
AMon: A Monitoring Multidimensional Feature
Application to Secure Android Environments

J.A. Gómez-Hernández
Dept. Languages and Computer

Systems
Granada, Spain

jagomez@ugr.es

P. García-Teodoro
Dept. Signal Theory, Telematics

and Communications
Granada, Spain

pgteodor@ugr.es

J.A. Holgado-Terriza
Dept. Languages and Computer

Systems
Granada, Spain

jholgado@ugr.es

G. Maciá-Fernández
Dept. Signal Theory, Telematics

and Communications
Granada, Spain
gmacia@ugr.es

J. Camacho-Páez
Dept. Signal Theory, Telematics

and Communications
Granada, Spain

josecamacho@ugr.es

M. Robles-Carrillo
Dept. International Law and

International Relations
Granada, Spain
mrobles@ugr.es

Abstract—. This work introduces a novel Android monitoring
app named AMon. It is aimed at collecting device related
information from several sources: communications, /proc
filesystem, applications and device usage. The information is
dynamically gathered over time and its execution does not require
to get special privileges or to be system root. In order to assess
AMon capabilities, we have used it as the acquisition module of a
subsequent security incident detection process. The results
obtained show a good performance in terms of battery
consumption, CPU and RAM usage, as well as overall system
overhead. In order to contribute to the community, AMon is
available at a public repository for free use and improvement.

Keywords—monitoring, mobile security, anomaly detection

I. INTRODUCTION

Mobile devices such as smartphones and tablets are the most
accepted platforms among users nowadays worldwide.
According to GSMA [1], there are around 3.6 billion mobile
users at present (60% from smartphones) and it is expected this
number will increase to around 5 billion in 2025. This
constitutes around 29 Exabytes of traffic per month nowadays
and around 80 Exabytes per month in the next years [2].

Provided the increasing relevance of mobile devices, mobile
malware has also experienced a huge increment [3]. Moreover,
according to the fact that around 87% of the mobile market
corresponds to Android devices [4], this OS is exposed to a
number and variety of threats and attacks [5].

Automatic anti-malware solutions for mobile devices are
based on some kind of detection procedure to notify about the
observation of undesired activities or behaviours [6]. For that, a
monitoring process to gather and analyse specific operational
information is required.

This work contributes a novel Android monitoring tool able
to be used in mobile security dynamic detection proposals. It is
named AMon (standing for ‘Android Monitoring’) and is aimed
to collect information about a number of aspects such as
communications, apps, security state, and interfaces state.
Moreover, we must remark that AMon does not require special
permissions or root access to operate and that it collects a

broader set of characteristics than others found in the literature
with a low computational cost.

The organization of the rest of the paper is as follows.
Section II presents main proposals in the field of mobile
monitoring and detection in the specialized literature. Section III
describes AMon from a technical perspective, its capabilities
being detailed. In Section IV, AMon is used as the gathering
module of a detection ML system with security purposes, the
results obtained being discussed. Finally, main conclusions and
remarks are presented in Section V.

II. STATE OF THE ART

The number of detection solutions in the literature to fight
against security events has grown in the last years [7][8], where
a variety of analysis techniques are considered.

A principal issue regarding malware detection is monitoring,
as it allows collecting the parameters, variables and/or activities
that will represent the state of the target system over which to
subsequently decide about its benign or malicious nature. For
instance, TaintDroid [9] tracks the flow of privacy sensitive data
through third-party applications, as it assumes that downloaded,
third-party applications are not trusted. CrowDroid [10] also
performs a dynamic detection, collecting data regarding basic
device information, installed applications list and the result of
monitoring applications with strace tool to collect system calls.

Instead, DREBIN [11] was proposed to perform a broad
static analysis, gathering as many features from an application’s
code and manifest as possible. These features are organized in
sets of strings (such as permissions, API calls and network
addresses) and embedded in a joint vector space. Authors in [12]
also introduce a static detection proposal. The extraction of the
features is automatically performed here by using scripts in
order to get the permissions, intents, hardware and software
features such as API calls and network access.

