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Abstract—. This work introduces a novel Android monitoring 
app named AMon. It is aimed at collecting device related 
information from several sources: communications, /proc 
filesystem, applications and device usage. The information is 
dynamically gathered over time and its execution does not require 
to get special privileges or to be system root. In order to assess 
AMon capabilities, we have used it as the acquisition module of a 
subsequent security incident detection process. The results 
obtained show a good performance in terms of battery 
consumption, CPU and RAM usage, as well as overall system 
overhead. In order to contribute to the community, AMon is 
available at a public repository for free use and improvement. 

Keywords—monitoring, mobile security, anomaly detection  

I. INTRODUCTION 

Mobile devices such as smartphones and tablets are the most 
accepted platforms among users nowadays worldwide. 
According to GSMA [1], there are around 3.6 billion mobile 
users at present (60% from smartphones) and it is expected this 
number will increase to around 5 billion in 2025. This 
constitutes around 29 Exabytes of traffic per month nowadays 
and around 80 Exabytes per month in the next years [2]. 

Provided the increasing relevance of mobile devices, mobile 
malware has also experienced a huge increment [3]. Moreover, 
according to the fact that around 87% of the mobile market 
corresponds to Android devices [4], this OS is exposed to a 
number and variety of threats and attacks [5].  

Automatic anti-malware solutions for mobile devices are 
based on some kind of detection procedure to notify about the 
observation of undesired activities or behaviours [6]. For that, a 
monitoring process to gather and analyse specific operational 
information is required.  

This work contributes a novel Android monitoring tool able 
to be used in mobile security dynamic detection proposals. It is 
named AMon (standing for ‘Android Monitoring’) and is aimed 
to collect information about a number of aspects such as 
communications, apps, security state, and interfaces state. 
Moreover, we must remark that AMon does not require special 
permissions or root access to operate and that it collects a 

broader set of characteristics than others found in the literature 
with a low computational cost.  

The organization of the rest of the paper is as follows. 
Section II presents main proposals in the field of mobile 
monitoring and detection in the specialized literature. Section III 
describes AMon from a technical perspective, its capabilities 
being detailed. In Section IV, AMon is used as the gathering 
module of a detection ML system with security purposes, the 
results obtained being discussed. Finally, main conclusions and 
remarks are presented in Section V. 

II. STATE OF THE ART 

The number of detection solutions in the literature to fight 
against security events has grown in the last years [7][8], where 
a variety of analysis techniques are considered.  

A principal issue regarding malware detection is monitoring, 
as it allows collecting the parameters, variables and/or activities 
that will represent the state of the target system over which to 
subsequently decide about its benign or malicious nature. For 
instance, TaintDroid [9] tracks the flow of privacy sensitive data 
through third-party applications, as it assumes that downloaded, 
third-party applications are not trusted. CrowDroid [10] also 
performs a dynamic detection, collecting data regarding basic 
device information, installed applications list and the result of 
monitoring applications with strace tool to collect system calls. 

Instead, DREBIN [11] was proposed to perform a broad 
static analysis, gathering as many features from an application’s 
code and manifest as possible. These features are organized in 
sets of strings (such as permissions, API calls and network 
addresses) and embedded in a joint vector space. Authors in [12] 
also introduce a static detection proposal. The extraction of the 
features is automatically performed here by using scripts in 
order to get the permissions, intents, hardware and software 
features such as API calls and network access. 

After the previous proposals, additional acquisition systems 
have been developed. In [13], the authors propose a network 
traffic monitoring system to detect Android malware. The 
system parses the protocol of data packets and extracts a set of 
10 features (ID process, start and end of connection time, 
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upward and downward flows, source and destination IPs, source 
and destination ports, protocol type), then uses an SVM 
classification algorithm for data classification, determine 
whether the network traffic is abnormal, and locate the 
application that produced it through the correlation analysis. 

Authors in [14] make use of 59 features in total related with 
memory (24: Active, Buffers, MemFree, AnonPages, etc.), CPU 
(10: User, Nice, System, CPU usage, etc.) and network (25: 
InReceives, InMsgs, InSegs, EstaResets, ActiveOpens, etc.) 
mainly extracted from the /proc folder for Android malware 
detection.  

