
Protected Process Light is not Protected: MemoryRanger Fills The Gap Again

Igor Korkin
 Independent Researcher

 Moscow, Russian Federation
 igor.korkin@gmail.com

Abstract— Windows OS issued a newly updated security
mechanism to prevent illegal access to the memory of critical
processes as well as for Digital Rights Management (DRM)
requirements. It is Protected Process Light (PPL). Intruders
can disable PPL to access memory content of protected
processes using a kernel driver. Also, they can illegally enable
PPL for the malware apps to provide self-protection and access
memory of protected processes, without disabling their PPL.
PatchGuard does not check the integrity of PPL. This kind of
attack is crucial for OS security and has to be prevented. This
paper presents some undocumented internals of PPL during
the creation of the protected process as well as accessing the
protected process memory to analyze how the PPL can be
tampered with. In this contribution, the hypervisor-based
solution called MemoryRanger is applied to prevent such type
of kernel attacks on PPL. MemoryRanger can prevent both
types of attacks on PPL: disabling and enabling PPL in tun
time. MemoryRanger has been successfully tested on the recent
Windows 10, version 20H2 Build 19042.631 x64.

Keywords-content protection; OS Security; attacks on data;
Protected Process Light; security enhancement for Windows OS.

I. INTRODUCTION
Protection of process memory is vital for various areas,

including the Digital Rights Management (DRM) market,
Game and Anti-Virus industries as well as credentials
protection.

To fulfill these requirements Windows expanded its
security model [1] and introduced the protected process
model (PP) to provide increased protection for high-value
content. The model provides several new security features
including restriction of read and write access to protected
process memory from other processes running even with
administrative privileges. In order to be loaded as PP the
image file on disk has to be signed using Microsoft
certificate [2, 3, 4].

Protected Process Light (PPL) is an extension to this
model. PPL gives an additional dimension to the protection
using `Protection Type` and `Signer` values. Various
combinations of these two parameters provide different
protection levels among PPL-protected processes [2, 5, 6, 7].
Protected processes have the following constraints: a typical
process cannot access the virtual memory of a protected
process and inject a thread into a protected process [8].

PPL is initially designed to protect Windows built-in
apps and currently it allows anti-malware user-mode services
to be launched as a protected service. Anti-malware vendors

with the help of Early Launch Anti-Malware (ELAM) driver
can launch their anti-malware services as protected ones.
Now, all critical Windows processes are protected using
PPL, including Local Security Authority Subsystem Service
(LSASS), Windows Defender Process.

Authors admit that with the help of kernel-mode
malware, the PPL protection can be disabled by clearing the
flag which indicates the protected process.

The PPL feature is implemented using a new
PS_PROTECTION byte added in the EPROCESS structure.
This byte is set for PPL processes and checked in Windows
API routines. Malware driver can disable the PPL protection
by clearing this byte, which stops restricted access to this
process. Such DKOM attacks are critical for platform
security.

Microsoft experts consider preventing such type of
attacks by prohibiting the digital signing of malicious code
and recognize such attacks using Kernel Patch Protection
(KPP/PatchGuard) and Protected Environment
Authentication and Authorization Export Driver (PEAuth).

However, research papers and experimental results prove
that these measures are not enough and PPL can be easily
disabled even on the newest Windows 10.

Benjamin Delpy creates Mimikatz, a console application
that loads a kernel-mode driver, and can be used to
demonstrate the weakness of the Windows authentication
subsystem [9]. Mimikatz is not malicious software, but it can
disable PPL by patching the field Protection
PS_PROTECTION. This patching occurs transparently for
users and for the OS, without causing any security reaction,
such as a BSOD with a bugcheck
critical_structure_corruption (0x109).

Windows Defender process (MsMpEng.exe) protected by
PPL can be terminated after resetting the process protection
field using Mimikatz. The corresponding attacks have been
shown by [10, 11]. Boonen implemented a similar attack
using his own tool called AquaWrench to disable PPL for
Windows Defender [12].

The security issues with disabling PPL are widely
discussed in the video game industry because PPL plays an
important role in game cheating engines [13].

Local Security Authority Subsystem Service (LSASS)
process is protected by PPL to prevent unauthorized access
to users’ password hashes stored in its memory. Mimikatz
can disable PPL for LSASS, and after that it can extract
password hashes from its memory. The users’ passwords

298

2021 IEEE Symposium on Security and Privacy Workshops

© 2021, Igor Korkin. Under license to IEEE.
DOI 10.1109/SPW53761.2021.00050

from the stolen hashes can be gained by running
hashcat [14, 15].

Microsoft security experts issued Microsoft Defender
Credential Guard (WDCG), which is designed to prevent
extracting credentials from LSASS. This protection
mechanism sometimes cannot be enabled and “in these
cases, attackers can use tools like Mimikatz to scrape
cleartext passwords and NTLM hashes from LSASS” [16].

Finally, Windows security experts add Mimikatz app and
driver to the malware list. This measure helps to block
Mimikatz itself but does not prevent this type of attacks on
PPL globally. Also, Mimikatz can be obfuscated to prevent
its detection [17].

A. Examples of Disabling PPL
Attackers can load their own kernel drivers to patch the

PPL flag, for example, Mimikatz by Delpy [9], Blackbone
by DarthTon [13]. Disabling PPL can also be achieved by
exploiting a vulnerable signed driver:

 MSI driver by RedCursorSecurityConsulting [18]
 CPU-Z bug FireF0X [19];
 MalwareFox by Harakirinox [20];
 Gigabyte driver by Bui [21, 22].

Using a similar manipulation, other non-protected
processes, even malicious ones, can be elevated up to a PPL-
protected level, even without a special Windows signature.

B. Examples of Escalating PPL level
Intruders can escalate PPL level for the malware app and

finally access memory of the protected process, without
disabling their PPL. These attacks can be implemented in the
following way:

 loading a kernel driver [23];
 exploiting user-mode vulnerabilities [24, 25].

Windows does provide any API to modify PPL level.
Experimental results show that these memory manipulations
are not registered by Windows security monitoring features
[26]. Therefore, it is crucial for the OS security to prevent
this kind of attacks. Any attempts to modify the PPL level
have to detected as a misuse of the system.

C. Problem Statement
Attackers can modify some areas of Windows kernel

memory without triggering any security alerts such as BSOD
from PatchGuard. The current paper considers attacks on
PPL, which are part of the attacks on dynamically allocated
data.

Intruders can disable PPL for the critical processes by
clearing the corresponding EPROCESS structures, which
helps them to access the sensitive process memory. Apart
from that, they can escalate PPL for the malware process by
modifying its EPROCESS structure; thus, restricting access
to the malware process and also granting access to the
memory of PPL process memory.

