
Plaintext Recovery Attacks Against SSH

Martin R. Albrecht, Kenneth G. Paterson and Gaven J. Watson
Information Security Group

Royal Holloway, University of London
Egham, Surrey, UK

Email: {m.r.albrecht,kenny.paterson,g.watson}@rhul.ac.uk

Abstract

This paper presents a variety of plaintext-recovering
attacks against SSH. We implemented a proof of concept
of our attacks against OpenSSH, where we can verifiably
recover 14 bits of plaintext from an arbitrary block of
ciphertext with probability 2−14 and 32 bits of plaintext
from an arbitrary block of ciphertext with probability 2−18.
These attacks assume the default configuration of a 128-bit
block cipher operating in CBC mode. The paper explains
why a combination of flaws in the basic design of SSH
leads implementations such as OpenSSH to be open to our
attacks, why current provable security results for SSH do
not cover our attacks, and how the attacks can be prevented
in practice.

1. Introduction

Alongside SSL/TLS and IPsec, SSH is one of the most
widely used secure protocol suites. SSH was originally
designed as a replacement for insecure remote login pro-
cedures such as rlogin and telnet. It has since become a
general purpose tool for securing Internet traffic. Version 2
of SSH is standardized by the IETF in a series of RFCs
[24], [25], [26], [27]. Throughout this paper, we use SSH
as shorthand for SSHv2 as defined in these RFCs. Although
many different implementations of SSH are available, the
OpenSSH implementation [13] dominates, with OpenSSH
and its derivatives accounting for more than 80% of SSH
implementations on the Internet [20]. We use OpenSSH
throughout as shorthand for any version of OpenSSH up
to and including version 5.1, the release that was current at
the time we carried out this work.

SSH has benefited from a long development process,
and the consensus seems to be that it is now a secure
design. Moreover, the OpenSSH community claims that
OpenSSH has been developed using a rigorous security
process [15]. Indeed there are few vulnerabilities that have
been discovered in the OpenSSH code over the years [15]
and no fundamental design flaws in SSHv2 or OpenSSH
have been revealed to date. Only some rather theoretical
and easily-circumvented cryptographic attacks have been
discovered [9], [1] – see Section 1.1 for more discussion of

these. The lack of serious attacks can be taken as evidence
for the soundness of the SSH design. Moreover, the SSH
Binary Packet Protocol (BPP), the component of SSH that
is responsible for providing confidentiality and integrity
services to all messages exchanged over an SSH connection,
has been subjected to a formal cryptographic analysis using
the methods of provable security [1]. The analysis of [1]
shows that the SSH BPP as strictly implemented in the way
described in the RFCs is theoretically insecure (in the sense
that an adversary with sufficient control over the network can
distinguish the encryptions of chosen plaintexts). However
it also shows that making any one of a number of small
modifications to the SSH BPP all result in a protocol that
is provably secure against chosen ciphertext attacks. Thus
the basic design principles behind SSH are supported by the
analysis of [1].

In this paper we show that, contrary to this consensus,
the SSH BPP specification in [26, Section 6] has serious
design flaws that lead directly to plaintext-recovering attacks
against SSH. We have implemented a proof of concept of
the attacks and variants against OpenSSH. Moreover, we are
able to show that the obvious implementation of one variant
of the SSH BPP that was proven secure in [1] would also
be vulnerable to our attack techniques.

The basic idea behind our attacks is quite simple and can
be explained as follows. The SSH BPP most commonly
makes use of a block cipher in CBC mode to provide
confidentiality1 and a MAC algorithm on the plaintext data
to provide integrity. The protocol format includes a 32-bit
packet length field which appears in encrypted form in the
first block of ciphertext in an SSH packet. This field is used
to determine how much data is expected for a given packet,
so this field must be extracted before the rest of the packet is
received and the MAC can be validated. By sending a target
ciphertext block as the first block of a new SSH packet,
an attacker can induce an SSH server to treat the resulting
plaintext as the first block of a new packet. By then feeding
random blocks of ciphertext into the SSH connection in a
controlled manner, the attacker can measure how much data

1. For example, RFC 4253 [26] lists 3des-cbc as being required,
aes128-cbc as being recommended, a further 12 block cipher variants
in CBC mode as being optional, and only one stream cipher, arcfour,
also optional.

2009 30th IEEE Symposium on Security and Privacy

1081-6011/09 $25.00 © 2009 IEEE

DOI 10.1109/SP.2009.5

16



is required before the server considers the whole packet to
have arrived, checks the MAC, and produces a MAC failure
(with overwhelming probability). This failure is reported as
an error message on the SSH connection, and the connection
is torn down. The amount of data required to trigger the error
message reveals the content of the 32-bit packet length field.
Because of properties of CBC mode, this 32-bit value then
reveals 32 bits of the target plaintext block (corresponding
to the target ciphertext block). An unfortunate feature of
this attack (from the adversary’s perspective) is the need, on
average, to feed about 227 ciphertext blocks into the SSH
connection before the MAC check is triggered. But the attack
would succeed with probability 1. Notice too that it only
requires the attacker to be able to capture a target ciphertext
block from the network and then to be able to inject it as
the first block of a new SSH packet – no known or chosen
plaintexts are needed.

In fact, the actual attacks against the OpenSSH imple-
mentation of the SSH RFCs that we develop in Section
3 are a little more complicated than this, and prototyping
them involved some difficulties. The main difficulty arises
from the fact that the relevant RFC [26] advises that the
length field should be sanity checked as soon as the block
containing the length field is decrypted, to prevent certain
types of Denial of Service (DoS) attack against SSH. Again,
the length checks must be applied before the MAC is
checked. OpenSSH follows the advice of the RFCs, first
checking that the packet length field is at most 218 and
then checking that it has a certain divisibility property. The
connection is torn down if either check fails. The effect
of OpenSSH’s length checking is to reduce the success
probability of our attack to about 2−18, but also to reduce
the maximum number of blocks that the attacker has to
inject to only 214. As we shall see in Section 3, OpenSSH’s
length checks also allow another attack which can verifiably
extract 14 bits of plaintext from a target ciphertext block
with probability 2−14. This attack is based on the ability of
the attacker to differentiate failures of the two distinct length
checks carried out by OpenSSH from one another. Another
simple variant of our attacks verifiably recovers 18 bits of
plaintext from a target ciphertext block with probability 2−18

without requiring the ability to controllably inject random
ciphertext blocks.

