
Optimizing Transformations of Dynamic Languages
Compiled to Intermediate Representations

Robert Husák
Faculty of Mathematics and Physics

Charles University
Prague, Czech Republic
husak@ksi.mff.cuni.cz

Filip Zavoral
Faculty of Mathematics and Physics

Charles University
Prague, Czech Republic
zavoral@ksi.mff.cuni.cz

Jan Kofroň
Faculty of Mathematics and Physics

Charles University
Prague, Czech Republic

jan.kofron@d3s.mff.cuni.cz

Abstract—Compiling dynamic languages to stack-based inter-
mediate representations used in platforms such as .NET and
Java proved to be useful, mainly due to the enhanced inter-
operability and security. To produce the best intermediate code
possible, current approaches perform a detailed flow-sensitive
type analysis of the original code and utilize its results to choose
the most efficient operations of the target platform. As known
from the traditional compilers, the standard way to further
increase program performance is using a set of transformations,
which increase its efficiency while preserving its semantics.
However, these transformations are not directly usable in the
compilers of dynamic languages, because these operate on a
higher level of abstraction; moreover, dynamic languages pose
specific challenges, such as those stemming from weak typing.
In this paper we propose a set of transformations which fit
into the architecture of a dynamic language compiler, fitting
well together with the type analysis. For evaluation purposes,
we implemented them to Peachpie, a compiler of PHP to .NET.
Applying the transformations during compilation of WordPress
resulted in improvement of 0.6% in the generated assembly size,
1.8% in CPU time and 0.8% in memory consumption.

Index Terms—compilers, optimization, scripting languages,
program analysis, program transformation

I. INTRODUCTION

Dynamic programming languages have become very popu-
lar in software development, mainly due to their simplicity
and transparency. While the common way is to use them
in their respective original runtime environments, there have
been successful attempts to compile them into a strongly-typed
intermediate language used in the platforms such as .NET and
Java. Although this approach is not applicable in all cases
due to additional deployment complexity, it provides several
significant benefits, e.g. enhanced security, interoperability and
source-less distribution [1].

One of the challenges such compilers face is to optimize
the resulting intermediate language to be as efficient and
clean as possible. Although there is a plethora of compiler
optimization techniques developed over several decades [2],
[3], they are not directly applicable to this kind of compilation
and many optimizations aimed at dynamic languages [4], [5]
are not available at compile time. The specific difficulties are
explained in section II.

This work was supported by Charles University Grant Agency (GA UK)
project 896120, the project PROGRESS Q48 and the grant SVV-2017-260451.

This paper describes a way to extend a dynamic-language
compiler with an optional optimization phase, which performs
semantics-preserving transformations. The work is based on
Peachpie [1], a compiler of PHP into .NET. Therefore,
the examples of particular transformations are bound to the
specifics of PHP, but the general idea is transferable to other
languages and platforms as well. Our contributions are as
follows:

• We describe the overall compilation algorithm with an
optional optimization phase in section III.

• Section IV explains the optimizing transformations based
on the observations of certain usage patterns which can
be simplified.

• Two transformations requiring more sophisticated analy-
sis are shown in section V.

• We evaluate the overall effects and overhead of the
transformations in section VI.

In section VII, we compare our approach to the most
relevant existing work, while section VIII concludes.

II. PROBLEM STATEMENT

A traditional way to create a compiler is to implement the
whole process from parsing the source code to its execution.
Although this approach requires the most effort, its main
benefit is the opportunity to make all the decisions regard-
ing the infrastructure of the compilation/execution workflow.
When compiling an existing language to an existing platform,
we find ourselves in a completely opposite situation. The
expected behavior is already specified and the underlying
architecture is already implemented; therefore, we have to
tailor the architecture of the respective compiler to the needs
and best practices of both.

A managed platform such as .NET provides us with a
potentially very efficient runtime environment containing just-
in-time (JIT) compilation. A JIT compiler accepts a high
level stack-based intermediate language and compiles it into
the machine code. During the JIT compilation, it usually
transforms the code to a reasonably alterable type of inter-
mediate representation (IR) and performs various well-known
optimizations such as routine inlining, loop invariant code
hoisting, copy propagation and common subexpressions eli-
mination [6]. However, these optimizations, as well as IR,

145

2020 International Symposium on Theoretical Aspects of Software Engineering (TASE)

978-1-7281-4086-5/20/$31.00 ©2020 IEEE
DOI 10.1109/TASE49443.2020.00028

are internal parts of the respective platform and are applied
at runtime. Therefore, we cannot utilize them directly when
compiling a program to the code in a stack-based intermediate
language. Instead, the optimizations we target in this paper
must be performed on a higher level of abstraction so that the
input for the JIT compiler is as simple as possible.