This paper shows a trustworthy solution, which
guarantees the integrity of the PPL protection against attacks
based on modifying the PS_PROTECTION byte. Windows
10, version 20H2 x64 is under the test.

This research presents MemoryRanger, a virtualization-
based solution, which has been updated to prevent DKOM
attacks on PPL. The key feature of MemoryRanger is its
ability to run newly loaded drivers in isolated kernel memory
areas, called enclaves, by leveraging VT-x and EPT.

D. Limitations
Lagrasta [27] shows how to extract password hashes by

hooking MsvpPasswordValidate in NtlmShared.dll, which is
out of the scope of this paper. Ciholas, Such, Marnerides,
Green, Zhang, & Roedig [28] reveal how to gain handles for
the protected process including anti-malware and anti-cheat
protection solutions. The attack is out of the scope of this
paper. Forshaw [29] injects arbitrary code into a PPL using a
feature of the COM technology. The attack is out of the
scope of this paper. Another technique it to obtain credentials
by dumping the content of the LSASS process using the
legitimate comsvcs.dll library [30]. The attack is out of the
scope of this paper.

The remainder of the paper proceeds as follows.
Section 2 provides the internals of PPL: its configuration;

the analysis of triggering PPL during the opening process
and why the process protection can be disabled and enabled
illegally.

Section 3 explains Mimikatz as an example of bypassing
PPL and extract password hashes. Analysis of the existing
approaches and tools designed to reveal and prevent
Mimikatz is in Section 3.

Section 4 presents MemoryRanger, a hypervisor-based
solution designed to protect kernel memory, and how to use
MemoryRanger to protect PPL for the LSASS process from
being disabled and finally prevents users’ passwords hashes
from being leaked by Mimikatz.

Section 5 reflects on the main findings of the research in
terms of its contributions to the Windows OS Security.

II. PPL INTERNALS
This section provides the details regarding PPL

configuring, some cases of using PPL, PPL internals,
including the updates of EPROCESS and OpenProcess
routine algorithm. Finally, it is shown why PPL is not
protected.

A. Introduction to the Protected Process Light
Windows security experts introduced a Protected Process

(PP) to host Digital Rights Management (DRM) content and
prevent read and write access to the content of protected
processes even from admin-level non-protected processes.

Protected Process Light (PPL) is a re-design of the (PP)
which creates an access hierarchy for protected processes
using three elements: protected signer, protected type, and
auditing mode [2, 31]. Achilles [32] gives all the details
about their combinations.

PPL is used to protect memory for critical OS apps as
well as for various security vendors: Bitdefender [33],
Cisco [34], ESET [35], Kaspesky [36], SolarWinds [37],
McAfee [38].

Windows introduced the Early Launch Anti-Malware
(ELAM) mechanism, which makes it possible to register a

299

kernel-mode driver that is guaranteed to execute very early
in the boot process and launch an anti-malware service as a
protected service. Finally, PPL will defend the anti-malware
services against malicious attacks.

PPL limits non-protected processes activity against the
protected ones:

 non-protected processes are not able to inject threads
and they are not allowed to write into the virtual
memory of the protected process;

 non-protected processes are neither able to debug an
active protected process nor to duplicate a handle
from a protected process. But debugging any anti-
malware protected processes is allowed using a
kernel debugger.

In addition, all DLLs which get loaded into the protected
process must be also signed with the same certificates.

A newly introduced Secure Event Tracing for Windows
(Secure ETW) can be consumed only by PPL processes,
while other non-protected processes cannot listen to these
events [39].

It is crucial to analyze how well PPL is protected.

B. Activation and Checking PPL
PPL is activated automatically but for some cases, for

example, to activate Local Security Authority (LSA)
protection for the LSASS process the following steps have to
be taken [40].

There are several Windows API routines to check the
process protection level: ZwQueryInformationProcess with
ProcessProtectionInformation flag, PsGetProcessProtection,
PsIsProtectedProcess, and PsIsProtectedProcessLight [41,
42].

These functions gain information by reading the content
of the EPROCESS structure, the details are in the next
section.

C. PPL Internals
This section includes some internals of PPL.

1) EPROCESS Updates. Field Protection
PS_PROTECTION has been added to the EPROCESS
structure to flag PPL processes.

PS_PROTECTION Protection is a one-byte structure,
which includes three members Type, Audit, and Signer. The
Type field contains the type of protected process. The Audit
field is reserved, and the Signer field contains the protected
process signer [41].

With disabled PPL the Protection byte is zero, see
Fig. 1 a). After activating PPL the value of this byte is not
zero. For example, the LSASS process is running with the
following protection values, see Fig. 1 b). The Type equals
0x1 (PsProtectedTypeProtectedLight), the Signer field has
0x4 value, which corresponds to PsProtectedSignerLsa [41,
43, 44].

Process Manager API routines have been updated to
consider the Protection field in the EPROCESS structure.
The details of the creation and opening process will be
shown further.

As a result, the virtual memory of the PPL process is
protected from being accessed by all non-protected
applications, even if they have a debug privilege [45].

2) Creating the PPL process. The protected process
creation has some features. The first is that the binary must
have a special signature, which is provided by Microsoft but
currently available only for Microsoft binaries.

Processes can be created as protected during startup
(PspInitPhase) as well as in run time by calling
NtCreateProcess, see Fig. 2. All these functions use the same
Process Manager routine SepSetTrustLevelForProcessToken
to update the field Protection PS_PROTECTION [46].

Windows provides a ChangeServiceConfig2 routine with
SERVICE_CONFIG_LAUNCH_PROTECTED flag to run
services as PPL using ELAM, the service protection type is
stored in the SERVICE_LAUNCH_PROTECTED_INFO
structure [31, 47, 48].

The next section describes how to open protected
processes.

3) Accessing Process Memory. To access a process
memory from any other processes the following sequence of
functions has to be called:

1) OpenProcess
2) ReadProcessMemory\WriteProcessMemory
3) CloseHandle
OpenProcess routine uses the process ID as one of the

input parameters and returns an open handle to the specified
process. This handle is used in ReadProcessMemory
(WriteProcessMemory) routines to read (write) the memory
content of the opened process. CloseHandle routine is
designed to finish work with the process and resource
deallocation.

4) OpenProcess Internals for disabled PPL. According
to the MSDN, the OpenProcess function checks access
rights using the security descriptor for the caller process. At
the same time, “if the caller has enabled the
SeDebugPrivilege privilege, the requested access is granted
regardless of the contents of the Security Descriptor”. In the
recent Windows 10, this check is implemented in
nt!PsOpenProcess routine, see Fig. 3.

To enable SeDebugPrivilege the caller can use the
RtlAdjustPrivilege(SE_DEBUG_PRIVILEGE) [45, 49].