In [15], a method that uses System Flow Graphs is proposed 
to detect the execution of Android malware by monitoring the 
information flows they cause in the system. For that, authors 
make use of AndroBlare to track information flows between 
files, processes and sockets occurring on Android. Also related 
with graphs, authors in [16] develop an automatic Android 
malware detection system, Deep4MalDroid, using deep learning 
framework based on the Linux kernel system call graphs.  

In [17], BehaviourDroid is presented. It is a robust, 
extensible and configurable framework that can simultaneously 
monitor multiple apps and properties from loggings and system 
calls. 

As in the case of DREBIN, authors in [18] propose the use 
of intents raised by applications as a metric to identify the 
malicious behaviour of an application. An intent is a request 
from an application for performing a certain action, the main 
purpose of intent in Android platforms another activity, that 
activity generates an intent and encapsulates the required 
information that it wishes to communicate.  

In [19], Feng et al. introduce EnDroid, an effective dynamic 
analysis framework aimed to implement highly precise malware 
detection based on multiple types of dynamic behaviour 
features. These features cover system-level behaviour trace and 
common application-level malicious behaviours like personal 
information stealing, premium service subscription, and 
malicious service communication. 

The use of permissions and API function calls is also 
considered to detect malware in Android in [20]. Previously, 
authors complemented these features with runtime features such 
as user operations [21]. Similarly, Koli in [22] makes additional 
use of app’s key information like dynamic code, reflection code, 
native code, cryptographic code and database from applications. 

 In [23], authors design and implement BDfinder, an easy-
to-deploy and dynamical passive backdoor detection system to 
detect and visualize backdoor behaviours in real time. For that, 
system calls and binder data are considered to build sensitive 
behaviours. 

In this overall context, we introduce here AMon, a novel 
open-source monitoring tool intended to collect information 
from Android devices with several purposes, in particular to 
secure the environment. AMon allows to gather 
multidimensional dynamic information related with network 
communication, applications, hardware resources, and 
protection mechanisms of devices where it has been installed. 
Our tool collects a broader set of characteristics than others 

found in the literature with a low computational cost. Moreover, 
community can publicly contribute to AMon by adding new 
monitoring capabilities. 

III. MULTIDIMENSIONAL MOBILE DEVICE MONITORING 

AMon is a JAVA tool oriented to data gathering from 
multiple sources in Android platforms. For this, most of the 
functionality is implemented by using the Android API for 
developers [24]. However, Android is an OS that is 
continuously updated, implementing new functionalities and 
providing changes from one version to another. Moreover, 
AMon operation relies on the accessibility to system 
information, which is difficult and different to obtain depending 
of the Android version, especially if we consider that AMon 
does not require root access. Therefore, the selection of the the 
minimal SDK version is not a trivial decision.  

In Android Oreo the access to network data via folder 
/proc/net was disabled. Indeed, the access to /proc pseudo-
filesystem was heavily limited. This leads the inability to get 
CPU stats for future versions, but network data can be accessed 
via a workaround that uses a local VPN.  

Thus, AMon is developed with Android Oreo as target and is 
compatible with Android Pie. The current minimal supported 
version is Android Marshmallow, but it could be lowered at the 
cost of some functionalities like getting the device IP address. 

Due to the broad scope of AMon regarding data gathering, 
its functionality is distributed around four modules as follows.  

The Communications module implements a local VPN to 
track network traffic and get data and statistics from it. This 
module is based on the NetGuard project [25], a firewall 
application able to prevent applications from connecting to the 
Internet, logging traffic, outputting to a PCAP file or getting 
traffic usage. For the AMon purpose, the traffic logging capacity 
has been restructured to get only header information in addition 
to some statistical information that will be discussed below. 
Furthermore, this module also includes utilities to get the current 
IP address (Android 6.0+) and the MAC address. 

The Application module provides a list of the installed 
applications on the target device, their versions, and the 
permissions declared in the manifest file. Also, the module takes 
a timestamp every time a given app is updated or installed.  

The Hardware resources module brings access to the state 
of the device. CPU, RAM and battery values use, both current 
and maximum, are accessible through this module, as well as the 
state of the communications such as Wi-Fi, Bluetooth, Mobile 
Data, GPS interfaces. 

The Protection mechanisms module makes possible the 
access to some protection checks such as if the device is rooted, 
if a pattern is used to lock the device, and if UnknownSources or 
DeveloperOptions are enabled. 

A more detailed description about each functional module 
and its implementation is discussed in the following subsections. 