Stack-based intermediate languages naturally correspond to
recursively traversing a syntax tree and emitting its contents
in post-order. For example, the addition of two integers a +
b can be represented as the tree Add(Var(a), Var(b))
and emitting its contents to a toy stack-based intermediate
language yields loadVar a; loadVar b; add.

A natural approach to optimization present in Peachpie is
to analyze the code and annotate the tree with pieces of
information potentially usable to produce better code in the
emit phase [7]. As an example, consider the following PHP
code:

function foo(array $a, array $b) {
$b["b"] = (isset($a["a"]) ? $a["a"] : "b");
return $b;

}

If we compile it using Peachpie to the Common
Intermediate Language (CIL) and decompile it to C#, the result
looks similar to this:

PhpValue foo(PhpArray a, PhpArray b)
{

a = a.Copy();
b = b.Copy();
PhpValue v =
Operators.OffsetExists(a, "a")
? a.GetItemValue("a")
: "b";

b.SetItemValue("b", v.GetValue());

return b.Copy();
}

Notice the return type PhpValue, which is a structure
possibly containing a PHP value of any type, e.g., a string, an
associative array or an object reference. Whenever we cannot
infer the exact type of some expression by data-flow analysis,
PhpValue is used to defer the particular operation selection
to runtime [1]. On the other hand, both $a and $b must
contain associative arrays (PhpArray class in Peachpie);
therefore, we can emit strongly-typed static calls to the Copy,
OffsetExists, GetItemValue and SetItemValue
methods.

The first two calls to PhpArray.Copy are there to mimic
passing the function parameters by value1. Next, the result of
the conditional expression is stored to a temporary variable v.
Notice that before being added to b, GetValue is called on
v. The reason is that one of the possible types PhpValue
can be is the class PhpAlias, used to implement refer-
ence assignments [8]. As an alias might have been possibly
stored in $a["a"], we must explicitly dereference it using

1Note that the proper copy-on-write semantics is implemented in
PhpArray, but we consider it as a hard copy for the sake of simplicity.

GetValue. The final call to Copy is there to mimic the return
by value.

In this work, we introduce a set of optimizing transforma-
tions, which can make a code like this even more efficient.
The current code in the conditional expression requires two
consequent lookups to the associative array using the same
key. If we recognize this access pattern and replace it with
a simple dedicated operation TryGetItem, we can simplify
the access as follows:

PhpValue v =
a.TryGetItemValue("a", out var w) ? w : "b";

Another way to improve the resulting code is to erase the
call to Copy in return. We can afford to do that without
changing code semantics, because b was already copied at the
beginning of the function.

By enabling transformations of this kind, we can possibly
gain numerous benefits in terms of the performance and the
size of the generated code. On the other hand, it introduces
additional complexity to the compiler. For example, if we
decide to remove unreachable parts of code, it gives us the
opportunity to re-run the type analysis and make it more
precise. Therefore, the architecture of a dynamic language
compiler must be updated to enable these transformations. Our
approach in this direction is described in the following section.

III. ARCHITECTURE

The purpose of this section is to explain where in the
compilation process the optimizing transformations should
take place. The overall compiler architecture and its internal
structures are inspired by Peachpie, but it should be feasible
to adapt them to other compilers as well. Notice also that the
novelty lies mainly in the application to dynamic language
compilers, since these ideas have been present in traditional
compilers for a long time [2], [3], [9].

The suggested way to accommodate optimizing transforma-
tions into a dynamic language compiler is shown in Fig. 1. At
first, let us recapitulate the phases already known from pre-
vious work on Peachpie. ParseSyntaxTrees transforms
source files into a set of abstract syntax trees (AST). ASTs are
then processed and the structure of particular routines is then
transformed into control flow graphs (CFG). It is important
to note that although the control flow is captured using edges
between particular nodes, each expression is still contained
in a tree structure, being called a semantic tree [7], [10]. The
nodes in semantic trees contain annotations important for their
later Emit to an intermediate language, such as their access
mode. Further information is then obtained by Analyse using
a flow-sensitive interprocedural analysis to determine, among
others, possible types of all expressions and constant values
known during compile time.