Enabling this privilege makes it possible to get a process
handle, but for the PPL processes, an additional security
check is implemented. This new check will be covered in the
next section.

5) OpenProcess Internals for enabled PPL.
OpenProcess routine implements an additional check for
accessing protected processes, but for non-protected
processes, this check is skipped.

During opening the process OpenProcess routine checks
whether the protected process or non-protected process is
going to be opened. For this purpose, the OpenProcess
routine reads the value of the field Protection
PS_PROTECTION [46]. This value is used by
nt!RtlTestProtectedAccess and

300

nt!PspCheckForInvalidAccessByProtection routines to check
caller privileges, see Fig. 4.

If the caller does not have enough privileges, the
OpenProcess routine returns STATUS_ACCESS_DENIED.

Research papers and experimental results [9, 10, 11, 12,
13, 18, 19, 20, 21, 22, 50] prove that PPL can be disabled
even on the newest Windows 10 by resetting the
corresponding Protection field to zero. Now OpenProcess
routine successfully returns an open handle to the protected
process, recognizing it as non-protected by reading the zero
value.

D. Protected Process Light is not Protected
PPL security feature is based only on checking the

Protection field from EPROCESS during OpenProcess call.
At the same time, this field can be modified in order to

disable PPL for OS built-in critical processes and vice versa
to elevate a non-protected process to a protected one.

Attackers can easily kill AV solutions and steal users’
credentials from LSASS memory by disabling PPL
protection. Also, they can protect their malicious apps using
PPL.

The leak of the protection of PPL has been proved by
research papers and experimental results. The authors state
that by clearing the Protection flag in the EPROCESS
structure the corresponding application loses its “protection
process” status transparently without triggering any security
alerts such as BSOD from PatchGuard [9, 10, 11, 12, 13, 18,
19, 20, 21, 22, 50].

This patching of PS_PROTECTION value from the
EPROCESS is critical for the OS protection and it must be
controlled and blocked.

The next section describes Mimikatz as an example,
which can disable PPL and the existing ways to fight against
Mimikatz.

a) b)

Figure 1. The content of the EPROCESS.Protection _PS_PROTECTION structure for the LSSAS process:
a) with disabled PPL and b) with enabled PPL: Level equals 1 (PsProtectedTypeProtectedLight) and Signer equals 4 (PsProtectedSignerLsa).

NT

Process
Manager

Security
Reference
Monitor

PspInitPhase

NtCreateProcess

PspCreateProcess

PspInitializeProcessSecurity

NtCreateProcessEx

PspAllocateProcess

SeSubProcessToken

SepSetTrustLevelForProcessToken

NtCreateUserProcess

Figure 2. The internals of CreateProcess.

NTSTATUS PsOpenProcess()
{

NTSTATUS Status;
SeCaptureSubjectContextEx()
SepCreateAccessStateFromSubjectContext()
if (SePrivilegeCheck(SeDebugPrivilege,PreviousMode))

{...}
PsLookupProcessByProcessId()
status = ObOpenObjectByPointer()
return status;

}

Stack fragment:

nt!PsOpenProcess
nt!NtOpenProcess
nt!KiSystemServiceCopyEnd
ntdll!NtOpenProcess
KERNELBASE!OpenProcess

a) b)
Figure 3. The internals of OpenProcess implementing Privilege checking:

a) the pseudocode of nt!PsOpenProcess and b) the corresponding call stack fragment.

301

NTSTATUS PspProcessOpen(EPROCESS Process)
{

BYTE level = Process->Protection.Level;
PspIsParentProcess();
PsTestProtectedProcessIncompatibility();
if (!level)
{

...
return STATUS_ACCESS_DENIED;

}
return STATUS_SUCCESS;

}

Stack fragment:
nt!RtlTestProtectedAccess
nt!PspCheckForInvalidAccessByProtection
nt!PsTestProtectedProcessIncompatibility
nt!PspProcessOpen
nt!ObpIncrementHandleCountEx
nt!ObpCreateHandle
nt!ObOpenObjectByPointer
nt!PsOpenProcess
nt!NtOpenProcess
nt!KiSystemServiceCopyEnd
ntdll!NtOpenProcess
KERNELBASE!OpenProcess

a) b)
Figure 4. The Internals of OpenProcess implementing PPL check: a) the pseudocode of nt! PspProcessOpen and b) the corresponding call stack fragment

III. MIMIKATZ CAN DISABLE PPL
This section describes how to apply Mimikatz to extract

users’ passwords with disabled (enabled) PPL for LSASS
and the analysis of the existing approaches fighting
Mimikatz.

A. Mimikatz Can Access LSASS Process Memory with
Disabled and Enabled PPL
Mimikatz can extract various types of sensitive data from

memory [9]. An overview of Mimikatz features and its
internals are provided by Mulder [51], Hand [52],
Chester [53, 54].

To dump users hashes with disabled PPL attackers can
run the following two Mimikatz commands:

1) privilege::debug
2) lsadump::lsa /inject
The first command adds SeDebugPrivilege for the

Mimikatz process, while the second command extracts the
password hashes. The details of the second step are out of the
scope of this research and discussed by Patil and
Meshram [55].

After enabling PPL for LSASS process these two
commands fail to extract users’ credentials.

Mimikatz has been updated with a new feature, which
can disable PPL by patching Protection field of EPROCESS
structure. Now attackers have to run the following four
commands, see Fig. 5:

1) !+
2) !processprotect /process:lsass.exe /remove
3) privilege::debug
4) lsadump::lsa /inject
The first command loads a Mimikatz driver, while the

second one disables PPL for LSASS by zeroing the
Protection field, see Fig. 6. The last two commands are the
same as the previous case. Finally, password hashes are
dumped.

A similar attackers’ technique is based on accessing
memory of the protected process without disabling its PPL.
Intruders can maximize the PPL level for the attackers’
application, e.g., Mimikatz app. Experimental results prove
that this technique works well without triggering any OS
security mechanisms. To access LSASS process running
with 0x41 PPL level, see Fig. 1., the Protection level of
Mimikatz application has to be 0x41 or higher. Finally,
Mimikatz app can access LSASS memory, without disabling
PPL for LSASS.

The next part is focused on the analysis of how to reveal
Mimikatz and prevent disabling PPL.

2) Call OpenProcess for
LSASS to steal credentials

Mimikatz
Driver

Sensitive
data

LSASS app

Mimikatz
Console App

EPROCESS for LSASS
1) Reset Protection
field to disable PPL PS_PROTECTION

Protection

Figure 5. Mimikatz disables PPL protection for the LSASS process in order to acquire the password hashes stored in LSASS process memory

302

a) b)
Figure 6. The content of the EPROCESS.Protection _PS_PROTECTION structure for the LSSAS.exe process with enabled PPL:

a) before and b) after patching by Mimikatz driver. As a result, PPL for LSASS has been disabled.