A. Traffic measurement  

The Communications module functionality is distributed 
between a library inherited from NetGuard and other that 
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provides additional capabilities related to networking. Due to 
the main functionality inherited from NetGuard, it will be 
discussed firstly. 

As previously indicated, the decision to use a local VPN 
comes from the need to get networking data in newer Android 
versions. After Android 8.0+, the access to network information 
is only possible through a VPN. So, the app is responsible for 
handling the traffic quickly enough to don't hinder the user 
work and don't drain resources of the system. 

Several implementations create the local VPN purely in 
Java, which handle data in an easy way due to be all structured 
in classes and with access to high level functionalities. 
However, the performance is degraded. The alternative is to use 
native code in C/C++ with the NDK toolset. For that, JNI is 
used to provide the interface of interoperability between Java 
and C/C++. The NetGuard application follows this path and 
includes a specific C/C++ library. For its use in AMon, the 
associated internal operation will be explained below. With this 
purpose, the process will be breakdown in three steps. 

The first step (Figure 1) starts at the ServiceSinkhole class 
in Java, where the VPN is created and passed as a reference to 
the C/C++ code. Once a packet arrives to the native code 
processing, it goes from netguard.c to the handle_events() 
function at session.c, which contains the main procedure. After 
ending previous existing connections, which are not already 
allowed, a loop starts. This loop checks for connections that 
need to be terminated (due to a time-out or an explicit stop) and 
contains the logic for the upstream and the downstream paths. 
This loop ends when the tunnel is forced to stop. 

The upstream path, represented in Figure 2(a), shows how 
outgoing connections are handled. This path follows to 
check_tun() at  ip.c, where we check if the packet is allowed 
to be forwarded, it being discarded if not allowed. Then, the 
protocol is labeled as TCP, UDP or ICMP. Each one leads to its 
own file that handles the rest of the communication, finally 
forwarding the packet from the mobile device to the Internet. 

The last step, Figure 2(b), represents the downstream path 
handling incoming connections to the device. The process 
followed in this path is more complex that the corresponding to 
the upstream one. For TCP, it starts checking the socket state: 
the SOCK5 process is performed in case of listening, the data 
being forwarded otherwise. After that, the socket is checked for 
a response from the other side: if some data arrives, it is passed 
to a buffer to be consumed by the device. For UDP and ICMP 
protocols, the same scheme applies: incoming data is checked 
at the socket and the received data is written to the buffer. 

The implementation of the NetGuard app includes some 
points where data is gathered and collected to then report this 

information to the Java counterpart for data usage statistics or 
logging. Figure 2 shows this points in colored circles: green→
start of flow tracking; red→ end of flow tracking; blue→
outgoing data log; magenta→incoming data log; and, orange
→write pcap file if enabled.  

Due to the AMon ability to get additional netflow related 
information (source and destination IP addresses, source and 
destination ports, IP protocol, sent and received bytes, sent 
packets and packets, TCP flags, ToS, start time and duration), 
the code contains some probes to acknowledge such data. 

AMon also adds a periodic control of the flow respect to the 
NetGuard implementation. The original functionality only 
considered the data sent to the Java part at the end of the flow 
life. Now, after ending the flow check at the start of the 
connection loop, a verification point is added to acknowledge 
when a specific time has elapsed since it started. 

The information gathered at C level is packed in Java 
objects for further treatment at Java code. NetGuard uses 
several Java objects in C to share data with Java or check 
allowance of a flow. The base Java objects are Packet, 
Allowed, RR (Resource Record) and Usage. AMon adds the Flow 
object with the gathered data and the uid of the process that 
originated the connection. 

When a flow ends or the periodic check is triggered, the 
Java method captureFlow() is called from C, where a Flow 
object is passed. Those requests to the method are handled by a 
Handler (LogHandler class defined in ServiceSinkhole). This 
implementation mimics the one used by NetGuard, allowing 
further compatibility. When the handler receives a message, the 
flow() method is called, which adds to the Flow object the 
name of the application using the stored uid. Also 
anonymization occurs here, the application name and the source 
address being modified if activated. The resulting flows are 
stored in a queue. The original implementation uses the 
SQLite3 database, but in our case, due to the high rate of data 
generated, the continuous access to the database will hinder the 
user experience. Thus, an in-memory queue is used, which is 
periodically dumped on a server. For other implementations, a 
change is necessary for adaptation.  