The contribution of this paper is in the Transform phase.
Because it modifies the CFGs, we need to re-run Analysis
each time it is successful. More precise analysis results yield
more opportunities to transform the code; therefore, we run
the analysis and transformation phase in a cycle. To limit its

146

ASTs ← ParseSyntaxTrees()
CFGs ← BindCFGs(ASTs)
Analyse(CFGs)
while CFGs changed and maxIters not reached do
Transform(CFGs)
Analyse(CFGs)

Emit(CFGs)

Fig. 1. High-level overview of a dynamic language compilation algorithm
extended with optimizing transformation phase.

Transform(CFGs)

for all cfg ∈ CFGs do
TransformNode(cfg.enter)

TransformNode(n)

if n.visited then
return

else
n.visited ← true

for all op ∈ n.operations do
RewriteOperation(op)

if n.next is [n1, n2] and n.condOp is const then
n.next ← n.condOp ? [n1] : [n2]

for all n_next ∈ n.next do
TransformNode(n_next)

RewriteOperation(op)

for all child ∈ op.children do
RewriteOperation(child)

op ← TransformOperation(op)

Fig. 2. The implementation of the Transform phase.

impact to compilation time, the number of maximum iterations
can be limited by maxIters, e.g. set to zero in debug mode.
Transform works by traversing and simultaneously mo-

difying CFG, as shown in Fig. 2. Starting from the entry
node, it explores the CFG using a depth-first search, marking
the already visited nodes. The first optimization comes at
this point. If a node n targets two nodes n1 and n2 on a
condition whose value is known to be constant, it removes the
unreachable target from the CFG and processes only the valid
one. Currently, it is the only modification performed on the
CFG structure, but we plan to add more of them in the future.

As all operations performed on a CFG node are stored
as semantic trees, a natural way to modify them is us-
ing recursion. In our algorithm description in Fig. 2,
RewriteOperation is responsible for traversing the tree,
while TransformOperation contains the main logic for
all the transformations described in the rest of this paper.

A sample PHP code with opportunities for transformation
is shown in Fig. 3. The first pass of Analyse discovers that

function bar() {
if (function_exists("print_r")) {
$b = 42;

} else {
$b = "bar";

}

if (is_string($b)) {
return "bar";

} else {
return 24;

}
}

Fig. 3. A sample PHP code which requires multiple phases of analysis and
transformation to reach the optimal result.

$b can be either a string or an integer and the expression
function_exists("print_r") is always true, because
it is in the referenced core library. Due to the constant
value in the if clause, Transform replaces the whole
first if..else construct by $b = 42. During the next
analysis phase, $b is proved to possibly be only integer
and is_string($b) to be false. Again, the transformation
phase removes the second if..else construct, leaving only
return 24. The final analysis phase infers that the return
type of bar is integer.

IV. PATTERN-BASED TRANSFORMATIONS

As explained in the previous section, expression transforma-
tions are performed by recursively traversing and updating the
semantic trees. To determine whether to transform a particular
node, it is matched against a set of patterns and their additional
conditions. If the match succeeds, the transformation is per-
formed by replacing the node with a newly created one.

Table I shows the most interesting transformations per-
formed in our work, sorted by their increasing complexity and
numbered in the first column. The second column contains an
intuitive idea behind each transformation, explained using code
snippets in a mixture of PHP and C# syntax. A single-letter
identifier with $ as a prefix stands for an arbitrary variable,
whereas a single-letter identifier without a prefix stands for an
arbitrary subexpression. The third column presents the precise
pattern which an expression subtree needs to match in order to
be transformed. It is expressed in a prefix notation where node
type names and enumeration values start with upper-case let-
ters. Lower-case identifiers represent arbitrary subexpressions,
which can be captured to be used in the resulting subtree.
Some transformations express additional conditions on the
captured subexpressions, possibly using information from the
analysis phase. The fourth column shows the structure of the
resulting subtree.