B. Analysis of Existing Approaches Fighting Mimikatz
This section provides the analysis of the ways, which can

be applied to detect or prevent Mimikatz [56, 57].
1) Mimikatz as Malware?

A straightforward approach to prevent Mimikatz is to add
its application and driver to the blacklist and detect them as
malware. Mimikatz has been detected as malicious software
by more than 70% of AV products, while many experts
believe that it is not a virus [58]. The debate is continued.

2) Via Windows PowerShell
Windows standard tools can be applied to reveal the

Mimikatz attack consequences [59]. After disabling PPL, the
corresponding PPL attributes for LSASS are not returned.
PowerShell can be used to check this feature, but the author
admits that this is a poor man’s solution.

3) Revoke SeDebugPrivilege
Another approach is based on revoking administrator

debug privileges (SeDebugPrivilege) by configuring a group
policy [57]. A process with this privilege can open almost
every process [58], while this privilege it is very rarely
used [59]. Malware with local admin rights can restore the
config [60].

4) Disable WDigest protocol
One more approach prevents storing users’ credentials in

memory [53]. Activation of this feature requires adding the
registry key [60, 61]. Finally, attackers fail to retrieve the
credentials. Malware with local administrator privileges can
restore the configuration [62, 63].

5) Enable Restricted Admin Mode
Microsoft update provides a Restricted Admin mode

[64, 65]. This mode is disabled by default. To enable it, the
registry key has to be added [57]. At the same time,
Restricted Admin mode can be disabled by restore the
configuration [66].

6) Windows Defender Credential Guard (WDCG)
Microsoft issued a Windows Defender Credential Guard

(WDCG), which is based on Virtual Secure Mode (VSM).
VSM creates a set of Virtual Trust Levels (VTLs), so that
processes running in one VTL cannot access the memory of
another VTL. VSM supports only two VTLs: VTL0 with a
normal kernel and the higher privileged VTL1 with Secure
Kernel and trustlets. With enabled VSM, LSASS runs as a
trustlet and its memory is protected from any code running in
VTL0. However, WDCG is integrated only in Windows 10
Enterprise and Windows Server 2016, while other Windows
editions are becoming susceptible to attacks on
memory [67, 68].

7) Conclusion
We can see that analyzed protection methods cannot

reliably protect users’ credentials from being accessed by
Mimikatz-type attacks.

To access memory of PPL protection process, such as
stealing users’ credentials from the LSASS, intruders can
implement one of the following modifications:

 Malware driver can disable PPL protection by
clearing the PS_PROTECTION byte in the
EPROCESS structure, which stops restricted access
to this process.

 Also, intruders can escalate PPL level for the
malware process so that they can access the memory
of critical processes without disabling PPL for them.

Mimikatz implemented only the first technique, while the
experimental results prove that Mimikatz process with
maximized PPL level can access LSASS memory, without
disabling PPL for LSASS. Both of these Mimikatz-type
attacks are critical for platform security.

To protect process memory, we have to guarantee the
integrity of the Protection field of the EPROCESS structures
for all processes. Any attempts to modify these fields can be
used as indicator of compromise (IoC), because Windows
does provide any documented API to modify PPL level in
run time. At the same time revealing the abnormal values of
PPL levels can be used as an attack footprint during memory
forensics.

The next section demonstrates how MemoryRanger can
be updated to isolate the mentioned field of EPROCESS in
order to prevent attacks on PPL.

IV. MEMORYRANGER PROVIDES
TRUSTWORTHY PROTECTED PROCESS

This section describes the details of how updated
MemoryRanger can prevent both kinds of attack of PPL:
illegal disabling PPL for the OS critical processes and illegal
escalation PPL for the normal processes. The novelty and
scope of MemoryRanger will be given.

A. MemoryRanger Intro
MemoryRanger (MR) is a software-based platform

security solution designed to protect Windows OS kernel
data and code from kernel driver attacks. MR has been
originally designed by Igor Korkin and presented at several
conferences [69, 70, 71].

MR includes two main parts: a kernel-mode driver and a
bare-metal hypervisor (type 1 hypervisor).

MR driver registers several callback routines to be
notified about various OS events: loading (unloading)

303

drivers, creation (termination) processes. The corresponding
MR driver dispatching routines locate the sensitive areas in
kernel memory, which have to be protected.

Being a key part of MR, the bare-metal hypervisor
leverages Intel hardware-assisted virtualization technology
(VT-x) and Extended Page Tables (EPT) feature to protect
Windows OS kernel memory. Using EPT we can get an
additional or second level of address translation (SLAT).
When EPT is enabled, guest physical addresses are translated
to host physical addresses by traversing a set of EPT paging
structures, which is called a kernel enclave. These structures
determine the mapping between the guest memory and the
host memory. MR can trap read, write, execute access to the
memory page by resetting the corresponding access bits on
the page. Using EPT violations MR is notified of memory
access attempts and it can protect sensitive data by
redirecting access to the fake null memory page.

MR can allocate several sets of EPT paging structures
with various memory access configurations and, by
switching between them, MR organizes drivers’ execution in
isolated enclaves. MR allocates the default EPT paging
structures, called the default kernel enclave, for OS kernel
and all drivers loaded before. MR allocates a separate set of
EPT paging structures, called an allocated kernel enclave for
each newly loaded driver. MR updates memory access bits in
the default enclave and in a newly allocated enclave so that
the newly loaded driver executes only in its enclave. MR
provides switching between enclaves so that all drivers and
OS kernel can be executed.

MR can hook kernel API routines, such as ZwCreateFile,
ExAllocatePoolWithTag, and locate the corresponding
sensitive data in memory. Windows OS does not provide any
built-in facilities to hook such routines and direct hooking
will cause a BSOD from PatchGuard.

A recent feature of MR is a special data only enclave,
called data only enclave, which includes sensitive data and a
limited number of OS core drivers to manage them. This
enclave makes it possible to protect data from drivers loaded
before MR and after it [71]. A key restriction of this enclave
is that it is applicable to protect data, which are accessed
quite rarely. Storing the frequently accessed data inside such
an enclave will cause significant time degradation due to
switching between enclaves, which is time-consuming.

MR has been chosen as a basic platform to safeguard
PPL from the mentioned DKOM attacks, due to MR
facilities to monitor OS events as well as its memory enclave
protection.

B. PPL Safeguarding: MemoryRanger Updates
Due to the fact that there is no Windows API to modify

the process Protection level in run time, MR has to prevent
all write access to the Protection field of EPROCESS
structures, without restricting read access. To achieve this,
MR driver and MR hypervisor have been updated.