We report on the experimental validation of our attacks
against OpenSSH in Section 4.

As we noted above, our attacks lead to the tear down of
the SSH connection, meaning that they cannot directly be
iterated to boost the success probability. However, the SSH
architectural RFC [24] states that the connection should be
re-established in the event of errors. So, if SSH were used
to protect a fixed plaintext (e.g. a password) across multiple
connections, then the success probability could be increased.
A similar scenario was considered for OpenSSL in [7]. Even
if our attacks do not lead to reliable recovery of complete

plaintext blocks, have low probabilities, and consume large
numbers of SSH connections in their iterated forms, they
do stand in stark contrast to the intended outcome of
using strong cryptography in OpenSSH and to the provable
security guarantees promised for variants of SSH in [1].

Fundamentally, our attacks are possible because of a
combination of design flaws in the SSH BPP. Firstly, SSH
has an encrypted length field in the first block of ciphertext
in a packet that is used to determine how much data is
expected for a given packet and that must be computed
before the MAC can be validated. Secondly, the reliance
on CBC mode (even with chained IVs) allows an attacker
to inject a target ciphertext block of his choice into a fresh
BPP packet as the first block of that packet, and for the
decryption of this block in its original position to be related
in a known way to its decryption in the fresh packet. These
two factors, in combination with the attacker’s ability to feed
data into an SSH connection blockwise and to detect when
a MAC error has arisen, allow an attacker to learn some bits
of plaintext corresponding to a ciphertext block of his choice
by observing how many blocks are needed to cause a MAC
failure. OpenSSH’s length checks are merely a complicating
factor for the implementation of the attacks that reduce their
success probabilities.

Some readers might wonder at this point how we would
be able to attack a variant of SSH that was already proven
secure in [1]. The basic reason is that, while the authors
of [1] recognise that the decryption operation in SSH is
not “atomic” and might fail in various ways, their security
model does not distinguish between the various modes of
failure when reporting errors to the adversary. Moreover,
their model does not explicitly take into account the fact
that the amount of data needed to complete the decryption
operation is itself determined by data that has to be de-
crypted (the length field). Unfortunately, it seems that real-
world cryptographic implementations are more complex than
the current security models for SSH handle. We comment
on this in greater detail in Sections 5 and 6.

1.1. Related Work

Dai [9] and Bellare et al. [1] give attacks against the SSH
BPP as defined in [26]. These are effectively distinguishing
attacks, that is, attacks that reveal, given a ciphertext, which
one of two chosen messages was encrypted by SSH. So
these attacks do break SSH by the standards of theoretical
cryptography. They require the adversary to know the IV
that will be used for encryption in the next SSH packet. In
SSH, which uses packet chaining in CBC mode (wherein
the last block of ciphertext from the previous packet is
used as the IV for the next packet), this may be realistic.
The relevant RFC suggests the countermeasure of preceding
data-bearing packets with dummy packets – this way, the
attacker will not see the required IV until too late (and may

17



not even be able to tell which block is the IV). OpenSSH
supports this countermeasure. In contrast with [9], [1], our
attacks only require the ability to capture ciphertexts and
inject modified ciphertexts into the network (rather than
being chosen plaintext), and recover plaintext (rather than
being distinguishing attacks). In this sense, our attacks are
less demanding for the attacker and have more serious
consequences than previous attacks on SSH. The dummy
packet countermeasure does not prevent our attacks.

Bellare et al. [1] also introduced nomenclature for de-
scribing variants of the SSH BPP that is useful for us. SSH-
IPC (SSH with interpacket chaining) refers to the SSH BPP
using CBC mode as defined in [26]. SSH-NPC refers to
the SSH BPP using CBC mode without packet chaining,
using a fresh, random IV for each packet, but with a
fixed padding format. Bellare et al. [1] present a reaction
attack against this variant of SSH, but the relevant RFC
recommends using random padding, so the attack should
not work against implementations. For example, OpenSSH
uses random padding. SSH-$NPC refers to the SSH BPP
using CBC mode with random per packet IVs and random
padding. SSH-CTRIV-CBC refers to using CBC mode with
IVs generated by encrypting a counter. In this proposal, the
IVs are not transmitted, and the encryption and decryption
are stateful. SSH-CTR refers to the use of counter mode of
a block cipher, with the counter being maintained by sender
and receiver rather than being transmitted at the start of the
packet. Our main attack techniques also apply to both SSH-
NPC and SSH-$NPC, even though the latter was proven
secure in [1].

Other recent papers conducting analysis of standards and
implementations of high-profile secure protocols include [5],
[6], [7], [10], [17]. These papers, like ours, highlight the
problems that arise in protocol specifications with respect
to implementation details having the potential to undermine
security. They also show that, in order to evaluate security, it
is not enough to look at the specification alone – rather, one
must look at how the specifications have been implemented
in order to gauge whether an attack idea will work against a
real system. These papers, also like ours, make use of what
might be termed software-based side channels in order to
mount their attacks. For example, [7] used timing differences
in processing padding and MAC failures to attack OpenSSL,
while [10], [17] exploited ICMP error messages of various
kinds to attack encryption-only configurations of IPsec.

A timing side-channel analysis of SSH [21] showed
that SSH can still leak significant information about users’
passwords when it is used to protect an interactive session.
Our attacks apply irrespective of what type of session is
being protected.

Several papers discuss security of symmetric encryption
schemes against blockwise adaptive attackers, beginning
with [12]. However, none of these papers consider how
errors arising during decryption can undermine security, so

none of the work to date in this line of research can be
used directly to model the security of SSH in a way that is
sufficiently complete to capture our attacks. Moreover, some
of our attacks do not require blockwise control but only the
ability to inject a single block of ciphertext at an appropriate
point in an SSH connection.

1.2. Paper Organisation

Section 2 provides an overview of the SSH BPP protocol
and the OpenSSH implementation of this protocol, focussing
on how decryption is performed in OpenSSH. Section 3
presents our new attacks on OpenSSH and Section 4 de-
scribes our proof-of-concept implementation of the attacks.
Section 5 extends our attacks to cover some of the variants
of SSH that were proposed in [1]. Section 6 provides
recommendations on how to prevent our attacks. These range
from selecting modes of operation other than CBC mode
through to a more radical overhaul of the SSH BPP. Section
7 presents our final conclusions.