After the previous proposals, additional acquisition systems
have been developed. In [13], the authors propose a network
traffic monitoring system to detect Android malware. The
system parses the protocol of data packets and extracts a set of
10 features (ID process, start and end of connection time,

31

2021 IEEE Symposium on Security and Privacy Workshops

© 2021, J. A. Gómez-Hernández. Under license to IEEE.
DOI 10.1109/SPW53761.2021.00013

upward and downward flows, source and destination IPs, source
and destination ports, protocol type), then uses an SVM
classification algorithm for data classification, determine
whether the network traffic is abnormal, and locate the
application that produced it through the correlation analysis.

Authors in [14] make use of 59 features in total related with
memory (24: Active, Buffers, MemFree, AnonPages, etc.), CPU
(10: User, Nice, System, CPU usage, etc.) and network (25:
InReceives, InMsgs, InSegs, EstaResets, ActiveOpens, etc.)
mainly extracted from the /proc folder for Android malware
detection.

In [15], a method that uses System Flow Graphs is proposed
to detect the execution of Android malware by monitoring the
information flows they cause in the system. For that, authors
make use of AndroBlare to track information flows between
files, processes and sockets occurring on Android. Also related
with graphs, authors in [16] develop an automatic Android
malware detection system, Deep4MalDroid, using deep learning
framework based on the Linux kernel system call graphs.

In [17], BehaviourDroid is presented. It is a robust,
extensible and configurable framework that can simultaneously
monitor multiple apps and properties from loggings and system
calls.

As in the case of DREBIN, authors in [18] propose the use
of intents raised by applications as a metric to identify the
malicious behaviour of an application. An intent is a request
from an application for performing a certain action, the main
purpose of intent in Android platforms another activity, that
activity generates an intent and encapsulates the required
information that it wishes to communicate.

In [19], Feng et al. introduce EnDroid, an effective dynamic
analysis framework aimed to implement highly precise malware
detection based on multiple types of dynamic behaviour
features. These features cover system-level behaviour trace and
common application-level malicious behaviours like personal
information stealing, premium service subscription, and
malicious service communication.

The use of permissions and API function calls is also
considered to detect malware in Android in [20]. Previously,
authors complemented these features with runtime features such
as user operations [21]. Similarly, Koli in [22] makes additional
use of app’s key information like dynamic code, reflection code,
native code, cryptographic code and database from applications.

 In [23], authors design and implement BDfinder, an easy-
to-deploy and dynamical passive backdoor detection system to
detect and visualize backdoor behaviours in real time. For that,
system calls and binder data are considered to build sensitive
behaviours.

In this overall context, we introduce here AMon, a novel
open-source monitoring tool intended to collect information
from Android devices with several purposes, in particular to
secure the environment. AMon allows to gather
multidimensional dynamic information related with network
communication, applications, hardware resources, and
protection mechanisms of devices where it has been installed.
Our tool collects a broader set of characteristics than others

found in the literature with a low computational cost. Moreover,
community can publicly contribute to AMon by adding new
monitoring capabilities.

III. MULTIDIMENSIONAL MOBILE DEVICE MONITORING

AMon is a JAVA tool oriented to data gathering from
multiple sources in Android platforms. For this, most of the
functionality is implemented by using the Android API for
developers [24]. However, Android is an OS that is
continuously updated, implementing new functionalities and
providing changes from one version to another. Moreover,
AMon operation relies on the accessibility to system
information, which is difficult and different to obtain depending
of the Android version, especially if we consider that AMon
does not require root access. Therefore, the selection of the the
minimal SDK version is not a trivial decision.

In Android Oreo the access to network data via folder
/proc/net was disabled. Indeed, the access to /proc pseudo-
filesystem was heavily limited. This leads the inability to get
CPU stats for future versions, but network data can be accessed
via a workaround that uses a local VPN.