An updated MR driver is able to do the following:
 locate EPROCESS structures for all running

processes both protected and non-protected and
create the list of addresses called Active Processes
List (APL).

 monitor creation (termination) processes, locate the
corresponding addresses of EPROCESS structures,
and update the APL.

 for each item of APL locate the address of
PS_PROTECTION structure, which stores process
protection level and signer, and send it to the MR
hypervisor.

MR hypervisor’s duty is to manage memory enclaves and
dispatch the commands from MR driver to restrict and allow
access to the sensitive memory areas. MR also implements
memory access policy to decide whether or not the restricted
access is allowed.

An updated MR hypervisor can do the following:
 allow or restrict access to the corresponding memory

area for each enclave after processing an update
from MR driver;

 trap memory access violations, decide whether or
not this is write access to the PS_PROTECTION
structure.

Due to the paging nature of memory, MR hypervisor can
restrict access to 4 kilobytes of memory. MR traps any write
access to the corresponding memory page and checks
whether or not it is write access to the PS_PROTECTION
structure.

An updated MR restricts access to the Protection field of
EPROCESS structure by means of EPT. MR is notified
when someone tries to access the Protection fields using EPT
violations. There are two possible ways of implementing
protection mechanisms: using a separate enclave for
sensitive data and without this enclave.

1) MR with a separate enclave for sensitive data.
In this case, MR after its loading allocates two enclaves:

a default kernel enclave and a new data-only enclave, see
Fig. 8. MR changes the access restriction bits so that the
Protection fields are accessible only in data only enclave.

Experimental results show that this approach causes huge
performance degradation and blocks the OS, because of the
number of switching between two enclaves: the default
enclave and the special enclave for sensitive data.
Performance assessment was not done due to the fact that OS
had been blocked. To conclude, the data only enclave feature
of MR works well only to protect rarely accessed data.

2) MR without a special enclave for sensitive data.
For the second case, MR isolates the memory content

with the Protection field only for newly loaded drivers, see
Fig. 9. Empirical test results show that in this case MR
produces acceptable performance degradation. The details of
performance evaluation will be given below.

3) Performance Evaluation of MemoryRanger
To evaluate performance degradation of MemoryRanger,

the qualitative assessment of CPU performance was made
with the help of Super PI tool. This tool measures the time it
takes to calculate Pi to a specific number of digits.

The benchmarks assessment was carried out with
disabled and with enabled MemoryRanger. The test bed has
the following configurations:

 The computing test bed includes the host OS and
VMware Workstation, which runs VM OS.

304

 Dell 7579 laptop with Intel i7-7500U CPU with 4
logical cores and 12 GB RAM is a host hardware
platform.

 VM OS has been launched inside VMware using
CPU with 2 logical cores and 4 GB RAM.

 Windows 10, version 20H2 Build 19042.631 x64 is
used for both Host and VM OS.

The benchmark assessment was made for MR running
inside VM OS. The results showed that performance
degradation was about 50% (Fig. 7), which is expected for
the proof of concept. We surmise that the reason for the
higher overhead on this test is caused by the following
reasons:

 MR was designed as a proof-of-concept solution to
demonstrate the ability of preventing kernel attacks
and its performance was not a priority. The internal
dispatching algorithms of MR can be improved to
speed up its overall performance.

 Limited resources were granted to the VM OS,
which made performance degradation worse. Using
more powerful test bed could improve the
performance results. VMware Workstation emulates
VMX feature, which additionally drains CPU
resources.

The time overhead is affordable and can be improved.

C. Testing MemoryRanger
To test an updated MemoryRanger the following tools

were used:
 Mimikatz version 2.2.0 20200918, which illegally

disables PPL for LSASS process and shows that
users’ credentials can be leaked;

 An author’s memory attacker driver, which illegally
escalates PPL level for non-protected processes.

The corresponding results have been recorded and will be
uploaded to author’s YouTube channel [72].

D. MemoryRanger vs. WDCG
As for comparing WDCG and MemoryRanger, both of

them are virtualization-based solutions and use a similar kind
of EPT based isolated memory enclaves.

The major difference between extended MemoryRanger
and WDCG is that MemoryRanger can prevent expanded
scope of attacks on PPL: illegal disabling and illegal
enabling PPL, while WDCG is focused only on LSASS
memory protection, see Table I.

WDCG is based on VSM enabled by Hyper-V, which
provides a particular case of enclave-based protection with
only two memory partitions for normal and secure operations
[73], while MemoryRanger implements a general case with
an infinite number of kernel enclaves. MemoryRanger has
been tested before using three [70], four [69], and five
separate memory enclaves [71].

The key differences are the following:
 WDCG is designed for the protection of users’

credentials and memory of LSASS (LSAiso),
without restricting the access to the memory data of
other Protected Processes such as anti-malware
services, while MemoryRanger is a general-purpose
solution, which can protect all running Protected
Processes, including LSASS.

 WDCG does not prevent intruders from enabling
PPL on their malicious processes to prevent them
from being detected, while MemoryRanger can
prevent these illegal memory manipulations.

E. MemoryRanger: Novelty and Scope
MemoryRanger has the following competitive

advantages:
 MR is the first solution, which protects PPL from

being disabled and even illegally enabled.
 MR can notify users about modifying PPL values,

which helps to reveal APT attacks on the early stage.
 MR has been tested on various Windows builds from

Windows 7 and it works well on the newest
Windows 10, version 20H2 Build 19042.631 x64.

TABLE I.
COMPARISON TABLE OF WDCG AND MEMORYRANGER

Features
Hypervisor-based Security

Solutions
WDCG MemoryRanger

Does it prevent access to the LSASS
process memory? YES YES

Does it prevent access to the memory of
other Protected Processes after
disabling their PPL?

NO YES

Does it prevent non-protected process
from enabling PPL for self-protection? NO YES

Does it launch on startup? YES NO
Does it support various Windows
editions?

Enterprise
edition only All editions

0.3 0.7

6

13

1.3 2.0

10

20

0

5

10

15

20

25

16K 64K 512K 1024K

Time to perform
calculations

(sec)

 Without MemoryRanger With MemoryRanger

Figure 7. MemoryRanger benchmark assessment: with enabled MemoryRanger the CPU performance degradation is about 50%

305

V. CONCLUSION
To sum up I would like to highlight the following:
 Windows issued the Protected Process Light (PPL)

to prevent illegal access to the memory of critical
processes as well as for DRM requirements.

 Intruders can access the memory of protected
processes by disabling PPL. Using kernel drivers,
they can clear Protection field of EPROCESS
structure, without triggering any security
mechanisms, such PatchGuard.