2. The SSH Binary Packet Protocol

The Binary Packet Protocol (BPP) of SSH is defined in
[26, Section 6]. Informally, it uses a “encrypt and MAC”
construction, wherein the plaintext is both encrypted (to
produce the ciphertext) and integrity protected (by using
a MAC algorithm). The MAC value is appended to the
ciphertext.

In more detail, a payload message is first encoded by
prepending a packet length field and padding length field
and appending some padding. The packet length field is 4
bytes in length and contains the total length (in bytes) of
the encoded packet excluding the packet length field itself.
The padding length field is 1 byte in length and contains
the total number of padding bytes. A minimum of 4 padding
bytes must be added, the padding should be random, and the
padding must ensure that the encoded data ends on a block
boundary. The maximum length of padding is 255 bytes;
variable length padding may help frustrate traffic analysis
[26].

This encoded message is then encrypted. The final cipher-
text is the concatenation of the encoded-then-encrypted mes-
sage and a MAC value, with the MAC value being computed
over the concatenation of a 32-bit packet sequence number
and the encoded (but not encrypted) message. The sequence
number is set to zero at the start of an SSH connection,
and is incremented after each packet. It is not sent over the
channel but is maintained separately by both communicating
parties. Figure 1 shows the BPP packet format schematically.
Notice that the length field is encrypted, with the rationale
that this makes it harder for an attacker to detect BPP packet
boundaries and so perform traffic analysis.

18



> 4 bytes

Packet
Length

Padding 
Length

Sequence
Number

Payload Padding

ENCRYPT

MAC

Ciphertext
Message

MAC tag

Ciphertext Packet

4 bytes 4 bytes 1 byte

Figure 1. SSH BPP packet format and cryptographic processing

As we mentioned in the introduction, the SSH RFC [26]
mandates support for 3des-cbc, recommends support for
aes128-cbc, and lists a further 12 block cipher variants
in CBC mode as being optional. Only one optional stream
cipher is listed, arcfour. The RFC mandates the use of
initial packet chaining with CBC mode, so that the last block
of ciphertext from packet i − 1 on a connection is used as
the IV for CBC mode for packet i on the connection. In this
way, the packets on a connection form a single data stream.
Notice that the length field will be contained (in encrypted
form) in the first block of each packet.

Next we consider how decryption takes place in the SSH
BPP. Since there is no length indicator for a BPP packet
other than the content of the packet length field, any SSH
implementation must decrypt the first ciphertext block to
obtain that field and use it to determine how much data
to accept before deciding that a complete BPP packet has
arrived and moving on to perform the MAC check. Thus we
may expect that an SSH implementation will await further
data, unless sufficient data has already arrived to complete
the packet. In general then, an attacker may be able to delay
the MAC check for a particular BPP packet by delaying the
data on the SSH connection.

As we mentioned in the introduction, the SSH RFCs rec-
ommend sanity checking of the length field. The following
quotes are from the beginning of Section 6 and Section 6.1
of [26]:

“Note that the ‘packet length’ field is also en-
crypted, and processing it requires special care
when sending or receiving packets.”
“The minimum size of a packet is 16 (or the cipher
block size, whichever is larger) bytes (plus ‘mac’).
Implementations SHOULD decrypt the length af-
ter receiving the first 8 (or cipher block size,
whichever is larger) bytes of a packet.”
“. . . implementations SHOULD check that the
packet length is reasonable in order for the imple-
mentation to avoid denial of service and/or buffer
overflow attacks.”

Exactly when this last check is to be performed is not
made explicit in [26], but the natural interpretation is to do
the check as soon as the first block of plaintext has been
decrypted. Otherwise, denial of service attacks based on
manipulating the packet length field would not be prevented.
Since the MAC calculation is done on the entire plaintext
message (prepended with the 32-bit sequence number), it is
clear that, if this interpretation of the RFC is made, then any
length checks will be done before the MAC check. Nor is
the term “reasonable” defined in the RFCs. However, [26]
recommends that

“all implementations MUST be able to process
packets with an uncompressed payload length of
32768 bytes or less and a total packet size of
35000 bytes or less.... Implementations SHOULD
support longer packets, where they might be
needed.”

So a reasonable interpretation of the RFC might be to check
that the packet length is at most somewhere in the region of
35000 bytes.

Error handling for the BPP is specified in [26, Sec-
tion 11]. An SSH connection should terminate whenever a
transmission error occurs or MAC verification fails, but the
terminating entity may send an informative message to its
peer. Section 9.3.5 of the SSH architectural RFC [24] states
that the connection should be re-established in the event of
“transmission errors or message manipulation”. Presumably,
the latter is to be detected via the MAC check.

2.1. The OpenSSH Implementation of the BPP

OpenSSH follows [26] fairly closely in its implementation
of the BPP. It uses CBC mode with interpacket chaining and
random padding by default. It maintains sequence numbers,
and MAC-protects the correct fields. OpenSSH decrypts
the first block of a BPP packet as soon as it is received.
OpenSSH then performs the following checks, in the order
described.

19



2.1.1. Length Check. The following excerpt of code from
the file packet.c shows OpenSSH’s implementation of a
length check:

if (packet_length < 1 + 4 ||
packet_length > 256 * 1024) {
buffer_dump(&incoming_packet);
packet_disconnect("Bad packet length

%d.",packet_length); }

The packet_disconnect function terminates the ses-
sion and sends an SSH2_MSG_DISCONNECT SSH error
message over the connection. This message contains the
passed string. Thus we see that the OpenSSH implementa-
tion does not accept any packets whose packet length field
is less than 5 or greater than 256× 1024 = 218. The value
218 is presumably chosen to limit the effectiveness of DoS
attacks; the value of 5 is the minimum possible value of this
field, given the mandatory presence of a padding length byte
and 4 bytes of padding.

This check is consistent with the recommendations of [26]
that a total packet size of 35000 must be supported, and that
longer packets should be supported.