Let us demonstrate the notation on the first transformation,
turning a double logical negation into a single conversion to
Boolean. The identifier x symbolizes an arbitrary expression
nested inside two logical negations. UnaryOp(operator,
operand) is a semantic tree node representing an application

147

TABLE I
PATTERN-BASED TRANSFORMATIONS

No. Intuition Pattern and Conditions Result
1 !!x → (bool)x UnaryOp(Negate, UnaryOp(Negate, x)) Conversion(Bool, x)

2 x * -1 → -x BinaryOp(Multiply, x, Literal(-1)) UnaryOp(Minus, x)

3 empty($x) → true
Empty(Var(x))

type(x) = {} ∨ type(x) = {null}
Literal(True)

dirname(__FILE__) FunctionCall(
PseudoConst(Dir)4 ↓ \dirname,

__DIR__ PseudoConst(File))

5
ord(s[i])

↓
GetItemOrdValue(s, i)

FunctionCall(

\ord,
ArrayItem(s, i))

type(i) = {integer}

ArrayItemOrd(s, i)

6

isset($a[i]) ? $a[i] : x

↓
TryGetItem($a, i, out v)

? v : x

Conditional(

IsSet(ArrayItem(Var(a), i)),

ArrayItem(Var(a), i),

x)

i = Var(*) ∨ i = Literal(*)

ArrayItemTry(Var(a), i, x)

7 (callable)"fn" → fn
Conversion(Callable, Literal(fn))

routine(fn)
CallableConvert(fn)

8
(callable)["class", "m"]

↓
class.m

Conversion(

Callable,

Array(Literal(class), Literal(m)))

routine(class::method)

CallableConvert(class::m)

9
(callable)[$this, "m"]

↓
this.m

Conversion(

Callable,

Array(Var(this), Literal(m)))

type(this) = {class} ∧ routine(class::m)

CallableConvert(class::m)

of a unary operator on an operand. In this case, we are
interested in the Negate operator. To represent the double
application, another UnaryOp is used as the operand of
the first one. The nested expression x is captured from the
original subtree and used in its replacement by the conversion
to Boolean, represented by Conversion(Bool, x).

The second transformation is a subtle simplification as well,
replacing a multiplication by −1 to a direct application of
unary minus. Although the JIT compiler itself can perform this
optimization, it is applicable only if x is of a single numeric
type. Even though the type analysis can prove it to be, it is not
a common situation, e.g. due to an implicit cast of overflowing
integers to floating-point numbers in PHP. Our transformation
can simplify the code independently of the type.

The third transformation uses the previous analysis phase to
evaluate the empty($x) expression. Notice that a variable
reference is expressed in the semantic tree as Var(v) node,
where v is the unique identifier of a particular variable.
The function type is created during the previous analysis
and associates each expression and variable with a set of its
possible types. If the set is empty or contains only null, the
variable was either never assigned to or was unset by being
assigned null. Therefore, in this case, we can safely replace

the original expression by true.
The popularity of the construct dirname(__FILE__)

is caused, among other things, by its backward compatibil-
ity with PHP 5. Because it is semantically equivalent to
__DIR__, we can safely replace it using the fourth trans-
formation. Apart from the removed function call, it helps to
statically resolve file inclusions. Notice that we use a special
node PseudoConst to denote this type of constants and
FunctionCall(f, arg1, arg2,...) to call the func-
tion f with the given arguments. To denote that the function
being called must be the one from the global namespace and
not a function with the same name from a local namespace,
we identify it with the \ prefix in the pattern.

A string in PHP has an interesting behavior when one of
its characters is read using an indexer. Instead of directly
returning its ASCII value, a single-character string is created
and retrieved. Therefore, a common way to access the ASCII
value of a given character is to apply the indexer and then
use the function ord, which retrieves the ASCII code of the
first character of the obtained string. This approach, however,
leads to unnecessary repeated allocations of single-character
strings and the immediate retrieval of their values. Since we
are able to identify this pattern, we can replace it with the

148

custom operation GetItemOrdValue in the fifth transfor-
mation. Although we require the index i to be integer, s can
potentially be of any type. However, GetItemOrdValue
has a special overload with string as the first parameter and
the custom node ArrayItemOrd may choose it during the
emit phase if type(s) = {string}. The string overloading
works simply by retrieving the character on the given position.
The general version of GetItemOrdValue checks the type
in runtime and when it is not a string, it mimics the behavior
of the original expression.

Another commonly used expression is shown in the sixth
transformation: determining whether an array element exists
using isset before its retrieval. We can reduce the two array
lookups to one by combining the semantics into the custom
operation TryGetItem. Again, there are several overloads
based on the argument types, from which the appropriate
one is selected during the emit phase of the custom node
ArrayItemTry. Notice that we constrain the index i to
be either a variable reference or a literal to ensure that it does
not cause any side effects.