Thus, AMon is developed with Android Oreo as target and is
compatible with Android Pie. The current minimal supported
version is Android Marshmallow, but it could be lowered at the
cost of some functionalities like getting the device IP address.

Due to the broad scope of AMon regarding data gathering,
its functionality is distributed around four modules as follows.

The Communications module implements a local VPN to
track network traffic and get data and statistics from it. This
module is based on the NetGuard project [25], a firewall
application able to prevent applications from connecting to the
Internet, logging traffic, outputting to a PCAP file or getting
traffic usage. For the AMon purpose, the traffic logging capacity
has been restructured to get only header information in addition
to some statistical information that will be discussed below.
Furthermore, this module also includes utilities to get the current
IP address (Android 6.0+) and the MAC address.

The Application module provides a list of the installed
applications on the target device, their versions, and the
permissions declared in the manifest file. Also, the module takes
a timestamp every time a given app is updated or installed.

The Hardware resources module brings access to the state
of the device. CPU, RAM and battery values use, both current
and maximum, are accessible through this module, as well as the
state of the communications such as Wi-Fi, Bluetooth, Mobile
Data, GPS interfaces.

The Protection mechanisms module makes possible the
access to some protection checks such as if the device is rooted,
if a pattern is used to lock the device, and if UnknownSources or
DeveloperOptions are enabled.

A more detailed description about each functional module
and its implementation is discussed in the following subsections.

A. Traffic measurement

The Communications module functionality is distributed
between a library inherited from NetGuard and other that

32

provides additional capabilities related to networking. Due to
the main functionality inherited from NetGuard, it will be
discussed firstly.

As previously indicated, the decision to use a local VPN
comes from the need to get networking data in newer Android
versions. After Android 8.0+, the access to network information
is only possible through a VPN. So, the app is responsible for
handling the traffic quickly enough to don't hinder the user
work and don't drain resources of the system.

Several implementations create the local VPN purely in
Java, which handle data in an easy way due to be all structured
in classes and with access to high level functionalities.
However, the performance is degraded. The alternative is to use
native code in C/C++ with the NDK toolset. For that, JNI is
used to provide the interface of interoperability between Java
and C/C++. The NetGuard application follows this path and
includes a specific C/C++ library. For its use in AMon, the
associated internal operation will be explained below. With this
purpose, the process will be breakdown in three steps.

The first step (Figure 1) starts at the ServiceSinkhole class
in Java, where the VPN is created and passed as a reference to
the C/C++ code. Once a packet arrives to the native code
processing, it goes from netguard.c to the handle_events()
function at session.c, which contains the main procedure. After
ending previous existing connections, which are not already
allowed, a loop starts. This loop checks for connections that
need to be terminated (due to a time-out or an explicit stop) and
contains the logic for the upstream and the downstream paths.
This loop ends when the tunnel is forced to stop.

The upstream path, represented in Figure 2(a), shows how
outgoing connections are handled. This path follows to
check_tun() at ip.c, where we check if the packet is allowed
to be forwarded, it being discarded if not allowed. Then, the
protocol is labeled as TCP, UDP or ICMP. Each one leads to its
own file that handles the rest of the communication, finally
forwarding the packet from the mobile device to the Internet.

The last step, Figure 2(b), represents the downstream path
handling incoming connections to the device. The process
followed in this path is more complex that the corresponding to
the upstream one. For TCP, it starts checking the socket state:
the SOCK5 process is performed in case of listening, the data
being forwarded otherwise. After that, the socket is checked for
a response from the other side: if some data arrives, it is passed
to a buffer to be consumed by the device. For UDP and ICMP
protocols, the same scheme applies: incoming data is checked
at the socket and the received data is written to the buffer.

The implementation of the NetGuard app includes some
points where data is gathered and collected to then report this

information to the Java counterpart for data usage statistics or
logging. Figure 2 shows this points in colored circles: green→
start of flow tracking; red→ end of flow tracking; blue→
outgoing data log; magenta→incoming data log; and, orange
→write pcap file if enabled.