2.1.2. Block Length Check. OpenSSH then verifies that the
total number of bytes expected in the packet is a multiple
of the block size:

if (need % block_size != 0)
fatal("padding error:
need %d block %d mod %d",
need, block_size, need % block_size);

Here,

need = 4 + packet_length - block_size

denotes the number of bytes still awaited in this packet and
can be calculated from the packet length field. The fatal
function terminates the session but no error messages are
sent on the connection (in contrast to the previous check).
Instead, the passed string is only logged locally. However,
this error will result in the termination of the TCP connection
over which SSH is running.

2.1.3. MAC Check. OpenSSH then continues to accept data
on the connection until sufficient data has arrived. MAC
verification then takes place. The following OpenSSH code
controls how much data needs to be received before the
MAC check will be done:

if (buffer_len(&input) < need + maclen)
return SSH_MSG_NONE;

Here buffer_len(&input) measures in bytes the
amount of data received for the current packet and maclen
denotes the length in bytes of the SSH MAC field. If the sub-
sequent MAC check fails, then the packet_disconnect
function is called with the particular error message

“Corrupted MAC on input.” being sent on the con-
nection. If this check passes, then OpenSSH performs a
series of further checks. These need not concern us here.

Summarising the above, we can see that OpenSSH’s
decryption operation involves a number of distinct steps,
each step potentially resulting in a different type of error
and subsequent behaviour.

3. Attacking OpenSSH

3.1. Notation

Before describing our attacks against OpenSSH let us first
define some notation. We will use K to denote the key
of our block cipher, which we can assume to be fixed for
the duration of a connection, and let FK , F−1

K denote the
encryption and decryption operations of the block cipher in
use. We let L denote the block size of this block cipher
in bytes (so L = 8 for 3des and L = 16 for aes128).
Then CBC mode in the SSH BPP operates as follows: given
a sequence p1, p2, . . . pn of plaintext blocks making up a
packet, we have:

ci = FK(ci−1 ⊕ pi), i = 1, 2, . . . , n

where c0, the IV, is taken as the last block of the previous
BPP ciphertext. Hence

pi = ci−1 ⊕ F−1
K (ci), i = 1, 2, . . . , n.

3.2. Recovering 14 Plaintext Bits

Assume now that an attacker collects a target ciphertext
block c∗i from an established SSH connection, from some
BPP packet. Let c∗i−1 denote the ciphertext block preceding
the target block, and let p∗i denote the corresponding target
plaintext. We have:

p∗i = c∗i−1 ⊕ F−1
K (c∗i ).

Consider now an attacker who simply injects the single
block c∗i as the first block of a new packet on the SSH
connection2. Let cn denote the last ciphertext block of the
preceding packet on the connection. This block will be used
as the IV for the new packet, and hence OpenSSH will
compute as the first block of plaintext for this new packet:

p′1 = cn ⊕ F−1
K (c∗i ).

Combining the two preceding equations, we have:

p∗i = c∗i−1 ⊕ p′1 ⊕ cn (1)

2. Note that since the attacker cannot necessarily detect where one BPP
packet ends and the next begins, there is a chance that this injected block
is not processed as the first block of a new packet. This is not usually an
issue in practice because the attacker can wait until the SSH connection is
quiet before beginning his attack.

20



If, after injecting c∗i , we see either a termination of the
TCP connection over which the SSH connection is running
without an SSH error message (indicating a failure of the
block length check) or the SSH connection enters a state in
which it is waiting for more data, then we know that p′1 must
have passed the length check3. But the latter only occurs if
the packet length field in p′1 lies between 5 and 218, which
in turn occurs only if the first 14 bits of p′1 are all zero. From
this information and equation (1), we can calculate the first
14 bits of p∗i .

To assess the success probability of this attack, we need
only calculate the probability that the length check passes.
We may assume that cn, obtained as the last ciphertext block
of the preceding packet, acts as a random IV with respect to
the block c∗i . Hence the content of the packet length field in
p′1 can be regarded as being a random 32-bit value. Therefore
the length check will pass with probability 2−14 − 5/218 ≈
2−14.

Note that the attacker can verify when he has been
successful in his attack, so this attack has the same success
probability but is more powerful than the attack that simply
guesses 14 bits of plaintext without being able to verify
whether the guess is correct.

3.3. Recovering 32 Plaintext Bits

With exactly the same attack as above, if the SSH con-
nection enters a wait state, then we can deduce that both the
length check and the block length check have passed. When
L = 16 (e.g. with aes), this implies that the first 14 bits
of the length field in p′1 will all be zero, and that the last 4
bits of this field encode the value 12. In turn, this yields 18
bits of p∗i using equation (1). Reasoning as before, this event
will arise with probability roughly 2−18. (When L = 8, the
last 3 bits of the length field should encode the value 4,
the event has probability roughly 2−17, and reveals 17 bits
of p∗i .) We next explain how the attacker can continue the
attack to extract more plaintext.

Recall that, if the length check and block length check
pass, then the SSH connection will continue to wait for more
data until the following condition is no longer satisfied:

if (buffer_len(&input) < need + maclen)
return SSH_MSG_NONE;

Once this test fails, the MAC check will be triggered.
So the attacker continues his attack by injecting maclen
random bytes followed by a sequence of random L-byte
blocks into the SSH connection, waiting after the injection
of each block to see if the SSH connection is terminated

3. The SSH connection cannot terminate with a MAC failure at this point:
each BPP packet contains at least one ciphertext block plus a MAC field,
so the connection will not yet have received sufficient data to reach the
stage of performing a MAC check.

because of a MAC error. This termination occurs after at
most 218/L blocks are injected, and when it occurs, the
amount of data fed into the connection up to this point
reveals the value of need, and hence the exact value of
the 32-bit packet length field in p′1 using the formula:

need = 4 + packet_length - block_size.

Knowing this 32-bit value, the first 32 bits of p∗i can be
recovered using equation (1). The overall success probability
for the attack is 2−18 when L = 16 (and 2−17 when L = 8).

In essence, this attack exploits the encrypted length field
and the wait state that arises in OpenSSH provided the length
checks pass. We rely on the MAC error to reveal the amount
of data expected in the packet, and, through this, the content
of the length field. Because of the use of CBC mode, this
leaks information about the target ciphertext block. This kind
of attack seems endemic in any protocol that combines the
following features: the use of an encrypted length field; CBC
mode; a reliable transport allowing the attacker to deliver
small amounts of data at a time; and signalling of errors.
We comment on this in more detail in Section 6.