The transformations 7, 8 and 9 revolve around the logic
of callbacks in PHP. There are several library functions ac-
cepting a callback as an argument, e.g. call_user_func
or array_map. Aside from using closures, PHP allows the
caller to pass a string or a two-element array to identify
the defined method. It is then converted at runtime to the
appropriate delegate by dynamically finding the corresponding
routine using reflection. Our transformations aim to move
this lookup to the compilation phase. The first transformation
captures the situation when a single string is being converted
to a callback, meaning that the global function of that name
should be used. Notice that the pattern requires the string
value to be known during the compilation. Furthermore, the
function routine is used to determine whether a routine with
the given name exists. If the transformation is applied, the
resulting expression CallableConvert is responsible for
emitting a lazily-loaded delegate. The similar situation is in the
second transformation, only in this case, the two-element array
specifies a class and its static method. As we can see in the
last transformation, an instance method can be resolved during
compilation as well, supposing it is called on this. Although
the resulting delegate still needs to be recreated upon each
call, we save CPU time and memory allocation by skipping
the creation of the array and the lookup of the method using
reflection.

The transformation list is not exhaustive; there are several
other transformations similar to the first four, which we
skipped due to space restrictions. Examples include evaluation
of operations whose operands are known at compile time, such
as constant string concatenation.

Also, there is room for adding more transformations, pos-
sibly by drawing inspiration from existing dynamic language
runtimes and traditional compilers. Variants of the aforemen-
tioned transformations can already exist in such contexts. The
transformations described in the next section more aim at the
specific issues of dynamic language compilation, so they can

function foo($a, $b) {
bar($a);
if (is_array($b)) {
$c = $b;

} else {
$c = [];

}
return $c;

}

Fig. 4. A sample PHP code containing several places where values are copied.

PhpValue foo(PhpValue a, PhpValue b)
{

a.PassValue();
b.PassValue();
bar(a);
PhpValue c;
if (Variables.is_array(b)) {
c = b.Copy();

} else {
c = (PhpValue)PhpArray.NewEmpty();

}
return c.Copy();

}

Fig. 5. The PHP sample of value copying compiled by Peachpie to CIL and
decompiled to C#.

be classified as more original.

V. DATA-FLOW-BASED TRANSFORMATIONS

The transformations shown in section IV are based on
discovering certain expression patterns in semantic trees and
simplifying them. Some patterns use information from the pre-
vious type-analysis phase as well as the knowledge of existing
classes and routines. However, none of these transformations
has to perform a custom flow-sensitive analysis. This section
presents a set of transformations which need this kind of
analysis in order to be applied. These transformations aim at
reducing the number of calls to helper methods which maintain
the PHP assignment-by-value semantics. Consider the PHP
code example in Fig. 4 and the result of its compilation in
Fig. 5.

As mentioned in section II, PhpValue is a helper structure
which can possibly hold a value of any valid PHP type or an
instance of the class PhpAlias. Therefore, just simply pass-
ing a PhpValue argument to a function in the way common
in .NET can cause unwanted aliasing to be introduced. To
prevent that, PhpValue contains the method PassValue,
which ensures that any referenced object is properly extracted
from PhpAlias and copied if necessary. By default, it is
emitted for each argument. Also notice the two calls to Copy:
the first one in the assignment $c = $b and the second one
in the return statement.

Most of the mentioned calls are not necessary. The para-
meter a is only passed to bar and never used anywhere else.
The function bar expects that its argument can be an alias

149

TABLE II
DATA-FLOW-BASED TRANSFORMATIONS

No. Intuition Pattern and Conditions Result

1 p.PassValue() → ;
PassParam(Var(p))

∀e ∈ Exprs (e = Var(p) ⇒ safeUse(e) ∧ ¬afterCall(e))
NoOp

2 x = y.Copy() → x = y

Assignment(Var(x), c)

c = Copy(Var(y)) ∧
∀e ∈ Exprs (e = Var(v) ∧ reaches(c,e) ⇒ ¬modified(e))

Assignment(Var(x), Var(y))

3 return x.Copy() → return x
Return(Copy(Var(x)))

¬ref(x)
Return(Var(x))

or a reference to PhpArray and can handle these situations
itself. As a result, we can remove a.PassValue. On the
other hand, we cannot do the same for b due to two reasons.
First, when being assigned to c, it is not expected to hold an
alias, so we would need an additional call to GetValue there.
Second, if b is an alias, bar can modify its value, changing
the resulting semantics. Regarding Copy, it is possible to
eliminate all its calls in this case, as c is never modified after
being assigned the value from b and b.PassValue makes
sure that returning c does not cause aliasing with b.