Due to the AMon ability to get additional netflow related
information (source and destination IP addresses, source and
destination ports, IP protocol, sent and received bytes, sent
packets and packets, TCP flags, ToS, start time and duration),
the code contains some probes to acknowledge such data.

AMon also adds a periodic control of the flow respect to the
NetGuard implementation. The original functionality only
considered the data sent to the Java part at the end of the flow
life. Now, after ending the flow check at the start of the
connection loop, a verification point is added to acknowledge
when a specific time has elapsed since it started.

The information gathered at C level is packed in Java
objects for further treatment at Java code. NetGuard uses
several Java objects in C to share data with Java or check
allowance of a flow. The base Java objects are Packet,
Allowed, RR (Resource Record) and Usage. AMon adds the Flow
object with the gathered data and the uid of the process that
originated the connection.

When a flow ends or the periodic check is triggered, the
Java method captureFlow() is called from C, where a Flow
object is passed. Those requests to the method are handled by a
Handler (LogHandler class defined in ServiceSinkhole). This
implementation mimics the one used by NetGuard, allowing
further compatibility. When the handler receives a message, the
flow() method is called, which adds to the Flow object the
name of the application using the stored uid. Also
anonymization occurs here, the application name and the source
address being modified if activated. The resulting flows are
stored in a queue. The original implementation uses the
SQLite3 database, but in our case, due to the high rate of data
generated, the continuous access to the database will hinder the
user experience. Thus, an in-memory queue is used, which is
periodically dumped on a server. For other implementations, a
change is necessary for adaptation.

In addition to flow capture, AMon is also packed with some
utilities to provide access to the MAC address of the device and
the current IP address. MAC address is obtained from the
network interface information and it is parsed to a string
(method available for Android 6.0+). The method responsible
to obtain the IP address is limited to Android 6.0 + and gets the
information through the ConnectivityManager function.

Figure 1. Tunnel handling in C.

33

B. Installed Applications

The Applications module is focused on getting the installed
apps on the device and related information about them. Apart
from the name of the app, AMon also gathers the package name,
its version and the permissions associated to each of them. It is
important to note that our app stores all the possible permissions
that the app can request, and not necessarily the ones granted
by the user. This information can help to detect undesired
behaviours due to the permissions requested or forged
applications.

A raw storage of the data would take too much space,
mainly due to the permissions list. In order to solve this, a bit
encoding has been used to minimize the space requirements.
Each permission is listed as 1 if present, and 0 otherwise. The
list of permissions used as reference is located at Android
Developer for the API level 29. This list is heavily dependent
on the API used as target due to the inclusion of additional
permissions in newer versions.

C. Hardware resources

This module is intended to retrieve hardware related
information, which can be split in three groups: static data and
specifications; usage of the device; and state of the
communication interfaces.

The first category encapsulates the technical information
associated to the device. A part of the data is obtained from the
Build class shipped in the Android API, which provides the
SDK used, the brand, the model and the manufacturer, among
other data. More technical information is about the number of
CPU cores, the RAM size and the battery capacity. Obtaining
this last variable is not a simple task, since it requires the use of
reflection. The battery capacity in mAh is returned from the
getBatteryCapicity() method of the class com.android.

internal.os.PowerProfile. Since this method is not in the
public API, the accessibility to it in a future API is not assured
and could be changed without notice.

The information about the usage of the device includes the
RAM percentage usage, the CPU percentage averaged among
all the cores, and the battery level. RAM and battery related
information is supported by the public API, but the CPU
consumption is not easy to obtain. The usual method implies
the access to the /proc/stat file, but for Android Oreo this file
and functionality is not available.