 Also, intruders can protect their malware apps by
escalating their level of PPL. Windows does not
provide any API to modify PPL in run time, nor does
it trap such illegal memory manipulations.

 MR has been extended to protect PPL from being
illegally used. MR prevents disabling PPL for the
protected processes and blocks enabling PPL for
non-protected processes.

 MR has been successfully tested on the recent
Windows 10, version 20H2 Build 19042.631 x64
with affordable performance degradation. MR works
well only to protect rarely accessed data.

 MR has extended features comparing with WDCG:
MR can protect illegally enabling and disabling PPL
for all processes, including LSASS; while WDCG
can protect only LSASS memory, leaving out attacks
on PPL.

MemoryRanger

 MemoryRanger
switches between

enclaves and protects
memory data

The Default Enclave
The Enclave for Mimikatz Driver

Situation without MemoryRanger

NT OS
kernel

Mimikatz
Driver

Mimikatz
Console App

Drivers
Loaded
Earlier

EPROCESS for
LSASS

LSASS

Disable PPL

PS_PROTECTION
Protection

Enclave for sensitive OS kernel data:
Protection field for LSASS process
Protection field for other processes

Non-sensitive
data

NT OS
kernel

Mimikatz
Driver

Mimikatz
Console App

Drivers
Loaded
Earlier

EPROCESS for
LSASS

LSASS

PS_PROTECTION
Protection

Non-sensitive
data

NT OS
kernel

Mimikatz
Driver

Mimikatz
Console App

Drivers
Loaded
Earlier

EPROCESS for
LSASS

LSASS

PS_PROTECTION
Protection

Non-sensitive
data

NT OS
kernel

Mimikatz
Driver

Mimikatz
Console App

Drivers
Loaded
Earlier

EPROCESS for
LSASS

LSASS

PS_PROTECTION
Protection

Non-sensitive
data

Figure 8. Case 1: MemoryRanger protects the EPROCESS structure of the LSASS process from being patched by Mimikatz driver using three enclaves:
the default one for drivers loaded earlier, the enclave for sensitive OS kernel data, and a separate enclave for newly loaded Mimikatz driver

The Default Enclave The Enclave for Mimikatz Driver

Situation without MemoryRanger

NT OS
kernel

Mimikatz
Driver

Mimikatz
Console App

Drivers
Loaded
Earlier

EPROCESS for
LSASS

LSASS

Disable PPL

PS_PROTECTION
Protection

Non-sensitive
data

NT OS
kernel

Mimikatz
Driver

Mimikatz
Console App

Drivers
Loaded
Earlier

EPROCESS for
LSASS

LSASS

PS_PROTECTION
Protection

Non-sensitive
data

NT OS
kernel

Mimikatz
Driver

Mimikatz
Console App

Drivers
Loaded
Earlier

EPROCESS for
LSASS

LSASS

PS_PROTECTION
Protection

Non-sensitive
data

MemoryRanger

 MemoryRanger switches
between enclaves and
protects memory data

Figure 9. Case 2: MemoryRanger protects the EPROCESS structure of the LSASS process from being patched by Mimikatz driver using two enclaves:
the default one for drivers loaded earlier and a separate enclave for newly loaded Mimikatz driver

306

VI. REFERENCES
[1] Pearson Education, Microsoft Windows Security, [Online].

Available:
https://www.microsoftpressstore.com/articles/article.aspx?p=2228450
&seqNum=2

[2] P. Yosifovich, M. Russinovich, D. Solomon, and A. Ionescu,
“Windows Internals, Part 1: System architecture, processes, threads,
memory management, and more (Developer Reference)”, 7th Edition,
2017.

[3] B. Blunden, “The Rootkit Arsenal: Escape and Evasion: Escape and
Evasion in the Dark Corners of the System”, 1st Edition, 2009.

[4] A. Tanenbaum, and H. Bos, “Modern Operating Systems 4th
Edition”, 4th edition, 2014.

[5] ERNW, “Work Package 2: Analysis of Windows 10”, SiSyPHuS
Win10: Study on the system structure, logging, hardening and
security function of Windows 10, 2020. [Online]. Available:
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-
Sicherheit/SiSyPHus/Workpackage2_Analyse_Gesamtsystem.pdf?__
blob=publicationFile&v=2

[6] Trusted Computing in Windows. Protected Processes. . 2021
[Online]. Available:
https://trustedwindows.wordpress.com/hauptseite/trusted-computing-
in-windows/protected-processes/

[7] C. Labro. Do You Really Know About LSA Protection
(RunAsPPL)?. 2021 [Online]. Available: https://itm4n.github.io/lsass-
runasppl/

[8] Microsoft. Protected Processes. Windows Vista. [Online]. Available:
http://download.microsoft.com/download/a/f/7/af7777e5-7dcd-4800-
8a0a-b18336565f5b/process_vista.doc

[9] B. Delpy, “A little tool to play with Windows security”. Source Code
of Mimikatz. GitHub. 2020. [Online]. Available:
https://github.com/gentilkiwi

[10] Astr0baby, “Unloading AV from Windows 10”. WordPress. 2017.
[Online]. Available:
https://astr0baby.wordpress.com/2017/09/11/unloading-av-from-
windows-10/

[11] B. Blaauwendraad, T. Ouddeken, C. Van Bockhaven, “Using
Mimikatz’ driver, Mimidrv, to disable Windows Defender in
Windows”. 2020. [Online]. Available: https://rp.delaat.net/2019-
2020/p61/report.pdf

[12] R. Boonen,. “Throwing an AquaWrench into the Kernel”. IBM
RedCON. 2020. [Online]. Available:
https://github.com/FuzzySecurity/IBM-RedCON-2020

[13] DarthTon. “How-To Make Your External Hack 'Undetectable'
(BattlEye Bypass)”. UnKnoWnCheaTs - Multiplayer Game Hacks
and Cheats. 2014. [Online]. Available:
https://www.unknowncheats.me/forum/904106-post5.html

[14] J. Steube, G. Gristina. “Hashcat – advanced password recovery”.
2016. [Online]. Available: https://hashcat.net/hashcat/

[15] K. Van Impe, “Mimikatz and hashcat in practice”. 2019. [Online].
Available: https://www.vanimpe.eu/2019/03/07/mimikatz-and-
hashcat-in-practice/

[16] MicrosoftDocs. “Reduce attack surfaces with attack surface reduction
rules”. 2019. [Online]. Available: https://docs.microsoft.com/en-
us/windows/security/threat-protection/microsoft-defender-atp/attack-
surface-reduction

[17] T. Hunter. “Bypassing Windows Defender cheap and cheerful:
obfuscation of Mimikatz”. 2019. [Online]. Available:
https://translate.google.com/translate?sl=auto&tl=en&u=https://habr.c
om/ru/company/tomhunter/blog/454758/