The corresponding transformations are shown in Table II.
Its structure is the same as in section IV, only the second
column is in C# syntax and the pattern conditions are more
complex and depend on information not directly available from
the analysis phase. As a result, these transformations can be
implemented in the same way as the simpler ones, assuming
that the additional analysis is performed beforehand. As the
transformation phase is optional and this analysis is only useful
for the transformations, there is no need to perform it in the
main analysis phase.

The removal of PassValue in the first transformation is
expressed as replacing the node PassParam by an empty
operation. Exprs in the condition stands for the set of all the
semantic tree nodes in the given routine. By enumerating it
with e matched against Var(p), we inspect all the references
of the parameter p in the routine. There are two predicates
supplied by the analysis: safeUse and afterCall. The purpose
of safeUse is to determine whether p is accessed in a context
which does expect it to possibly be a hidden alias or a
reference to an existing object outside the routine scope, such
as an array or a string. Its conservative implementation is to
return true if and only if the parameter is passed by value to a
routine call. The predicate afterCall marks the regions of the
program occurring after a possible call to an external routine.
Any aliases not dereferenced before such call can be subject to
modification during it, so it is not safe to use them afterwards.
Notice that apart from directly calling a routine, methods such
as __clone, __get, __toString or offsetExists
can be indirectly called by cloning, field value retrieval,
implicit conversion to string etc. Therefore, all the operations
which can cause these calls should make afterCall return
true as well. Computing afterCall is straightforward, as it

is basically a reachability problem solvable by coloring the
operations in CFG.

The second transformation presents the removal of copies
in assignments, which requires two other predicates: modified
and reaches. The former one captures whether the given
variable reference in its current context can be used to modify
the contents of the underlying structure. For example, in the
expression $x["a"] = 42 variable $x can be modified,
so if the last assignment to $x was $x = $y, its copy
operation must be kept to prevent the modification of $y.
The predicate reaches connects each Copy expression in an
assignment with all the uses of variables whose aliasing it
prevents. Basically, the Copy in x = y.Copy() reaches
all following occurrences of both x and y until any of them
takes part in another assignment. If there is assignment z = w
whose copy was removed in a previous transformation round,
all the copies that reached w now reach z as well. Note that
in Peachpie, we use a fixpoint analysis [11] based on bit mask
states to compute reaches efficiently (the details are beyond
the scope of this work).

Interestingly, removing Copy from variables in return state-
ments is much simpler than the previous transformations. The
reason is that the validity of all the local variables ends
with the routine, so we do not have to care about their
possible aliasing anymore. Note also that even if we directly
or indirectly return a parameter, its usage in an assignment or a
return statement prevents PassParam from being removed.
The only situation when we cannot eliminate a copy upon
return is when the variable can be a reference. We can check
this situation using ref from the main analysis phase.

VI. EVALUATION

There are three important research questions when it comes
to evaluating the aforementioned transformations:

• RQ1: What are the measurable gains of each transfor-
mation?

• RQ2: Are the transformations applicable in real-life
projects?

• RQ3: Are there any measurable benefits in applying the
whole set of transformations to real-life projects?

In order to answer them, the transformations were imple-
mented in Peachpie. Using the library BenchmarkDotNet [12],

150

TABLE III
EVALUATION OF TRANSFORMATION SAVINGS AND APPLICABILITY

Transformation
Savings

Occurrences in WordPress
Time [ns] Memory [b]

DoubleNegate 1 0 0
MinusOneMultiply 2 0 6

EmptyRemoval 20 0 0
DirnameSimplify 426 488 164

OrdString 404 72 69
TryGetItem 52 0 373

CallableFunction 58,544 609 275
CallableStatic 1,486 856 13
CallableThis 1,233 744 37

ParamCopyRemoval 41 32 1,726
AssignCopyRemoval 58 32 243
ReturnCopyRemoval 50 32 2,423

TABLE IV
EVALUATION OF TRANSFORMATIONS ON WORDPRESS

Metric Original Transformed Difference
Transformation cycles 0 6
Compilation time [s] 47 61 +30%
Assembly size [kiB] 16,155 16,051 -0.6%
Request time [ms] 103.9 102 -1.8%

Request memory [MiB] 13.22 13.11 -0.8%

we developed two sets of benchmarks. The first one uses short
microbenchmarks, where each one is tailored for a particular
transformation. Its purpose is to measure the gains of each
transformation separately. The second set of benchmarks is
a simulation of sequential requests to the main page of a
website implemented in WordPress 3.5.1. The experiments
were conducted on a desktop with an Intel Core 2 Quad Q9300
2.5GHz CPU and 6GB RAM. Apart from runtime benchmarks,
compiling existing applications provided us with information
about the number of performed transformations, compilation
time and the resulting assembly size.