In order to retrieve the state of the communication
interfaces, Android provides public methods in the API. These
sections encapsulate information about the state of the WiFi,
the Bluetooth, the location service, the mobile data and the
airplane mode. Usual checks of availability are handled by a
call to the API, but the mobile data check is not so easy for
previous versions to Android 8. For older versions the use of
reflection is needed, so the call would be done through the
method getMobileDataEnabled in the ConnectivityManager
class. Location services include the location by GPS and the
one used by the network. Both of them are supported by AMon.
In addition, a list of configured WiFi networks is stored in the
device, along with the associated security protocol, and a list of
bounded Bluetooth devices are also accessible. Furthermore,
checking if the current WiFi connection is secure is also
included. Note that for the last checks, the associated service
needs to be turned on.

D. Protection mechanisms

This last module provides access to simple checks about
some basic security mechanisms. The absence of these
mechanisms is not a security fault but can imply a risk. The
checked options are: Unknown Sources; Developer Options;

(a)

(b)
 Figure 2. Packet handling in Amon: outgoing packets (a) and incoming packets (b).

34

PIN, pattern or password in the lock screen; and Availability of
the root user.

Unknown Sources is a system option in previous versions
that allows (or not) the installation of an apk file from external
sources. After Android Oreo, this has changed and is an app-
wide option. Thus, for new versions a permission check is used
instead. The permission REQUEST_INSTALL_PACKAGES would
allow an application to install external apk.

Checking the Developer Options or the existence of a
method to lock screen is done by using the public API. Note
that the specific locking method used can't be discerned. The
last security check is provided by the RootBeer library.

IV. EXPERIMENTAL RESULTS

After describing AMon, in this section we make use of it to
feed a detection tool to determine potential harmful events in
mobile environments.

Although several detection approaches can be considered
with this purpose we use here MSNM (Multivariate Statistical
Network Monitoring), which is an interpretable machine-
learning detection methodology introduced by authors in [26].
MSNM presents two relevant benefits: diagnosis capabilities, to
determine the real causes of inadequate behaviours, and privacy
compliance, as no private information needs to be accessed by
or distributed to third parties.

A. Experimental data

From the above, the specific experimentation environment
deployed is as follows. First, a total of 83 final mobile devices
have been monitored during 205 days to collect a number of
features regarding their associated configuration and
communication profiles as specified in Section III.

It is worth to mention that the mobile devices involved in
experimentation belong to volunteer users who have signed an
agreement to allow the monitoring process to obtain the
mentioned individual data for scientific purposes.

Based on the data gathered, MSNM performs two
successive stages to analyze the behaviour of the monitored
devices: (i) first, the behavioural model P is estimated from a
training dataset (that it is a subset of monitored devices); (ii)
second, every device is monitored to obtain the associated
security profile <D-st,Q-st>t, D-st and Q-st being behaviour
related statistics, and, from that, to determine potential
deviations in its behaviour with respect to P. If so, users will be
notified and access restrictions could be applied.

B. Results

In the first stage, for training purposes, we consider the data
corresponding to the first 139 days monitored by AMon, which
correspond to a total of 67 trustable devices.

During this process, some mobile devices exhibit anomalous
behaviours. In particular, six of them, those labeled as D428, D1,
D25, D860, D394, and D190, present higher Q-st and/or D-st
values than the normality thresholds established and shown in
Figure 3 through dashed lines.

 After diagnosing the anomalies with oMEDA, we observe
deviations in the permissions list per device. A more detailed
diagnosis of the device with the most anomalous behaviour,
D428, reveals significant deviations in 36 of a total of 158 app
permissions monitored in comparison with normal devices.
Figure 4 shows the number of the four most used permissions:
REQUEST_INSTALL_PACKAGE, SET_PREFERED_ APPLICATION,
BIND_QUICK_SETTING, and SET_TIME_ZONE. In particular,
there is a huge difference in the usage of
REQUEST_INSTALL_PACKAGE in D428 with respect to the rest
of devices. This permission is considered dangerous because it
is related with malware spreading [27].

With the previous diagnosis, we conclude that the D428
device does not meet the security requirements needed. With
same diagnosis procedure, we determine that the other 5
outliers found (Figure 3) are also below security requirements.