3.4. Iterating the Attack

Both the attacks above result in the SSH connection being
terminated with high probability at each attempt. Suppose,
however, that OpenSSH is used to protect plaintexts that
contain some fixed bits in fixed, known positions across
multiple connections. Suppose further that some of these
positions coincide with the first 32 bits in a block. For ex-
ample, this may be the case if OpenSSH is used to protect a
user password for a remote login. Then the attacks above can
simply be iterated in order to increase the success probability
of extracting the fixed plaintext bits in selected positions. A
similar attack to this was considered for OpenSSL in [7].
This variant would be particularly serious for SSH clients
that automatically perform connection re-establishment in
the event of errors, as recommended in [24].

As described, this iterated version would consume on
average 218 SSH connections in order to recover 32 plaintext
bits. By more carefully selecting the point at which each
target ciphertext block is injected, an attacker can reduce
the number of connections used to at most 214 + 24 (in the
case of a 128-bit block cipher). The attack is now split into
three phases. In the first phase, the attacker recovers the first
14 bits of the 32 target bits as follows. He observes each new
SSH connection and waits until an IV appears on the channel
which guarantees that a different value of the first 14 bits
of the length field will be set (in comparison to previous
connections) if the current value of the target ciphertext
block c∗i were to be injected as the first block of the next SSH
packet. This requires the attacker to maintain a size 214 table
of bit values, each entry indicating whether a particular value
consisting of the first 14 bits of c∗i−1⊕IV has been used on

21



a previous connection or not. After at most 214 connections,
the length check will pass, and the attacker can recover the
first 14 bits of plaintext (as in Section 3.2). In the second
phase, the attacker can exploit his knowledge of these 14
bits: he now observes each new SSH connection and waits
until an IV appears on the channel which guarantees that the
length check will be passed if the current target ciphertext
block c∗i is injected. This just involves comparing the first 14
bits of c∗i−1⊕IV with the 14 plaintext bits recovered so far.
By also working with bits 28-31 of c∗i−1 ⊕ IV , the attacker
can make sure that a different value of the least significant
4 bits of the length field will be set when c∗i is injected
for each connection in the second phase. On average, the
attacker will have to observe about 218 SSH packets until a
suitable IV appears for each second phase connection. Then
after at most 24 second phase connections, both the length
check and the block length check will pass, at which point
the current connection will enter its wait state. The third
phase is the same as the last part of our 32-bit-recovering
attack.

Notice that if the attacker has partial knowledge about
plaintext – for example that it must be printable ASCII
– then the success probabilities for all of our attacks can
be increased using similar tricks. We are grateful to an
anonymous referee for pointing this out. Note too that the
use of data compression on the SSH connection may reduce
the utility of the plaintext bits recovered in our attacks, and
will interfere with the connection-conserving variant of our
iterated attack.

The attacker does not need to be able to control the IV
used for the attack packet in any of the attacks described
above. Instead, he merely needs to be able to learn the value
of that IV at an appropriate point in the attack. Thus the
measure recommended in [26] for preventing Dai’s attack, in
which the transmission of the relevant IV is simply delayed,
does not prevent our attacks.

4. Experimental Validation

We implemented a proof-of-concept of our attacks against
OpenSSH using Scapy [18] and tested it in a virtual TCP/IP
network. Using a local virtual network has the advantage
that we can ignore any latency issues, since the transport is
almost instantaneous. There is no reason to think that our
results would not be applicable to real networks.

For our experiments we used OpenSSH server version 4.7
as shipped with Debian GNU/Linux Lenny (the attack will
also apply to more recent versions of OpenSSH up to and
including OpenSSH 5.1). However, we made one patch to
the server in order to increase the success probability of the
experiments: we modified the packet length field so that its
12 most significant bits were set to zero before the length
check was performed. The only impact of this change is that
the probability of passing this check is increased from 2−14

to roughly 2−2. Making this patch allowed us to more easily
test that the subsequent parts of our attacks were working as
anticipated, and did not influence the behaviour of the server
in our attack in any other way. Without this modification,
testing and development would have been far more time-
consuming. Of course, a real attacker does not get to increase
his success probability in this way! We later removed this
modification.

We first open up a legitimate connection with the server,
negotiating aes-cbc and hmac-md5 (having a 16-byte
MAC value). Then, once the SSH connection is established,
and in a separate thread, we inject the target ciphertext block
into the SSH connection (and then subsequent bytes and
blocks should the length check and block length check pass).
This thread also monitors the server for responses.

The various decryption checks and states of OpenSSH
showed up on the network as follows:
Length Check (c.f. Section 2.1.1): since the server sends a
SSH2_MSG_DISCONNECT message including a particular
error message, the failure of this check is indicated by the
size of the reply packets on the SSH connection.
Block Length Check (c.f. Section 2.1.2): since the SSH
server terminates the connection without any error message
in this case, the failure of this check is indicated by the
presence on the network of a TCP FIN packet without any
payload.
MAC Check (c.f. Section 2.1.3): since the server sends a
SSH2_MSG_DISCONNECT message including a particular
error message, the failure of this check is indicated by the
size of the reply packets on the SSH connection. We may
distinguish this failure from the length check failure above
because the SSH connection will have passed through an
intermediate wait state in our attacks if we get as far as the
MAC check.

For our attacks to work, we rely on the behaviour of two
different services: the TCP/IP stack of the operating system
and the SSH server. The TCP/IP stack may or may not
acknowledge any packet injected into the TCP connection
with a TCP ACK before the SSH server has the opportunity
to react to it. Consequently, observing a TCP ACK on the
wire is not a sufficient indication that both the length check
and block length check have passed and that the desired wait
state has been reached. Instead, we must detect this state by
the absence of either a TCP FIN packet without payload or
an SSH disconnect message. This test is therefore somewhat
sensitive to the latency of the network, since we need to wait
for a timeout. This only affects the time taken to carry out
the attacks.

For our first attack, if a TCP FIN packet without payload
is observed then we know that the length check has passed
but the block length check has failed. If no TCP FIN packet
without payload or SSH disconnect message is observed
within a reasonable time-out period, then we know that both

22



the length check and the block length check have passed. In
either case, at least 14 bits of plaintext can be recovered.