Table III presents the results in terms of savings and
applicability of each transformation. The first two columns
contain the savings provided by a single application of the
given transformation in the microbenchmarks. They are com-
puted by compiling the given code snippet with and without
transformations allowed and comparing the time and memory
usage differences over multiple runs. The last column shows
the number of applications of the given transformation when
compiling WordPress.

The impact on the selected projects is shown in Table IV.
We observe a set of metrics, comparing the original version
where the transformations are disabled with the one where
they are enabled. Request time and total allocated memory
are means across multiple repeated requests to the front pages
of the respective applications.

Let us answer the research questions with the support of
these data:

RQ1: As we can see in Table III, each transformation

performed separately has a positive impact on the runtime
resources and assembly size. The highest savings are provided
by compile-time callable conversions, whereas the lowest
savings are achieved by manipulations of simple expressions,
such as the transformation of x * -1 to -x. Note that the
usual savings of CPU time are in tens of nanoseconds and
the usual savings of allocated memory are in tens of bytes.
Therefore, in order for these transformations to make any mea-
surable effect in larger projects, they must be applied sufficient
number of times, especially in code which is executed often.
This brings us to the second research question.

RQ2: As seen in Table III, most transformations are per-
formed reasonable number of times in real projects, giving
them chance to decrease the assembly size, increase the
precision of the analysis and save runtime resources.

RQ3: Table IV shows that the effects of transformations are
visible even on large projects. Understandably, the impact is
not as radical as it might be in specialized microbenchmarks.
However, it shows that the transformation phase is worth the
reasonably increased compilation time and provides opportu-
nities for future improvements.

VII. RELATED WORK

This paper extends the approach to PHP analysis and
compilation in the way it is performed in Phalanger [13] and
Peachpie. The addition of transformation phase utilizes the
information gathered during the previous analysis and provides
a way to make the subsequent analysis more precise.

151

Since PHP 7.1, a static optimization phase of its byte-
code [14] has been added to Zend Engine [15], the ori-
ginal PHP interpreter. The bytecode is optimized by being
transformed to static single assignment (SSA) form, upon
which customized versions of traditional optimizations are
performed, e.g. constant propagation and dead code elimina-
tion. Whereas there are several ideas and insight which might
be useful for our approach, PHP bytecode and Zend Engine
are vastly different from CIL and .NET. For example, Zend
Engine does not need a special way to handle aliases, but it
must ensure the proper reference counting of all the objects.
Therefore, the optimizations often target different aspects of
the execution.

There are several other alternatives to Zend Engine.
The HipHop Virtual Machine (HHVM) [16] developed by
Facebook was originally a complete runtime environment with
dynamically optimized JIT compilation customized for PHP.
Recently, it dropped general support for PHP in favor of
Hack. The main difference comparing to our approach is
that HHVM performs most of the optimizations at runtime,
whereas we perform them statically when compiling PHP to
CIL. Quercus [17] and JPHP [18] compile PHP code to Java,
HippyVM [19] uses RPython. We were unable to find evidence
of any particular compilation optimizations they perform in
their respective documentations. Instead, most mentioned op-
timizations target the efficiency of used data structures, e.g.
associative arrays.

VIII. CONCLUSION

In this work, we have shown how to implement high-level
optimizing transformations in a dynamic language compiler.
The main idea is to add a transformation phase to the compi-
lation workflow, which is repeatedly run after the analysis. The
transformation of the expression semantic trees is performed
by matching their subtrees with a set of patterns and replacing
them by different ones on success. When a more sophisticated
analysis is needed, it is performed prior to the transformation
itself and its results can be then used in the aforementioned
patterns.

The suggested approach together with a set of relevant
transformations were implemented to the working version of
Peachpie. The results have shown that these transformations
can reduce the size of generated assemblies and decrease
resource consumption at runtime.

