn (before repeat-
ing), the generation numbers of transactions at different
security levels differs by at most 1. When a transaction
is executing, we do not necessarily know to what genera-
tion the transaction will eventually belong, and thus we
use the symbol G~ to denote the ith or later generation at
security level L. When a transaction is complete, w~iare
certain as to its generation, and we use the symbol GL to
denote the M generation at security level L at a time
when transactions in that generation are no longer exe-
cuting. Such a generation is referred to as being
“dead”. Dead generations are useful in the correctness
arguments below.

An Illustration

Consider transactions at the three security levels, U, C,
and S. We begin in the state where generation O (and
later) transactions are executing and end in a state where
generation 1 (and later) transactions are executing.

C transactions access the snapshot U.ld, and S transac-
tions access the snapshots U.ld and COU. In the absence
of updates, it is the case that all S transactions may be
serialized prior to all C transactions, which may in turn
be serialized before all U transactions. Let us overload
the notation for a generation to mean not just a set of
hzmsactions, but also the replicated data serialization

graph for transactions in that set. The abstract depen-
dency grapht for all generation O transactions may be

+ An abstract dependency graph, arcs in which are denoted by
Gj + GA, reflects the infonnaf notion that Gj transactions may
correctly seriatim before GA transactions. As such, + is a transitive
relation. More preeisely, + denotes the fact dtat if we were to
expfieit.ly ittsett the dependencies between the transactions in Gj and
the transactions in G&,it wordd be the case thatalf dependency arcs (if
any) wordd point from some transaction in Gj to some transaction in

If the serialization graph at each level is acyclic, a task
which is the responsibility of the scheduler at each level,
then the entire replicate data serialization graph is also
acyclic, a condition that is captured by the abstract
dependency graph shown above.

Now, let us take a snapshot at the U level, but, for the
moment, let us delay access to this snapshot by new C
level tmnsactions. The taking of the snapshot defines the
separation between old and new U level generations.
Further, due to the property that the snapshot reflect only
a prefix of the serialization order at the U level, it is the
case that no transaction in the G~ generation need serial-
ize before on any transaction in Gfi. Thus we may draw
the new abstract dependency graph as

G:+ G$-+G$+ G&.

All active transactions (perhaps in addition to some com-
mitted transactions) at the U level belong to the G~ (or
later) generation. The G} generation is dead, and we
may rewrite the abstract dependency graph:

G~+G~-+&+ G~.

The property that ~~ is dead is vital at this stage,
because it is now safe for ne~o C level transactions to
serialize after transactions in Gu without the possibility
of introducing an indirect channel based on the actions
of U transactions. In particular, the 2-Snapshot Algo-
rithm allows new C level transactions to access the new
U snapshot, which leads to the following abstract depen-
dency graph:

G~+G&+& G; -+ G~.

Note that transactions in the G: generation are still
alive; such tmnsactions have a complete period during
which to finish their activity, As discussed in Section 5,
the scheduler at the C level ensures that C level transac-
tion from the two generations are serialized according to
the abstract dependency graph shown above.

Eventually, C transactions in the G: generation either
finish or are aborted for executing too long. As a result,
the abstract dependency graph evolves to:

G&&&~+ G~ + G~.

Since the & generation is dead, it is now safe to take a
snapshot at the C level. Taking the C snapshot partitions
the G& transactions into two sets, namely those that

GA. Since we wish only to capture the notion that one set of
transactions may serialize before another set, the dependency between
specific transactions may be abatrwted out.

214

serialize before the new C snapshot and those that serial-
ize after. Those that serialize before the snapshot are, by
definition, members of a dead set of transactions. We
represent the generation 16~ transactions that serialize
before the C snapshot by Gc. The abstract dependency
graph becomex

Gf +&+&+& +Gi+GL.

Since there are no active transactions in & or b&’, new
S level transactions may immediately begin to use the
new C.’and U snapshots without the possibility of intro-
ducing art indirect channel based on the actions of C
transactions. The abstract dependency graph becomes:

G~+~;+tii+~:+G$+Gi+Gh.

Eventually transactions in G! complete, the GSO genera-
tion dies, and we obtain the abs~act dependency graph:

6~+bZ+t~+ti~+G~+G~+Gh.

As in the initial state, it is the case that in the absence of
updates, all active transactions can be serialized accord-
ing to

G;--+G~+GL

and thus the above argument may be applied again from
the beginning.

7. Conclusions

In this paper we have presented the 2-Snapshot Algo-
rithm, an algorithm for concurrency control in mult.i-
Ievel secure replicated databases. The 2-Snapshot algo-
rithm improves on related techniques in [9, 10] and has
the following general characteristics

(1) In the 2-Snapshot Algorithm, a high transactions
need only access one of two copies of a low level
data element.

(2) The 2-Snapshot Algorithm may be implemented
with a variety of scheduling disciplines at each
security level; the algorithm is not restricted to
timestamp ordering.

(3) In the 2-Snapshot Algorithm, the scheduler at
any given security level need not be trusted.

An argument was given as to why the replicated data
transaction histories allowed by the algorithm are one-
copy serializable. A formal proof of one-copy serializa-
bility is given in [8]. The informal argument introduced
the notion of an abstract dependency graph, which is a
new tool for arguing serializability. Abstract depen-
dency graphs can be used to express serialization depen-
dencies between sets of transactions without reference to
specific transactions in each set.

References

[1]

[2]

[31

[4]

[5]

[6]

[7]

[8]

[9]

[10]

“Trusted Computer System Evaluation Criteria”,
DoD Computer Security Center, CSC-STD-OOl-
83,1983.

“Multilevel Data Management Security”, Com-
mittee on Multilevel Data Management Security,
Air Force Studies Board, National Research Coun-
cil, Washington, DC, 1983.

P. Ammann, S. Jajodia, “A Timestamp Ordering
Algorithm For Secure Single-Version, Multi-Level
Databases”, Proceedings of the 5th IFIP WG 11.3
Working Co@erence On Database Security”,
Shepherdstown, WV, November, 1991.

D.E. Bell, L.J. LaPadula, “Secure Computer Sys-
tems: Unified Exposition and Multics Interpreta-
tion”, The Mitre Corporation, March, 1976.

P.A. Bernstein, V. Hadzilacos, N. Goodman, Con-
currency Control and Recovery in Database Sys-
tems, Addison-Wesley, Reading, MA, 1987.

0. Costich, “Transaction Processing Using An
Untrusted Scheduler In A Multilevel Database
With Replicated Architecture”, Proceedings 5th
IFIP WG 11.3 Working Conference On Database
Security”, Shepherdstown, WV, November, 1991.

D.E. Denning, Cryptography and Data Security,
Addison-Wesley, Reading, MA, 1982.

F. Jaeckle, “A Proof of the 2-Snapshot Algo-
rithm”, Draft GMU Technical Report, November,
1991.

S. Jajodia, B. Kogan, “Data Replication And
Multi-Level Secure Transaction Processing”,
Proceedings of the 1990 IEEE Symposium
Research in Security and Privacy, Oaktand, CA,
May, 1990.

T.F. Keefe, W.T. Tsai, ‘‘Multiversion Concurrency
Control for Multilevel Secure Database Systems”,
Proceedings of the 1990 IEEE Symposium
Research in Security and Privacy, Oakland, CA,
May, 1990.

215