Of course, if no TCP FIN (with or without an SSH
disconnect message as payload) is observed, we may assume
that the wait state has been reached, at which point 18 bits
of plaintext (for L = 16) can be recovered and our second
attack can begin. We then feed single blocks of ciphertext to
the SSH server until a SSH2_MSG_DISCONNECT message
is observed. This indicates a MAC failure after enough data
was received. At this point, 32 bits of plaintext can be
recovered.

Because the final MAC check could be on a potentially
large message (218 bytes), we must take care not to feed
blocks to the SSH server too quickly during the second at-
tack. Otherwise, the SSH server may have stopped accepting
data and be engaged in MAC processing when we think it
is still waiting for further data. This would lead us to over-
estimate the amount of data that needs to be sent to the server
before the MAC check is triggered, distorting the low order
bits of our calculation of the content of the packet length
field. Thus we throttled the speed of our data injection. This
only affects the amount of time needed to carry out the
attack.

Using this proof-of-concept code (including the server
patch to increase the success probability), we were able to
reliably recover the value of the packet length field after
decryption, and hence recover the first 32 bits of the original
plaintext block corresponding to the target ciphertext block.
When we removed the server patch, we still observed several
successful 14-bit recovering attacks, but did not observe any
successful probability 2−18 attacks in the experimental time
available.

One of the main challenges for building an exploit based
on our proof-of-concept code would be to find a service
which tolerates SSH connection failures and reconnects on
these failures. One such client is for instance the Fuse
SSHFS [19] implementation which accepts a reconnect
flag and doesn’t seem to care about the nature of the
connection termination. Even then, the attacks require large
numbers of reconnects and may consume a lot of bandwidth.

5. Comparison with Proven Security of SSH

Bellare et al. [1] performed a formal security analysis of
the SSH BPP. Their work was inspired by the distinguishing
attack of Dai [9] against SSH-IPC (SSH with interpacket
chaining) and their main focus was to find a secure alter-
native to SSH-IPC that necessitated minimal changes to the
BPP.

The security analysis of [1] considers a general Encode-
then-Encrypt-and-MAC scheme. The decryption algorithm
of such a scheme takes a complete ciphertext as input
and proceeds by first decrypting, then decoding and finally
checking the MAC. Whilst recognising that different failure

conditions might occur during decryption, the formal de-
cryption algorithm for such a scheme in [1] only produces
one possible error message (“⊥”). Therefore the model in [1]
is intended to not allow the adversary to distinguish between
the different types of error. The model does not allow for
the possibility that the amount of data needed to complete
the decryption process might be governed by data that is
produced during the decryption process itself (namely the
packet length field). Indeed, the packet length field does not
appear at all in the model used in [1]. The analysis in [1]
models a connection tear-down in the event of an error, by
having decryption always output “⊥” in response to any
decryption query made after the first error has arisen.

However, as we have seen, in any conceivable imple-
mentation of SSH, the decryption process must depend
on the initially encrypted packet length field. Moreover,
in OpenSSH, the adversary is able to distinguish between
the different error types. Finally, in practice, an attacker is
able to feed ciphertext blocks one by one to the decryption
process, a feature exploited in our 32-bit-recovering attack.
These differences between the theoretical model and the
implementation reality explain why some of the schemes
proven secure in [1] would be insecure in practice if imple-
mented by extending OpenSSH in the natural way.

Even if the model of [1] only allows one type of error mes-
sage, it unintentionally introduces a timing channel which
can be used to distinguish the different types of error arising
during decryption. This channel arises because each of the
stages of decrypting, then decoding, and finally checking
the MAC is allowed to individually output the single error
message in the model of decryption used in [1]. But these
stages necessarily follow one after another in series and
would take different amounts of time to complete in any
implementation. So even having a single error message may
not be enough in practice to disguise the reasons for failure,
and would still leave open the possibility of attack.

In the remainder of this section, we estimate the extent to
which the various SSH BPP enhancements discussed in [1]
would be vulnerable to our attacks if they were implemented
in OpenSSH in the most obvious and natural way.

5.1. SSH-NPC and SSH-$NPC

SSH-NPC and SSH-$NPC both use CBC mode with
random per packet IVs (No Packet Chaining). This incurs
a penalty in that the IV now needs to be sent as an
additional ciphertext block for each packet. SSH-NPC uses
fixed padding. Bellare et al. showed that the use of fixed
padding allows a “reaction” attack against the scheme that
leaks a small amount of information about the relationship
between two plaintexts to the attacker. To prevent this attack
Bellare et al. introduced SSH-$NPC, proving it secure. This
BPP variant uses random padding, as recommended by the
relevant RFC [26], in combination with random IVs.

23



Suppose that SSH-NPC and SSH-$NPC were imple-
mented in such a way that the attacker can distinguish
between a failure of an OpenSSH-style packet length check
and a MAC failure. This would be the case if OpenSSH
was extended in the obvious and natural way to support
IVs transmitted on the wire. Then our first two attacks from
Section 3 would be applicable directly to both SSH-NPC
and SSH-$NPC, with the attacker simply making a random
choice of IV and injecting this along with the target cipher-
text block, instead of relying on the IV being determined by
the last block of the previous packet. The attacks’ success
probabilities would be as in Section 3. In our third attack
(where the attacker attempts to learn plaintext bits that are
fixed across multiple SSH connections), the attacker’s ability
to control the IV would allow him to systematically explore
the space of IVs to obtain a deterministic attack requiring at
most 214 +24 connections and one injected ciphertext block
per connection (for all but the final connection) to recover
32 bits of plaintext.

An attacker can also exploit his control over the IV in
SSH-NPC and SSH-$NPC to obtain a simple distinguishing
attack that has a success probability of 1. We sketch this
attack here. The attacker chooses two BPP plaintexts M0 =
p1, p2 and M1 = p1, p

′
2 such that the first 32 bits of p2 are all

zero while the first 32 bits of p′2 are the binary representation
of the value 32. Here, we assume that block p1 contains an
appropriate length field and padding length field, and blocks
p2, p

′
2 contain appropriate SSH padding. We assume now

that the attacker observes the BPP packet c0, c1, c2, MAC
corresponding to either M0 or M1 on the SSH connection.
The attacker then simply injects blocks c1, c2 as the first
two blocks of a new BPP packet into the SSH connection,
followed by a random MAC value. Here c1 is interpreted
as the IV and the decryption of c2 as the first block of the
plaintext packet. From our choice of p2, p

′
2 it is clear that

if M0 was encrypted under C, then the injected blocks will
cause a failure of the packet length check and termination
of the SSH connection, while if M1 was encrypted under C,
then the SSH connection enters into its wait state. Thus the
adversary can distinguish which message was encrypted.