After removing the outliers, all the devices in the network
meet the expected security levels. From them, the ‘normality’
model P is estimated, which will be subsequently used to
evaluate observed devices against P over time. For this
experimentation, the gathered activity of all the 83 available
mobile devices during the whole sampling period is analysed.

At this point, after analysing D and Q statistics, device D116
exhibits a notoriously anomalous behaviour (very far from the

Figure 4. Number of apps using four of the most significant
permissions of the anomalous device D428 in training stage.

Figure 3. D-st and Q-st values for devices used in training, where

dashed lines represent the normality threshold values.

35

control limits) regarding configuration profiles. We conclude
that the cause of such an anomaly is the
WRITE_SYNC_SETTINGS permission. The threat associated with
it is due to the possibility of data synchronization with external
sources.

Regarding communication profiles, the analysis of D-st and
Q-st for daily traffic samples shows the existence of days with
very clear anomalous behaviour. After diagnosing the anomaly
with oMEDA, we conclude that one of them is motivated by
very low traffic, which is not usually a real problem. However,
another anomaly is due to BitTorrent traffic generated by the
device D473, which can constitute a security risk depending on
the security policy of the access provider. Likewise, the
anomaly appeared around 130-th day, is due to traffic from
devices D260 and D1, which involve an abnormal amount of
NetBios related traffic.

From the above, the causes detected as anomalies could be
used to restrict the access to the devices to our infrastructure at
a given instant. However, the final users could be firstly notified
to solve the problem and, thus, strengthen global security.

V. CONCLUSIONS

In this paper, we introduce Amon, a novel multidimensional
monitoring tool for Android devices. Through Amon we are
able to gather information regarding communications,
applications and permissions, usage of device resources, and
configuration of the device.

AMon is used to feed a machine-learning detection tool. The
results obtained show that the information collected by it are
useful for detection purposes. Moreover, AMon source code at
https://github.com/nesg-ugr/AMon, which is of high interest
for the research community.

ACKNOWLEDGMENT

This work has been partially supported by Spanish
Government-MINECO and the ERDF (European Regional
Development Fund) through project TIN2017-83494-R.

REFERENCES

[1] GSMA: “The Mobile Economy 2019”. GSMA, 2019. Available at
https://www.gsmaintelligence.com/research/?file=b9a6e6202ee1d5f787
cfebb95d3639c5&download

[2] Cisco: “Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update, 2017–2022 White Paper”. Cisco, 2019. Available at
https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-
738429.html#_Toc953327

[3] Kaspersky: “IT threat evolution Q2 2018. Statistics”. Report, 2018.
Available at https://securelist.com/it-threat-evolution-q2-2018-
statistics/87170/

[4] IDC: “Smartphone Market Share”. IDC report 2019. Available at
https://www.idc.com/promo/smartphone-market-share

[5] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M.S. Gaur, M. Conti, M.
Rajarajan: “Android Security: A Survey of Issues, Malware Penetration,
and Defenses”. IEEE Communications Surveys & Tutorials, vol. 17, n. 2,
pp. 998-1022, 2015.

[6] Kaspersky: “Android Mobile Security Threats”, Report, accessed on July
2019. Available at https://www.kaspersky.com/resource-
center/threats/mobile

[7] P. Yan, Z. Yan: “A survey on dynamic mobile malware detection”.
Software Quality Journal, vol. 28, pp. 891-919, 2018.

[8] Y.S.I. Hamed, S.N.A. AbdulKader, M.S.M. Mostafa: “Mobile Malware
Detection: A Survey”. International Journal of Computer Science and
Information Security, vol. 17, n. 1, pp. 1-10, 2019.

[9] W. Enck, P. Gilbert, B.G. Chun, L.P. Cox, J. Jung, P. McDaniel, A.N.
Sheth: “TaintDroid: An Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones”. 9th USENIX Conference on
Operating Systems Design and Implementation, pp. 393-407, 2010.

[10] U. Zurutuza, S. Nadjm-Tehrani: “Crowdroid: Behaviour-Based Malware
Detection System for Android”. 1st ACM workshop on Security and
privacy in smartphones and mobile devices, pp. 15-26, 2011.