In addition to flow capture, AMon is also packed with some 
utilities to provide access to the MAC address of the device and 
the current IP address. MAC address is obtained from the 
network interface information and it is parsed to a string 
(method available for Android 6.0+). The method responsible 
to obtain the IP address is limited to Android 6.0 + and gets the 
information through the ConnectivityManager function. 

 
Figure 1.  Tunnel handling in C. 
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B. Installed Applications 

The Applications module is focused on getting the installed 
apps on the device and related information about them. Apart 
from the name of the app, AMon also gathers the package name, 
its version and the permissions associated to each of them. It is 
important to note that our app stores all the possible permissions 
that the app can request, and not necessarily the ones granted 
by the user. This information can help to detect undesired 
behaviours due to the permissions requested or forged 
applications. 

A raw storage of the data would take too much space, 
mainly due to the permissions list. In order to solve this, a bit 
encoding has been used to minimize the space requirements. 
Each permission is listed as 1 if present, and 0 otherwise. The 
list of permissions used as reference is located at Android 
Developer for the API level 29. This list is heavily dependent 
on the API used as target due to the inclusion of additional 
permissions in newer versions. 

C. Hardware resources 

This module is intended to retrieve hardware related 
information, which can be split in three groups: static data and 
specifications; usage of the device; and state of the 
communication interfaces. 

The first category encapsulates the technical information 
associated to the device. A part of the data is obtained from the 
Build class shipped in the Android API, which provides the 
SDK used, the brand, the model and the manufacturer, among 
other data. More technical information is about the number of 
CPU cores, the RAM size and the battery capacity. Obtaining 
this last variable is not a simple task, since it requires the use of 
reflection. The battery capacity in mAh is returned from the 
getBatteryCapicity() method of the class com.android. 

internal.os.PowerProfile. Since this method is not in the 
public API, the accessibility to it in a future API is not assured 
and could be changed without notice. 

The information about the usage of the device includes the 
RAM percentage usage, the CPU percentage averaged among 
all the cores, and the battery level. RAM and battery related 
information is supported by the public API, but the CPU 
consumption is not easy to obtain. The usual method implies 
the access to the /proc/stat file, but for Android Oreo this file 
and functionality is not available. 

In order to retrieve the state of the communication 
interfaces, Android provides public methods in the API. These 
sections encapsulate information about the state of the WiFi, 
the Bluetooth, the location service, the mobile data and the 
airplane mode. Usual checks of availability are handled by a 
call to the API, but the mobile data check is not so easy for 
previous versions to Android 8. For older versions the use of 
reflection is needed, so the call would be done through the 
method getMobileDataEnabled in the ConnectivityManager 
class. Location services include the location by GPS and the 
one used by the network. Both of them are supported by AMon. 
In addition, a list of configured WiFi networks is stored in the 
device, along with the associated security protocol, and a list of 
bounded Bluetooth devices are also accessible. Furthermore, 
checking if the current WiFi connection is secure is also 
included. Note that for the last checks, the associated service 
needs to be turned on. 

D. Protection mechanisms 

This last module provides access to simple checks about 
some basic security mechanisms. The absence of these 
mechanisms is not a security fault but can imply a risk. The 
checked options are: Unknown Sources; Developer Options; 

 
(a) 

 

(b) 
 Figure 2. Packet handling in Amon: outgoing packets (a) and incoming packets (b). 
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PIN, pattern or password in the lock screen; and Availability of 
the root user. 

Unknown Sources is a system option in previous versions 
that allows (or not) the installation of an apk file from external 
sources. After Android Oreo, this has changed and is an app-
wide option. Thus, for new versions a permission check is used 
instead. The permission REQUEST_INSTALL_PACKAGES would 
allow an application to install external apk. 

Checking the Developer Options or the existence of a 
method to lock screen is done by using the public API. Note 
that the specific locking method used can't be discerned. The 
last security check is provided by the RootBeer library. 

IV. EXPERIMENTAL RESULTS 

After describing AMon, in this section we make use of it to 
feed a detection tool to determine potential harmful events in 
mobile environments. 

Although several detection approaches can be considered 
with this purpose we use here MSNM (Multivariate Statistical 
Network Monitoring), which is an interpretable machine-
learning detection methodology introduced by authors in [26]. 
MSNM presents two relevant benefits: diagnosis capabilities, to 
determine the real causes of inadequate behaviours, and privacy 
compliance, as no private information needs to be accessed by 
or distributed to third parties.  