This attack still works even if the length check and the
block length check used by OpenSSH are combined into a
single uniform check.

Random IVs are therefore not the solution to securing the
SSH BPP.

5.2. Further Provably Secure Variants

Bellare et al. also proposed and proved secure three
further variants of the SSH BPP: SSH-CTR, SSH-CTRIV-
CBC and SSH-EIV-CBC. SSH-CTR uses counter mode but
padding is still used in order to minimise changes to the
BPP. SSH-CTRIV-CBC and SSH-EIV-CBC use CBC mode

with an IV that is either the encryption of a counter or the
encipherment of the last ciphertext block, respectively.

These three schemes are all resistant to our plaintext
recovery attacks. SSH-CTR is resistant due to the stateful
nature of its decryption algorithm. In the two schemes SSH-
CTRIV-CBC and SSH-EIV-CBC an attacker no longer sees
the IV and therefore cannot deduce what changes have been
induced in the target p∗i when injecting c∗i (c.f. equation
(1)). It is therefore obvious that our attacks cannot be
used to recover any plaintext when these schemes are used.
However, this does not amount to a formal security proof
for these schemes in the face of error-based side-channels
of the type we have exploited in this paper.

6. Countermeasures

There are various actions which could be taken to make
the SSH BPP resistant to our attacks, even with the contin-
ued presence of an encrypted length field, length checking
and non-uniform error reporting.

In response to the vulnerability announcement concerning
our attacks [8], OpenSSH was initially updated to make
failure of the two block length checks more difficult to
distinguish. The block length check (c.f. Section 2.1.2) in
version 1.158 of the file packet.c no longer calls the
function fatal but instead logs the error and then called
the function packet_disconnect. This means that the
error message caused by both the length check (c.f. Section
2.1.1) and the block length check are be the same and hence
an attacker can no longer distinguish between these two
events. This prevents our 14-bit plaintext recovery attack,
but does not affect our attack recovering 32 bits. OpenSSH
also issued a public response [14] to our attacks as reported
in [8]. Subsequently, the OpenSSH team released OpenSSH
5.2. Unfortunately, we did not have time to analyse this
new version with respect to our attacks before finalising this
paper for publication. Our understanding is that OpenSSH
5.2 includes further countermeasures (in addition to uniform
error reporting) to protect OpenSSH against our attacks.

Another countermeasure was suggested to us by Denis
Bider of Bitvise [4]: simply randomise the length field if
the length check fails. The system then proceeds with this
new random length until an error is eventually sent when
the MAC check fails. With this modification a length error
and a MAC error are now indistinguishable and our attacks
are no longer possible.

Note that moving the length checks so that they are
executed after the MAC check, or removing the length
checks altogether, only increases the success probability of
our attacks to 1.

Another solution is to use one of the three schemes SSH-
CTR, SSH-CTRIV-CBC and SSH-EIV-CBC proposed by
Bellare et al., since they resist our plaintext recovery attacks.
An RFC already exists to standardise counter mode for

24



use in SSH [2] and AES in counter mode is supported by
OpenSSH. A switch to AES in counter mode could most
easily be enforced by limiting which encryption algorithms
are offered during the ciphersuite negotiation that takes place
as part of the SSH key exchange (see [26, Section 7.1]).
We have been informed that not every SSH implementation
supports counter mode, so that a switch to counter mode
may cause backwards compatibility problems. OpenSSH 5.2
takes the approach of changing the default cipher order to
prefer the AES CTR modes and the revised arcfour256
cipher to CBC-mode ciphers. We are not aware of any
support for SSH-CTRIV-CBC or SSH-EIV-CBC in SSH
implementations.

A partial list of affected vendors and the countermeasures
that they have adopted can be found at [22].

6.1. BPP Redesign

The kind of attacks that we have developed in this paper
would seem to be a threat to almost any protocol that uses
an encrypted length field, that runs over a transport protocol
allowing the attacker to deliver small amounts of data at a
time, and that reports errors. Given the problems that seem
to be inherent in using an encrypted length field, we consider
here how the BPP might be redesigned to avoid our attacks.

It is worth reiterating that the elimination of length checks
on an encrypted length field only increases the success
probability of our attacks. Moreover, replacing the current
“encrypt and MAC” construction used in the BPP with an
arbitrary authenticated encryption scheme may not eliminate
our attacks. For example, consider the use of an encrypt-
then-MAC scheme. This approach is known to be generically
secure against chosen-ciphertext attacks [3] so would seem
to be a good choice. But it is not hard to see that this
construction would still be vulnerable to our attacks.

A more useful change to the BPP would be to no longer
encrypt the 32-bit packet length field, but instead include
it in the clear before the encrypted payload and protect
it with the MAC. This would nullify our attacks, since
now any length tests could not be made plaintext-revealing.
However, making this change would reveal the length of
BPP packets to an eavesdropper. It would also render SSH
more vulnerable to DoS attacks, since the packet length field
would still need to be checked before the MAC, but now the
attacker would be able to manipulate the contents of this field
at will (rather than in a probabilistic fashion). On the other
hand, it could be argued that preventing DoS attacks should
not be an overriding concern of a secure communications
protocol such as SSH.

Another approach, suggested by a referee, would be to
include an extra MAC, calculated on the length field, just
after that field in the BPP protocol format.

7. Conclusions

We have presented plaintext-recovering attacks against
SSH as implemented by OpenSSH. We have argued that
the attacks arise from a fundamental design flaw in the RFC
specifying the SSH BPP [26], and explained why the attacks
are possible against a variant of the SSH BPP that was
proven to be secure in [1]. We also described how schemes
that are resistant to our plaintext recovery attacks may in
some scenarios leak length information about the plaintext.
We have also proposed countermeasures to the attacks.