[11] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, K. Rieck: “DREBIN:
Effective and Explainable Detection of Android Malware in Your
Pocket”. Symposium on Network and Distributed System Security
(NDSS), pp. 1-15, 2014.

[12] L.D. Coronado-de-Alba, A. Rodríguez-Mota, P.J. Escamilla-Ambrosio:
“Feature Selection and Ensemble of Classifiers for Android Malware
Detection”. 8th IEEE Latin-American Conference on Communications
(LATINCOM), pp. 1-6, 2016.

[13] J. Li, L. Zhai: “Research of Android Malware Detection Based on
Network Traffic Monitoring”. 9th IEEE Conference on Industrial
Electronics and Applications, pp. 1739-1744, 2014.

[14] H.H. Kim, M.J. Choi: “Linux Kernel-based Feature Selection for Android
Malware Detection”. Asia-Pacific Network Operation and Management
Symposium, pp. 1-4, 2014.

[15] R. Andriatsimandefitra, V.V. Triem Tong: “Detection and Identification
of Android Malware Based on Information Flow Monitoring”. IEEE 2nd
International Conference on Cyber Security and Cloud Computing, pp.
200-203, 2015.

[16] S. Hou, A. Saas, L. Chen, Y. Ye: “Deep4MalDroid: A Deep Learning
Framework for Android Malware Detection Based on Linux Kernel
System Call Graphs”. IEEE/WIC/ACM International Conference on Web
Intelligence Workshops, pp. 104- 111, 2016

[17] A. Silva, J. Simmonds: “BehaviourDroid: Monitoring Android
Applications”. IEEE/ACM Int. Conference on Mobile Software
Engineering and Systems, pp. 19-20, 2016.

[18] M.W. Afridi, T. Ali, T. Alghamdi, T. Ali, M. Yasar: “Android
Application Behavioural Analysis through Intent Monitoring”. 6th
International Symposium on Digital Forensic and Security (ISDFS), pp.
1-8, 2018.

[19] P. Feng, J. Ma, C. Sun, X. Xu, Y. Ma: “A Novel Dynamic Android
Malware Detection System with Ensemble Learning”. IEEE Access, vol.
6, pp. 30996-31011, 2018.

[20] W. Li, Z. Wang, J. Cai, S. Cheng: “An Android Malware Detection
Approach Using Weight-Adjusted Deep Learning”. International
Conference on Computing, Networking and Communications (ICNC),
pp. 437-441, 2018.

[21] Z. Ni, M. Yang, Z. Ling, J. Wu, J. Luo: “Real-time Detection of Malicious
Behaviour in Android Apps”. International Conference on Advanced
Cloud and Big Data, pp. 221-227, 2016.

[22] J.D. Koli: “RanDroid: Mandroid Malware Detection Using Random
Machine Learning Classifiers”. IEEE Int. Conference on Technologies
for Smart-City Energy Security and Power, pp. 1-6, 2018.

[23] Y. Yao, L. Zhu, H. Wang: “Real-time Detection of Passive Backdoor
Behaviours on Android System”. IEEE Conference on Communications
and Network Security (CCNS) - 1st International Workshop on System
Security and Vulnerabiltiy (SSV), pp. 1-9, 2018.

[24] Android: “API reference”. Available at
https://developer.android.com/reference.

[25] M. Bokhorst: "NetGuard: A simple way to block access to the internet per
application". Available at https://github.com/M66B/NetGuard/.

[26] J. Camacho, A. Pérez-Villegas, P. García-Teodoro, G. Maciá-Fernández:
"PCA-based multivariate statistical network monitoring for anomaly
detection". Computers & Security, vol. 59, pp. 118-137, 2016.

[27] Eybisi: “Mobile Malware Analysis: Tricks used in Anubis”. Available at
https://eybisi.run/Mobile-Malware-Analysis-Tricks-used-in-Anubis.

36