A. Experimental data 

From the above, the specific experimentation environment 
deployed is as follows. First, a total of 83 final mobile devices 
have been monitored during 205 days to collect a number of 
features regarding their associated configuration and 
communication profiles as specified in Section III. 

It is worth to mention that the mobile devices involved in 
experimentation belong to volunteer users who have signed an 
agreement to allow the monitoring process to obtain the 
mentioned individual data for scientific purposes. 

Based on the data gathered, MSNM performs two 
successive stages to analyze the behaviour of the monitored 
devices: (i) first, the behavioural model P is estimated from a 
training dataset (that it is a subset of monitored devices); (ii) 
second, every device is monitored to obtain the associated 
security profile <D-st,Q-st>t, D-st and Q-st being behaviour 
related statistics, and, from that, to determine potential 
deviations in its behaviour with respect to P. If so, users will be 
notified and access restrictions could be applied.  

B. Results 

In the first stage, for training purposes, we consider the data 
corresponding to the first 139 days monitored by AMon, which 
correspond to a total of 67 trustable devices.  

During this process, some mobile devices exhibit anomalous 
behaviours. In particular, six of them, those labeled as D428, D1, 
D25, D860, D394, and D190, present higher Q-st and/or D-st 
values than the normality thresholds established and shown in 
Figure 3 through dashed lines.  

  After diagnosing the anomalies with oMEDA, we observe 
deviations in the permissions list per device. A more detailed 
diagnosis of the device with the most anomalous behaviour, 
D428, reveals significant deviations in 36 of a total of 158 app 
permissions monitored in comparison with normal devices. 
Figure 4 shows the number of the four most used permissions: 
REQUEST_INSTALL_PACKAGE, SET_PREFERED_ APPLICATION, 
BIND_QUICK_SETTING, and SET_TIME_ZONE. In particular, 
there is a huge difference in the usage of 
REQUEST_INSTALL_PACKAGE in D428 with respect to the rest 
of devices.  This permission is considered dangerous because it 
is related with malware spreading [27]. 

With the previous diagnosis, we conclude that the D428 
device does not meet the security requirements needed. With 
same diagnosis procedure, we determine that the other 5 
outliers found (Figure 3) are also below security requirements.  

After removing the outliers, all the devices in the network 
meet the expected security levels. From them, the ‘normality’ 
model P is estimated, which will be subsequently used to 
evaluate observed devices against P over time. For this 
experimentation, the gathered activity of all the 83 available 
mobile devices during the whole sampling period is analysed. 

At this point, after analysing D and Q statistics, device D116 
exhibits a notoriously anomalous behaviour (very far from the 

Figure 4.  Number of apps using four of the most significant 
permissions of the anomalous device D428 in training stage. 

 
Figure 3.  D-st and Q-st values for devices used in training, where 

dashed lines represent the normality threshold values. 
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control limits) regarding configuration profiles. We conclude 
that the cause of such an anomaly is the 
WRITE_SYNC_SETTINGS permission. The threat associated with 
it is due to the possibility of data synchronization with external 
sources. 

Regarding communication profiles, the analysis of D-st and 
Q-st for daily traffic samples shows the existence of days with 
very clear anomalous behaviour. After diagnosing the anomaly 
with oMEDA, we conclude that one of them is motivated by 
very low traffic, which is not usually a real problem. However, 
another anomaly is due to BitTorrent traffic generated by the 
device D473, which can constitute a security risk depending on 
the security policy of the access provider. Likewise, the 
anomaly appeared around 130-th day, is due to traffic from 
devices D260 and D1, which involve an abnormal amount of 
NetBios related traffic. 

From the above, the causes detected as anomalies could be 
used to restrict the access to the devices to our infrastructure at 
a given instant. However, the final users could be firstly notified 
to solve the problem and, thus, strengthen global security. 

V. CONCLUSIONS 

In this paper, we introduce Amon, a novel multidimensional 
monitoring tool for Android devices. Through Amon we are 
able to gather information regarding communications, 
applications and permissions, usage of device resources, and 
configuration of the device.  

AMon is used to feed a machine-learning detection tool. The 
results obtained show that the information collected by it are 
useful for detection purposes. Moreover, AMon source code at 
https://github.com/nesg-ugr/AMon, which is of high interest 
for the research community. 
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