[18] M. Lavrijsen. “Protected Processes Light Killer”. GitHub. 2019.
[Online]. Available: https://github.com/Mattiwatti/PPLKiller

[19] FireF0X. “Multi-purpose proof-of-concept tool based on CPU-Z
CVE-2017-15303”. GitHub. 2018. [Online]. Available:
https://github.com/hfiref0x/Stryker

[20] Harakirinox. “Bypass PPL (Protected Process Light) from user-mode
using a vulnerable driver”. UnKnoWnCheaTs - Multiplayer Game
Hacks and Cheats. 2018. [Online]. Available:
https://www.unknowncheats.me/forum/anti-cheat-bypass/262766-
bypass-ppl-protected-process-light-user-mode-using-vulnerable-
driver.html

[21] H. Bui. “Weaponizing vulnerable driver for privilege escalation”,
Gigabyte Edition! Medium. 2019. [Online]. Available:
https://medium.com/@fsx30/weaponizing-vulnerable-driver-for-
privilege-escalation-gigabyte-edition-e73ee523598b

[22] H. Bui. “Weaponizing Gigabyte driver for priv escalation and bypass
PPL”, GitHub. 2019. [Online]. Available:
https://github.com/hoangprod/DanSpecial

[23] Notscimmy. “Elevate a process to be a protected process” , GitHub.
2019. [Online]. Available: https://github.com/notscimmy/pplib

[24] J. Forshaw, “Microsoft Windows PPL Process Injection Privilege
Escalation” 2017. [Online]. Available:
https://packetstormsecurity.com/files/143946/Microsoft-Windows-
PPL-Process-Injection-Privilege-Escalation.html

[25] J. Forshaw, “Injecting Code into Windows Protected Processes
using COM - Part 2”, 2018.
https://googleprojectzero.blogspot.com/2018/11/injecting-code-into-
windows-protected.html

[26] S. Do, “Preventing Mimikatz steal Windows system password.
Penetration Testing”. 2019. [Online]. Available:
https://securityonline.info/prevent-mimikataz/

[27] F. Lagrasta, MsvpPasswordValidate hooking. Dumping local
credentials by hooking MsvpPasswordValidate in NtlmShared.dll.
2020. [Online]. Available: https://offnotes.notso.pro/abusing-
credentials/dumping-credentials/msvppasswordvalidate-hook

[28] P. Ciholas, J. Such, A. Marnerides, B. Green, J. Zhang, U. Roedig,
“Fast and Furious : Outrunning Windows Kernel Notification
Routines from User-Mode”. Detection of Intrusions and Malware,
and Vulnerability Assessment. DIMVA. 2020. [Online]. Available:
https://doi.org/10.1007/978-3-030-52683-2_4

[29] J. Forshaw, “Injecting Code into Windows Protected Processes using
COM - Part 1”. 2018. [Online]. Available:
https://googleprojectzero.blogspot.com/2018/10/injecting-code-into-
windows-protected.html

[30] M. Baranauskas. “Dumping Lsass Without Mimikatz”. [Online].
Available: https://www.ired.team/offensive-security/credential-
access-and-credential-dumping/dump-credentials-from-lsass-process-
without-mimikatz

[31] A. Ionescu, “Unreal Mode: Breaking Protected Processes”.
NoSuchCon. 2014. [Online]. Available:
https://www.slideshare.net/NoSuchCon/d3-05-
alexionescubreakingprotectedprocesses

[32] Achilles, “The Birth of a Process Part-1”, 2020. [Online]. Available:
https://medium.com/@Achilles8284/the-birth-of-a-process-part-1-
bfb4fdac070e

[33] Bitdefender, “GravityZone Administrator's Guide”. 2019. [Online].
Available:
https://www.bitdefender.co.th/resources/GravityZoneEnterprise/Curre
nt/Documentation/en_US/Bitdefender_GravityZone_AdministratorsG
uide_7_enUS.pdf

[34] Cisco, “AMP for Endpoints User Guide”, 2020. [Online]. Available:
https://docs.amp.cisco.com/AMP%20for%20Endpoints%20User%20
Guide.pdf

[35] Eset, “Easy Protection, ESET Internet Security & ESET Smart
Security Premium”, 2019. [Online]. Available:
https://forum.eset.com/topic/19683-easy-protection/

[36] KaspeskyLab, “About Protected Process Light (PPL) technology for
Windows”, 2020. [Online]. Available:
https://support.kaspersky.com/13905

[37] SolarWinds, “Protected Process Light and SentinelOne Agents”,
2020. [Online]. Available:
https://documentation.solarwindsmsp.com/EDR/Liberty/en/troublesh

307

ooting-windows-agents/troubleshooting-windows-agents/protected-
process-light-and-sentinelone-agents.html

[38] McAfee, “Processes that Endpoint Security installs”, 2020. [Online].
Available:
https://kc.mcafee.com/corporate/index?page=content&id=KB87791

[39] Microsoft, “Windows Defender in Windows 10: System integration”,
2015. [Online]. Available:
https://download.microsoft.com/download/0/B/5/0B5EC8E7-1313-
4477-AE4F-
8F3C9FEBC1DB/MMPC%20Threat%20Intelligence%20August%20
2015.pdf

[40] MSDN. “Configuring Additional LSA Protection. Security and
Assurance. Credentials Protection and Management’, 2016. [Online].
Available: https://docs.microsoft.com/en-us/windows-
server/security/credentials-protection-and-management/configuring-
additional-lsa-protection

[41] MSDN. “ZwQueryInformationProcess function. Process and Thread
Functions”. 2016. [Online]. Available: https://docs.microsoft.com/en-
us/windows/win32/procthread/zwqueryinformationprocess

[42] Ntopcode. “Anatomy of the Process Environment Block (PEB)
(Windows Internals)”. 2018. [Online]. Available:
https://ntopcode.wordpress.com/2018/02/26/anatomy-of-the-process-
environment-block-peb-windows-internals

[43] A. Ionescu, “The Evolution of Protected Processes Part 1: Pass-the-
Hash Mitigations in Windows 8.1.” Alex Ionescu’s Blog. 2013.
[Online]. Available: http://www.alex-ionescu.com/?p=97

[44] A. Ionescu, “The Evolution of Protected Processes Part 2:
Exploit/Jailbreak Mitigations, Unkillable Processes and Protected
Services”. Alex Ionescu’s Blog. 2013. [Online]. Available:
http://www.alex-ionescu.com/?p=116

[45] B. I. Aquilino, “Relevance of Security Features Introduced in Modern
Windows OS”. Master’s thesis. 2019. [Online]. Available:
https://aaltodoc.aalto.fi/bitstream/handle/123456789/38990/master_A
quilino_Broderick_2019.pdf