Our attacks highlight the difficulties inherent in devel-
oping complex cryptographic constructions such as that
employed in SSH, especially in view of the interactions
that are possible between cryptographic processing and error
reporting. At this point a quote from [1] seems appropriate:

“in the modern era of strong cryptography it
would seem counterintuitive to voluntarily use a
protocol with low security when it is possible to
fix the security of SSH at low cost.”

While we see great value in the use of strong cryptography
supported by arguments from the tradition of provable
security, this quote raises the question: how do we know
that making a change does fix the security of SSH? For
example, our analysis shows that the proven-secure SSH-
$NPC would be at least as vulnerable to our attacks as the
current version of SSH.

In future work, we plan to examine formal models for
the kinds of software side channels that seem to emerge
in any reasonably complex implementation of cryptography.
A start in this direction, in the specific context of padding
oracle attacks, is provided in a recent paper of Paterson and
Watson [16].

Acknowledgements

Martin Albrecht was supported by the Royal Holloway
Valerie Myerscough Scholarship. Gaven Watson was sup-
ported by an EPSRC Industrial CASE studentship sponsored
by BT Research Laboratories.

We thank the anonymous referees for their many construc-
tive comments on the paper.

References

[1] M. Bellare, T. Kohno, and C. Namprempre. Breaking
and Provably Repairing the SSH Authenticated Encryption
Scheme: A Case Study of the Encode-then-Encrypt-and-MAC
Paradigm. ACM Transactions on Information and Systems
Security, 7(2):206–241, 2004.

[2] M. Bellare, T. Kohno, and C. Namprempre. The Secure Shell
(SSH) Transport Layer Encryption Modes, RFC 4344, Jan.
2006. http://www.ietf.org/rfc/rfc4344.txt.

25



[3] M. Bellare and C. Namprempre. Authenticated Encryption:
Relations Among Notions and Analysis of the Generic Com-
position Paradigm. In T. Okamoto, editor, Proccedings of ASI-
ACRYPT 2000, LNCS 1976, pp. 531–545. Springer-Verlag,
2000.

[4] Denis Bider, personal communication, 18/11/2008.

[5] D. Bleichenbacher. Chosen Ciphertext Attacks against Pro-
tocols Based on RSA Encryption Standard PKCS #1. In
H. Krawczyk, editor, Proccedings of CRYPTO 1998, LNCS
1462, pp. 1–12. Springer-Verlag, 1998.

[6] D. Boneh and D. Brumley. Remote timing attacks are practi-
cal. In Proceedings of the 12th Usenix Security Symposium,
2003.

[7] B. Canvel, A.P. Hiltgen, S. Vaudenay, and M. Vuagnoux.
Password Interception in a SSL/TLS Channel. In D. Boneh,
editor, Proccedings of CRYPTO 2003, LNCS 2729, pp. 583–
599. Springer-Verlag, 2003.

[8] CPNI Vulnerability Advisory. Plaintext Recovery Attack
Against SSH. http://www.cpni.gov.uk/Docs/Vulnerability
Advisory SSH.txt, 14/11/2008 (revised 17/11/2008).

[9] W. Dai. An Attack Against SSH2 Protocol. Email to
the SECSH Working Group available from ftp://ftp.ietf.org/
ietf-mail-archive/secsh/2002-02.mail, 6th Feb. 2002.

[10] J.-P. Degabriele and K.G. Paterson. Attacking the IPsec
Standards in Encryption-only Configurations. In IEEE Sympo-
sium on Security and Privacy, pp. 335–349, IEEE Computer
Society, 2007.

[11] T. Dierks and E. Rescorla. The Transport Layer Security
(TLS) Protocol, Version 1.1, RFC4346, April 2006. http:
//www.ietf.org/rfc/rfc4346.txt.

[12] A. Joux, G. Martinet and F. Valette. Blockwise-adaptive
attackers: Revisiting the (in)security of some provably secure
encryption models: CBC, GEM, IACBC. In Moti Yung,
editor, CRYPTO, LNCS 2442, pp. 17–30, Springer-Verlag,
2002.

[13] OpenSSH Project, http://www.openssh.org/.

[14] OpenSSH Security Advisory: cbc.adv, http://www.openssh.
com/txt/cbc.adv, 21/11/2008.

[15] OpenSSH Security, http://www.openssh.org/security.html.

[16] K.G. Paterson and G.J. Watson. Immunising CBC Mode
Against Padding Oracle Attacks: A Formal Security Treat-
ment. In R. Ostrovsky, R. De Prisco and I. Visconti, editors,
SCN 2008, LNCS 5229, pp. 340–357, Springer-Verlag, 2008.

[17] K.G. Paterson and A.K.L. Yau. Cryptography in Theory and
Practice: The Case of Encryption in IPsec. In S. Vaudenay,
editor, Eurocrypt 2006, LNCS 4004, pp. 12–29, Springer-
Verlag, 2006.

[18] Scapy Homepage, http://www.secdev.org/projects/scapy/.

[19] SSHFS Homepage, http://fuse.sourceforge.net/sshfs.html.

[20] SSH usage profiling, http://www.openssh.org/usage/index.
html.

[21] D. Song, D. Wagner and X. Tian. Timing Analysis of
Keystrokes and Timing Attacks on SSH. In 10th USENIX Se-
curity Symposium, 2001, http://www.usenix.org/publications/
library/proceedings/sec01/song.html.

[22] Unites States Computer Emergency Readiness Team (US-
CERT). Vulnerability Note VU#958563 – SSH CBC vul-
nerability. http://www.kb.cert.org/vuls/id/958563, 24/11/2008
(revised 12/01/2009).

[23] S. Vaudenay. Security Flaws Induced by CBC Padding –
Applications to SSL, IPSEC, WTLS .... In L.R. Knudsen,
editor, Proceedings of EUROCRYPT 2002, LNCS 2332, pp.
534–546, Springer-Verlag, 2002.

[24] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol
Architecture, RFC 4251, Jan. 2006. http://www.ietf.org/rfc/
rfc4251.txt

[25] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Authen-
tication Protocol, RFC 4252, Jan. 2006. http://www.ietf.org/
rfc/rfc4252.txt

[26] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport
Layer Protocol, RFC 4253, Jan. 2006. http://www.ietf.org/rfc/
rfc4253.txt.

[27] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Connec-
tion Protocol, RFC 4254, Jan. 2006. http://www.ietf.org/rfc/
rfc4254.txt.

26