The impact on large projects is currently not highly sig-
nificant, but our work enables for more advanced analyses
and transformations that can be employed in the future. As
to our future work, we want to explore the possibilities of
type specialization on the level of code blocks, routines or
routine groups to decrease the amount of type checks. Another
direction is optimization of associative arrays, e.g. their re-
placement by specialized data structures where possible. These
techniques require more advanced interprocedural analysis
and smart heuristics to prevent them from hampering the
performance instead of improving it.

ACKNOWLEDGMENT

We would like to thank Jakub Mı́šek for his advice regarding
several edge cases of PHP semantics and their handling in
Peachpie. The mentioned transformations were developed in
collaboration with him.

REFERENCES

[1] J. Mı́šek and F. Zavoral, “Semantic analysis of ambiguous types in
dynamic languages,” Journal of Ambient Intelligence and Humanized
Computing, vol. 10, no. 7, pp. 2537–2544, Jul 2019. [Online].
Available: https://doi.org/10.1007/s12652-018-0731-5

[2] K. Kennedy and J. R. Allen, Optimizing Compilers for Modern Archi-
tectures: A Dependence-Based Approach. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2001.

[3] S. S. Muchnick, Advanced Compiler Design and Implementation. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998.

[4] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R.
Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, and et al.,
“Trace-based just-in-time type specialization for dynamic languages,”
SIGPLAN Not., vol. 44, no. 6, p. 465–478, Jun. 2009. [Online].
Available: https://doi.org/10.1145/1543135.1542528

[5] C. Wimmer and T. Würthinger, “Truffle: A self-optimizing runtime
system,” in Proceedings of the 3rd Annual Conference on Systems,
Programming, and Applications: Software for Humanity, ser. SPLASH
’12. New York, NY, USA: Association for Computing Machinery, 2012,
p. 13–14. [Online]. Available: https://doi.org/10.1145/2384716.2384723

[6] A. Krall, “Efficient javavm just-in-time compilation,” in Proceedings.
1998 International Conference on Parallel Architectures and Compila-
tion Techniques (Cat. No.98EX192), Oct 1998, pp. 205–212.

[7] J. Mı́šek and F. Zavoral, “Mapping of dynamic language constructs
into static abstract syntax trees,” in 2010 IEEE/ACIS 9th International
Conference on Computer and Information Science, Aug 2010, pp. 625–
630.

[8] J. Mı́šek, B. Fistein, and F. Zavoral, “Inferring common language
infrastructure metadata for an ambiguous dynamic language type,” in
2016 IEEE Conference on Open Systems (ICOS), Oct 2016, pp. 111–
116.

[9] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition). USA: Addison-Wesley Longman
Publishing Co., Inc., 2006.

[10] R. Farrow, “Generating a production compiler from an attribute gram-
mar,” IEEE Software, vol. 1, no. 4, pp. 77–93, Oct 1984.

[11] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis. Berlin, Heidelberg: Springer-Verlag, 1999.

[12] A. Akinshin. (2020, Jan) Benchmarkdotnet. .NET Foundation. [Online].
Available: https://benchmarkdotnet.org

[13] A. Abonyi, D. Balas, M. Beňo, J. Mı́šek, and F. Zavoral, “Phalanger im-
provements,” Department of Software Engineering, Charles University
in Prague, Technical report, 2009.

[14] N. Popov, B. Cosenza, B. Juurlink, and D. Stogov, “Static optimization
in PHP 7,” in Proceedings of the 26th International Conference
on Compiler Construction, ser. CC 2017. New York, NY, USA:
Association for Computing Machinery, 2017, p. 65–75. [Online].
Available: https://doi.org/10.1145/3033019.3033026

[15] (2020, Jan) PHP zend engine. PHP Group. [Online]. Available:
http://php.net

[16] G. Ottoni, “HHVM JIT: A profile-guided, region-based compiler for
PHP and Hack,” in Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI 2018.
New York, NY, USA: Association for Computing Machinery, 2018, p.
151–165. [Online]. Available: https://doi.org/10.1145/3192366.3192374

[17] (2020, Jan) Quercus: PHP in Java. Caucho Technology. [Online].
Available: http://quercus.caucho.com/quercus-3.1/doc/quercus.xtp

[18] (2020, Jan) JPHP: An alternative to PHP on the JVM. JPHP Group.
[Online]. Available: http://jphp.develnext.org

[19] M. Fijałkowski, A. Rigo, R. Gałczyński, R. Lamy, S. Pawluś,
A. Oruganti, and E. Barrett. (2020, Jan) HippyVM. Caucho
Technology. [Online]. Available: http://hippyvm.baroquesoftware.com

152