[46] A. Ionescu, and J. Forshaw, “Unknown Known DLLs and other Code
Integrity Trust Violations: Breaking Signature Guarantees in
Windows”. REcon. 2018. [Online]. Available:
https://docplayer.net/storage/100/144657723/1609772315/rmRiBDQl
l2c-D7LrqAVwZg/144657723.pdf

[47] G.Tworek, “Creating Protection Service”. Github Source Code. 2020.
[Online]. Available:
https://github.com/gtworek/PSBits/blob/master/Services/SpoilService
.c

[48] Path, “Experimenting with Protected Processes and Threat-
Intelligence”. 2020. [Online]. Available:
https://blog.tofile.dev/2020/12/16/elam.html

[49] zwclose7, “Set a process as critical process using
NtSetInformationProcess function”, 2013. [Online]. Available:
http://www.rohitab.com/discuss/topic/40275-set-a-process-as-critical-
process-using-ntsetinformationprocess-function/

[50] P. Yosifovich, “Windows Kernel Programming”. 2019, CreateSpace
Independent Publishing Platform

[51] J. Mulder. “Mimikatz Overview, Defenses and Detection”. SANS
Institute. 2014. [Online]. Available:
https://daloo.de/testwebdavhere/mimikatz-overview-defenses-
detection-36780.pdf

[52] M. Hand. “Mimidrv In Depth: Exploring Mimikatz’s Kernel Driver”.
Posts by SpecterOps Team Members. Medium. 2018. [Online].
Available: https://posts.specterops.io/mimidrv-in-depth-
4d273d19e148

[53] A. Chester. “Exploring Mimikatz - Part 1 – Wdigest”. 2019. [Online].
Available: https://blog.xpnsec.com/exploring-mimikatz-part-1/

[54] A. Chester. ‘Exploring Mimikatz - Part 2 – SSP”. 2019. [Online].
Available: https://blog.xpnsec.com/exploring-mimikatz-part-2/

[55] D. Patil, B. Meshram, “Analysis of Windows In-Memory Structures
for Extracting Digital Evidence”. 2019. [Online]. Available:
http://ijcsse.org/published/volume6/issue6/p1-V6I6.pdf

[56] P. Gkatziroulis. “Preventing Mimikatz Attacks”. Medium. 2019.
[Online]. Available: https://medium.com/blue-team/preventing-
mimikatz-attacks-ed283e7ebdd5

[57] B. Delpy, “Mimikatz latest release”. GitHub. 2020. [Online].
Available: https://github.com/gentilkiwi/mimikatz/releases/latest

[58] B. Delpy, “Anti-Virus Software Thinks Mimikatz Is Malware”.
Mimikatz Issues. 2016. [Online]. Available:
https://github.com/gentilkiwi/mimikatz/issues/55#issuecomment-
238336107

[59] D. Altermatt, “Detecting PPL Manipulation? A Test Using LSASS as
an Example”. SCIP. 2020. [Online]. Available:
https://www.scip.ch/en/?labs.20200116

[60] E. Perla, and M. Oldani, “A Guide to Kernel Exploitation: Attacking
the Core” 1st Edition. Massachusetts, US: Syngress. 2010.

[61] M. Schneider, “Local Security Authority. Keeping Secrets Safe”.
SCIP. 2019. [Online]. Available:
https://www.scip.ch/en/?labs.20191121

[62] Woshub. How to Obtain SeDebugPrivilege when Debug Program
Policy is Enabled. Windows OS Hub. 2017. [Online]. Available:
http://woshub.com/obtain-sedebugprivilege-debug-program-policy-
enabled/

[63] D. Kennedy, “Dumping Wdigest Creds With Meterpreter
Mimikatz/Kiwi In Windows 8.1”. 2018. [Online]. Available:
https://www.trustedsec.com/blog/dumping-wdigest-creds-with-
meterpreter-mimikatzkiwi-in-windows-8-1/

[64] MicrosoftDocs. “Microsoft Security Advisory 2871997. Security
Advisories”. 2017. [Online]. Available:
https://docs.microsoft.com/en-us/security-
updates/SecurityAdvisories/2016/2871997

[65] S. Anson. “Applied Incident Response.” Wiley; 1st edition. 2020
[66] E. Shlomo. “Restricted RDP for Admin (RestrictedAdmin).” Elli

Shlomo Blog. 2019. [Online]. Available:
https://www.eshlomo.us/restricted-rdp-for-admin-restrictedadmin/

[67] MicrosoftDocs. “Protect derived domain credentials with Windows
Defender Credential Guard. Identity and access protection”. 2017.
[Online]. Available: https://docs.microsoft.com/en-
us/windows/security/identity-protection/credential-guard/credential-
guard

[68] K. Joyce, “Defender Credential Guard: Protecting Your Hashes”.
Insider Threat Security Blog. 2019. [Online]. Available:
https://blog.stealthbits.com/defender-credential-guard-protecting-
your-hashes/

[69] I. Korkin, “Divide et Impera: MemoryRanger Runs Drivers in
Isolated Kernel Spaces”, In Proceedings of the BlackHat Europe
Conference, London, UK, December 5-6, 2018. [Online]. Available:
https://www.blackhat.com/eu-18/briefings/schedule/#divide-et-
impera-memoryranger-runs-drivers-in-isolated-kernel-spaces-12668

[70] I. Korkin, “MemoryRanger Prevents Hijacking FILE_OBJECT
Structures in Windows Kernel”, In Proceedings of the 14th Annual
ADFSL 2019 Conference on Digital Forensics, Security and Law,
Daytona Beach, Florida, USA, May 15-16, 2019, ISSN 1931-7379.
[Online]. Available:
https://igorkorkin.blogspot.com/2019/04/memoryranger-prevents-
hijacking.html

[71] I. Korkin, “Kernel Hijacking is Not an Option: MemoryRanger
Comes to the Rescue Again”, Hack In The Box Security Conference
(HITBLockdown002), July 25, 2020, Singapore. [Online]. Available:
http://conference.hitb.org/hitb-lockdown002/sessions/kernel-
hijacking-is-not-an-option-memoryranger-comes-to-rescue-again/

[72] I.Korkin. YouTube Channel. 2021 [Online]. Available:
https://www.youtube.com/c/IgorKorkin

[73] ERNW, “Work Package 6: Virtual Secure Mode”, SiSyPHuS Win10:
Analysis of Virtual Secure Mode. 2020. [Online]. Available:
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-
Sicherheit/SiSyPHus/Workpackage6_Virtual_Secure_Mode.pdf?__bl
ob=publicationFile&v=2

308

